ANSI X3.159-19589

ADOPITED FOR US: BY THE
FEDEHAL GOVEHRNMEN!

HE

PUB 160

SEC NOTICE ON INSIDE

for Information Systems —

Programming Language —

NI American National Standards Institute
1430 Broadway

New York , New York

10018

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal information Process-
ing Standards Publication 160, C. For a complete list of the publications available in the Federal Informa-
tion Processing Standards Series, write to the Standards Processing Coordinater (ADP), National Institute
of Standards and Technology, Gaithersburg, MD 20899.

ANSI ®
X3.159-1989

American National Standard
for Information Systems —

Programming Language —

Secretariat
Computer and Business Equipment Manufacturers Association

Approved December 14, 1989
American National Standards institute, inc

Abstract

This standard specifies the form and establishes the interpretation of programs expressed in the program-
ming language C. Its purpose is 1o promote portability, reliability, maintainability, and efficient execution of
C language programs on a variety of computing systems.

Sections are included that detail the C language itself and the contents of the C-language execution
library. Appendixes summarize aspects of both of them, and enumerate factors that influence the portabil-
ity of C programs.

Although this standard is intended to guide knowledgeable C-language programmers as well as imple-
mentators of C-language translation systems, the document itself is not designed to serve as a tutorial.

American
National

Standard

Published by

Approval of an American National Standard requires verification by ANSI that the
requirements for due process, consensus, and other criteria for approval have been met by
the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,
substantial agreement has been rcached by directly and materially affected interests.
Substantial agreement means much more than a simple majority, but not necessarily
unanimity, Consensus requires that all views and objections be considered, and that a
concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence docs not
in any respect preclude anyone, whether he has approved the standards or not, {rom
manufacturing, marketing, purchasing, or using products, processcs, or proccdures not
conforming to the standards.

The American National Standards Institute does not develop standards and will in no
circumstances give an interpretation of any American National Standard. Moreover, no
person shall have the right or authority to issue an interpretation of an American Nationai
Standard in the name of the American National Standards Institute. Requests for
interpretations should be addressed to the secretariat or sponsor whose name appears on
the title page of this standard.

CAUTION NOTICE: This American National Standard may bc revised or withdrawn
at any time. The procedures of the American National Standards Institute require that
action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of
American National Standards may receive current information on all standards by calling
or writing the American National Standards Institute.

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright © 1989 by American National Standards Institute

All rights reserved.

No part of this publication may be reproduced in any
form, in an electronic retrieval system or otherwise,
without prior written permission of the publisher.

Printed in the United States of America

BB1M491/50

F'Orewo rd (This Forewoard is not part of American National Standard X3.159-1989.)

This standard specifies the syntax and semantics of programs written in the C
programming language. It specifies the C program’s interactions with the
execution environment via input and output data. [t also specifies restrictions
and limits imposed upon conforming implementations of C language translators.

The standard was developed by the X3J11 Technical Committee on the C
Programming Language undcr project 381-D by American National Standards
Committee on Computers and Information Processing (X3). SPARC docurnent
number 83-079 describes the purpose of this project to “*provide an unambiguous
and machine-independent definition of the language C.”

The need for a single clearly defined standard had arisen in the C community due
to a rapidly expanding use of the C programming language and the variety of
differing translator implementations that had been and were being developed.
The existence of similar but incompatible implementations was a serious problem
for program developers who wished to develop code that would compile and
execute as expected in several different cnvironments,

Part of this problem could be traced 10 the fact that implementors did not have
an adequate definition of the C language upon which to base their
implementations. The de facto C programming language standard, The C
Programming Language by Brian W. Kernighan and Dennis M. Ritchie, is an
excellent book; however, it 15 not precise or complete enough to specify the C
language fully. In addition, the language has grown over years of use to
incorporate new ideas in programming and to address some of the weaknesses of
the original language.

American National Standard Programming l.anguage C addresses the problems of
both the program developer and the translator implementor hy specifying the C
language precisely.

The work of X3Jil began in the summer of 1943, based on the several
documents that were made available to the Committee (see 1.5, Base
Documents). The Committee divided the effort into three pieces: the
environment, the language, and the library. A complele specification in cach of
these areas is necessary if truly portable programs are to be developed. Each of
these areas 1s addressed in the standard. The Committee evaluated many
proposals for additions, deletions, and changes 1o the base documents during its
deliberations. A concerted effort was made to codify cxisting practice wherever
unambiguous and consistent practice could be identiiied. However, where no
consistent practice could be identified, the Committee worked to establish clear
rules that were consistent with the overall flavor of the language.

This document was approved as an American National Standard by the American
National Standards Institute (ANSI) on December 14, 1989,

Suggestions for improvement of this standard are welcome, They should be sent
to the Computer and Business Equipment Manufacturers Association, 311 First
Street, N.W., Suite 500, Washington, DC 20001-2178.

The standard was processed and approved for submittal to ANSI by the
Accredited Standards Committee on Information Processing Systems, X3.
Committec approval of the standard does not necessarily imply that all membcers
voted for its approval. At the time that it approved this standard, the X3
Committee had the following members:

Richard Gibson, Chair
Donald C. Loughry, Vice-Chair
(Vacant), Administrative Secretary

Ovganizarion Represented
Allen-Bradley . ..
American Library Association
American Nuclcar Socicty
AMP, Inc.
Apple Computer, Inc.
Association of the Institute

for Certification of Computer Professionals
AT&T
Boeing Company . ..
Compaq Computer Corporation
Control Data Corporation
Cooperating Users of Burroughs Equipment
Dataproducts Corporation P
Digital Equipment Computer Users Society .
Digital Equipment Corporation

Eastman Kodak

Electronic Data Systems Corporation .
GUIDE International

Hewleti-Puckard

Honeywell Bull

IBM Corporation .

IEEE Computer Society
Lawrence Berkeley Laboratory
MAP/TOP .

Moore Business Forms .
National Communications System
Nattonal Institute of Standards and Technology
NCR Corporation

OMNICOM

Prime Computer, Inc.

Recognition Technology Users Association .
SHARE. Inc.

3M Company
Unisys

U.S. Department of Defense
U.S. General Services Administration
US WEST .

VIM

Name of Represemiarive
Ronald H. Reimer

Paul E. Peters
Geraldine €. Main
Edward R. Kcelty
Ronald Lloyd (Al)
Karen Higginbottom
Michael I. Lawler (Alt)

Thomas M. Kurihara
Thomas F. Frost

Paul D. Bartoli {(Alt)
Paul W. Mercer
Jumes L. Barnes
Erest L. Fogle
Thomas Easterday
Donald Miller (Alt
Charles D, Card
Iames R. Ebright
Gary S. Robinson
Delbent L. Shoemaker (Alt)
Gary taines

Jumes D. Converse (Al
Jerrold S. TFoley

TFrank Kirshenbaum
Jeffery Roberts (Aln
Donald C. Loughry
David M. Taylor
Robert H. Tollett
Mary Anne Gray (Al
Tom Hannon

Bob Pritchard (Al
David F. Stevens
Robert L. Fink (Al
Michacl Kaminski
Delmer H. Oddy
Dennis Bodson
Donald Wilson {Alr)
Robert E. Rountree
Michael . Hogan (Alr)
Thomas W. Kem

A R. Daniels (Al
Harold C. Folts
Cheryt C. Slobodian (Al
Thomas Connerty
Philhp Cieply (Al
Herberr F. Schantz
Thomas B. Steel Jr.
Gary Ainsworth {(Alt)
Paul D. Jaimke
Marvin W. Bass
Steven P. Oksala (Alt)
William C. Rinchuls
Thomas M. Kurihara (Aln)
Dale O. Christensen
Larry L. Jackson (Aln
Gary Dempsey

Susan Capraro (Alt
Chris Tanner

John Ulrich (Alt)

Orgunizution Represented Name of Representative
Wang Corporation + + . « .« . .)1 Cinecoe

Sarah Wagner (Alt)
Wintergreen Information Services JohnL, Wheeler
Xerox Corporation RoyPicrce

Technical Committee X3J11 on the C Programming Language had the following
members at the time they forwarded this document to X3 for processing as an
American National Standard:

Jim Brodie, Chair

Thomas Plum, Vice-Chair

P. J. Flauger, Secretary

P. I. Flauger, International Representative (previously: Steve Hersee)
Andrew Johnson, Vocabulary Representative

David F. Prosser, Draft Redactor (previously: Lawrence Rosler)
Randy Hudson, Rationale Redactor

Ralph Ryan; Ralph Phraner, Environment Subcommittee Chairs
Lawrence Rosler, Language Subcommittee Chair

P. J. Plauger, Library Subcommittee Chair

Organization Represented Name of Representative
AT&T David F. Prosser

Steven J. Adamski, X3H2 SQL lizison (Alr)
Alliant Computer Systemns .« « +« « « . . Kevin Brosnan
Amdahl Neal Weidenhofer
American Cimflex PhilipC Sweel

Erc McGlohon (Alr)
Amoco Production Company Tracy Pipkin

William Allen (Alt)
Analog Devices Stephen Kafka

Kevin Leary (Alt)

Gordon Sterling (Alt)
Apollo Computer John Peyton
Apple Computer,Ine. Elizabeth Crockett
Arine« .+ . .+ . . . Edwells

Tom Ketterhagen (Al
Aspen Scientific .+« « « « « « « .« . Vaughn Vemon
Bell Communications Research Craig Bordelon

Steve Carter (Alt)

William Puig (Alf)
Borland Intermational Boblervis

Boston Systems Office s v e v e e Yom-Tov Meged
Rose Thomson (Alt)

COSMIC Maurce Fathi

Charles River Data Systems JohnWu

Chemical Abstracts Service Daniel Mickey

Thomas Mimlitch (Alt)
Chicago Research & Trading Group Alan Losoff
Citibank Edward Briggs
CobraS/A FirmoFreire
Cognos + + + « .« .+ .+ . . . JimPatterson
Columbia U. Center for Computing Bruce Tetelman
CompuDas TerryMoore
Computer Associates . . « + Mark Barmrenechea
Computer Innovations George Eberhardt

Dave Neathery ‘Alt)
Computriion Joseph Bibbo
Concurrent Computer Corporation Steve Davies
ControlData DonFashury

George VandeBunte (Alt)
Cormorznt Communications, . , Lloyd Irons

Organization Represented
Cray Research

Custom Development Environaments
DEC Professional

DECUS

Duta General

Datapoint . . .

Data Systems Analyets

Deift Consulting .
Digital Equipment ("nrpnralmn

Digital Systems Internativnal, Inc.
EDS

2 S
Edinburgh Portable Compilers

Edison Design Group

Everest Solutions
Farance Inc.

Floradin e
General Electric Information Services

Gould CSD

HCR Corporation

Harris Computer Systems .
Hewlett Packard

Honeywell Information Systems .

IBM

Tnstruction Set
Intel

InterACT .

intermetrics
Internaticnal Compulers Ltd

J. Brodic & Associates

Kendall Square Research

LST Logic Europe Ltd.

Language Processors Inc.

Laurel Arts .

Lawrence Livermore Natlondl Laborator)
Los Alamos National Laboratory

Modcomp

Masscomp +« + ¢ ¢ 4 4 e e
MetaLink .

MetaWare Imorpordled

Microsoft .

Microware Systems
Minnesota Educauonal Compuung
Mosaic Technologies

Name of Representative
Tom MacDonald
Lynne Johnson (Alt)
Dave Becker (AlD
Jean Risley

Rex Jaeschke

Mike Terrazas
Michael Meissner
Mark Harris (Alt)
Leonard Ohmes
James Stanley
Chaim Schaap
Randy Meyers

Art Bjork (Alt)

Lu Anne Van de Pas (Al
Glen W, Zomn

Ren Patel

Richard Relph
Graham Andrews
Colin McPhail (Alt)
J. Stephen Adamczyk
Eric Schwarz (Alt)
Dmitry Lenkov
Frank Farance

Peter Hayes (Alt)
Florin Jordan

Philip Provin

Mike Bennett

Liz Sanville (Alt)
Tina Aleksa (Alt)
Thomas Kclly

Paul Jackson {Alt)
Gary leter

Sue Meloy

Walter Murray (Alt)
Larry Rosler (Alt)
Thomas E. Osten
David Kayden (Alt)
Shawn Elliou

Larry Breed (Alt)
Mei Goldberg (Alt)
Mike Banahan
Clark Nelson

Dan Lau (Al

John Wolfe

Lilizan Toll (Alt)
Randy Hudson
Keith Winter
Honev M. Schrecker (A1)
Jim Brodie

Jacklin Kotikian

W. Peter Hesse
John Kaminski
David Yost

Mike Branstetter
RBob Weaver

Lidia Eberhart
Patricia Jenkins
Dave Hinman (Al
Michuel Kearns
Tom Pennello
David F. Weil
Miteh Harder (Alt)
Kim Kempt

Shane McCarron
Bruce Olsen

Organization Represented
Motorola
NCR

National Semiconductor

National Bureau of Standards
Naval Research Laboratory
Novell, Inc.

OCLC .
Oakland University .
Omniware ..
Oracle Complex Systems
Oregon Software
Perermial .

Peritus International

Plum Hall

Prime Computer
Prismatics .
Production Languages
Pugh Killeen

Purdue University

Pyrarnid Technology

Quantitative Technology Corp.

Que Corporation
Rabbit Software .
Rationat Systems
Saber Software Inc.

Saks & Associates
SAS [nstitute

SDRC e
SEI Information Technology
SRT Intemational

Sierra Systems . .,
Southern Bell Telephene
Spruce Technology .
Stellar Computer

Storage Technology Corp.
Sun Microsyslems

Supercomputer Systems, Ine. .

Sydetech System Development Technologies, Inc.

Tandem

Tartan Laboratories .
TauMetric
Tektronix .

Texas Instruments .
Thinking Machines .
Tokheim

Name of Representative
Michael Paton

Rick Schubert

Brian Johnson (Al
Joseph Mueller
Derck Godfrzy (Al
Jim Upperman

James W, Willianis
Tom Scribner

Doug Snapp (Alt)
Lisa Simon

Paul Amaranth
August R, Hansen
Michael Redrow

Carl Ellis

Burry Hedquist
Sassan Hazeghi
James Holmlund (Al
Thomas Plum
Christopher Skelly (All)
Andrew Johnson
Fran Litterio (Alt)
Daniel J. Conrad
David Fritz

Kenneth Pugh

Ed Ramsey

Stephen Roberts (Alt)
Zonz Walcott

George Basick (AlM)
Kevin Nolan

Robert Mueller {(Alt)
Chris DeVoney

Jon Tulk

Terry Colligan
Samuel C. Kendall
Stephen Kaufer (Al
Dunie} Saks

Nuncy Suks (Al
Oliver Bradley

Alan Beale (AlD
Larry Jones

Donald Kossmun
Kenneth Harrenstien
Larry Rosenthal

Phil Hempfner
Purshotam Rajani
Peter Darnell

Lee W, Coogrider (Alt)
Paul Gilmartin
Courtney Meissen
Alan Fargusson (Alt)
Steve Muchnick (Al
Chuck Rasbold

Kelly O'Hair (Alt)
Savu Savulescu
Ilenry Richardson
John M. Hausman (Al
Samuel Harbison
Michuel S. Ball

Carl Sutton

Iim Besemer (Alt)
Reid Tatge

James Frankel

Ed Brower

Robert Mansfield (Al

Organtzation Represenred
Tymlabs

Unisys

University of Maryland .
University of Michigan

University of Southern California

University of Waterloo
USAmy BRL

VideoFinancial
Wang Labs . . .

Watcom Systems
Whitesmiths, Lid. . .

Wick Hill PN

Zehntel

Individual Membpers
Jim Balter

Robert Bradbury
LCdward Chin

Marc Cochran

Neil Daniels
Stephen Desoti
Michael Duffy
Philtip Escue

John Gidman

Ralph Phraner

D. Hugh Redeimeier
Armold Davi Robbins
Al Stevens

Roger Wilks
Michacl J. Young

Numie of Representaiive
Monika Khusht
Morgan Jones (Al
Don Bixler

Sweve Bunels (Al
Glenda Berkhemmer (AlD
Annice Jackson TATID
Fred Blonder

Fred Schwary

R Jordan Kremndler
Mike Carmody

Douglas Gwyn, IEEE P10O3 fiaison

C. Dale Picree (AlD
John €. Black
Joseph Musacelon
Fred Rozakis (AlD
I'red Crigger

P.). Plavger

Kim Lecper

Mark Wittenherg

SECTION PAGE

Contents

1. Introduction 1
1.1 Purpose e e e e e e e e e |
1.2 Scope 0w e e e e e e I
1.3 References 2
1.4 Organization of the Document . 2
1.5 Base Documents+« .« .+ .+ . . 2
1.6 Definitionsof Terms 2
1.7 Compliance 4
1.8 Future Directions 5

2. Environment o . . 6
2.1 Conceptual Models 6

2.1.1 Translation Environment , 6
2.1.2 Execution Environments 7
2.2 Environmental Consideratiens+ . . 11
221 Character Sets 11
222 Character Disptay Semantics 13
223 Signals and Interrupts e e e e e e 13
2.2.4 Environmental Limits e e e e e e e e 13

3. Language . . . v 0 0 e e e e e e e e e e e 19
3.1 Lexical Elements o o .. 19
301 Keywords L . 0 0 000w e 20
3.1.2 TIdentifiers 0 . . 0. 20
313 Constants .« . v . 0 a e e e e e e e 26
3.1.4 Swing Literals 31
315 Operators © o . 0 0 v 0 0 e e e e 32
316 Punciators o o .00 i3
3.1.7 HeaderNames« 33
3.1.8 Preprocessing Numbers L 34
319 Comments . .+ . . .0 e e e e e 34
3.2 Conversions« o« . w e e e e 35
3.2.1 Arithmetic Operands 35
322 OtherOperands + .+ .+ .+ . < . 37

3.3 Expressionso 0 39
3.3.1 Prmary Expressions 40
3.3.2 Postfix Operators . .« .« . o 4 . w04 e 40
333 Unary Operators . .« .+« « « « o+ . 0. . 44
334 CastOperators+ . .+ . < 46
3.3.5 Multiplicative Operators 47
3.3.6 Additive Operators+ 47
3.3.7 Bitwise Shift Operators+ 49
3.3.8 Relational Operators 49
3.3.9 Equality Operators e e e e e e e e e e 50

3.3.10 Bitwise AND Operator 51
3.3.11 Bitwise Exclusive OR Operator ,, 51
3.3.12 Bitwise Inclusive OR Operator 51
3.3.13 logical AND Operator 52
3.3.14 Logical OR Operator 52
3.3.15 Conditional Operator . . 52
3.3.16 Assignment Operators 54
3.3.17 Comma Operator 55
34 Constant Expressions+ « o« o« . . . 36
3.5 Declarations 58
351 Srorage-Class Speatters . . v . .«, 35

SECTION
3.5.2 Type Specifiers
353 Type Qualificrs

1.

36

3.7

3.8

Library

4.1

4.4

4.5

354 Declarators .
355 Type Names
3.5.6 Type Detinitions
3.57 Initialization
Statements . .
3.6.1 Labeled Statements ..
3.6.2 Compound Statement, or Block
3.6.3 Expression and Null Statements
3.6.4 Selection Statements
3.6.5 Tlteration Statements
3.6.6 Jump Statements
External Definitions
3.7.1 Function Definitions
3.7.2 External Object Definitions
Preprocessing Directives
3.8.1 Conditional Inclusion .
3.8.2 Source File Inclusion
3.8.3 Macro Replacement
3.8.4 Line Control
3.8.5 Error Directive
3.8.6 Pragma Directive
3.8.7 Null Directive Co
3.8.8 Predefined Macro Names
Future Language Directions
39.1 External Names .
3.9.2 Character Escape Sequences
39.3 Storage-Class Specifiers
3.9.4 Function Declarators
3.9.5 Function Definitions
3.9.6 Array Parameters

Introduction .o

4.1.1 Definitions of Terms

4.1.2 Standard Headers

4.1.3 Errors <errne.h> . .

4.1.4 Limits <float.h> and <limits.h>

4.1.5 Common Defiitions <stddef.h>

4.1.6 Use of Library Functions
Diagnostics <assert.h> .

4.2.1 Program Diagnostics .
Character Handling <ctype.h> .

4.3.1 Character Testing Functions

4.3.2 Character Case Mapping Functions
Localization <locale . h> .

4.4.1 Locale Control .

4.4.2 Numeric Formatting Convention Inquiry .

Mathematics <math.h>
451 Treatment of Error Conditions
4.5.2 Trigonometric Functions .
4.5.3 Hyperbolic Functions .

PAGE

59
65
66
70
71
72
76
76
76
77
78
79
80
82
82
84
86
87
88
90
94
94
94
95
95
96
96
96
96
96
96
96

97
97
g7
97
98
99
99
100
102
102
103
103
105
107
108
109
P12
112
12
114

SECTION

454 Exponential and Logarithmic Functions
4.5.5 Power Functions

4.5.6 Nearest Integer, Absolute Value, and Remainder Functions

4,6 Nonlocal Jumps <setjmp.h>,
4.6.1 Save Calling Environment
4.6.2 Restore Calling Environment
47 Signal Handling <signal.h> . .
4.7.1 Specify Signal Handling .
4.7.2 Send Signal .
4.8 Variable Arguments <stdarg. h>
4.8.1 Variable Argument List Access Macros
49 Input/Output <stdio.h> .
49.1 Introduction
492 Streams
493 Files .
4.9.4 Operations on hles
49,5 File Access Functions .
49.6 Formatted Input/Output Functlons .
49.7 Character Input/Output Functions
4.9.8 Direct Input/Output Functions
49,9 File Positioning Functions
4.9.10 Error-Handling Functions
4.10 General Utilities <stdlib.h>
4.10.1 String Conversion Functions .
4,10.2 Pseudo-Random Sequence Generation Funcuons
4.10.3 Memory Management Functions
4.10.4 Communication with the Environment
4.10.5 Searching and Sorting Utilities .
4.10.6 Integer Arithmetic Functions
4.10.7 Multibyte Character Functions
4.10.8 Multibyte String Functions
4.11 String Handling <string.h>
4.11.1 String Function Conventions
4.11.2 Copying Functions
4.11.3 Concatenation Functions .
4.11.4 Comparison Functions
4.11.5 Search Functions
4.11.6 Miscellaneous Functions .
4,12 Date and Time <time.h>
4.12.1 Components of Time
4.12.2 Time Manipulation Functions
4.12.3 Time Conversion Functions .
4.13 Future Library Directions
4.13.1 Errors <errno.h> . ., .
4.13.2 Character Handling <ctype. h>
4.13.3 Localization <locale. h> .

4.13.4 Mathematics <math.h> e e e e e e

4.13.5 Signal Handling <signal.h>
4.13.6 Input/Output <stdio.h>

4.13.7 General Utilities <stdlib.h>
4.13.8 String Handling <string.h>

PAGE

115
116

117
119
119
120
121
121
122
123
123
125
125
126
127
128
129
132
142
145
146
148
150
150
154
155
156
158
159
160
162
163
163
163
164
165
166
169
171
171
171
173
177
177
177
177
177
177
177
177
177

SECTION

A

Language Syntax Summary

A.l Lexical Grammar .

A2 Phrase Structure Grammar
A3 Preprocessing Directives

B. Sequence Points

C. Library Summary .

C.l Errors <errno.h> AN
C.2 Common Definitions <stddef .h>
C.3 Diagnoslics <assert.h> .

C4 Character Handling <ctype.h> .
C.5 Localization <locale.h>

C.6 Mathematics <math . h>

C.7 Nonlocal Jumps <set jmp.h>
C.8 Signal Handling <signal.h>
C9 Variable Arguments <stdarg.h>
C.10 Input/Qutput <stdio.h>

C.11 General Utilities <stdlib.h>
C.12 String Handling <string.h>
C.13 Date and Time <time.h>

Implementation [.imits
Common Warnings

Portability Issues . , . .

F.1 Unspecified Behavior

F.2 Undefined Behavior RN
F.3 Implementation-Defined Behavior .
F.4 Locale-Specific Behavior

F.5 Common Extensions .

Index

PAGE

178
178
182
187

189

190
190
190
190
160
190
191
191
191
192
192
194
195
195

196
198
199
199
200
204

207
208

210

American National Standard
for Information Systems —

Programming Language —
C

1. Introduction
1.1 Purpose

This standard specifies the form and establishes the interpretation of programs written in the
C programming language.'

5 1.2 Scope
This standard specifies:
* the representation of C programs;
+ the syntax and constraints of the C language;
* the semantic rules for interpreting C programs;
10« the representation of input data to be processed by C programs:
+ the representation of output data produced by C programs;
* the restrictions and limits imposed by a conforming implementation of C.
This standard does not specify:
* the mechanism by which € programs are transformed for use by a data-processing system;
1S+ the mechanism by which C programs are invoked for use by a data-processing system;
*+ the mechanism by which input data are transformed for use by a C program;
* the mechanism by which output data are transformed atter being produced by a C program:

» the size cr complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor:

20 » all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

1. This standard is designed 1o promote the portability of C programs among a variety of data-processing systems.
It 1s intended for use by implementors und knowledgeable programmers. and is not a tutonal. It is
accompanied by a Rationale document that explains many of the decisions of the Technical Committee that

produced it.

1. AMERICAN NATIONAL STANDARD X3.159-1989 1.2

C Standard 2 Introduction

10

35

40

1.3 Relerences
1. The C Reference Manual™® by Dennis M. Ritchie, a version of which was published in
The C Programming Lancuage by Brian W. Kermighan and Denmis M. Ritchie, Prentice-
Hall. Inc.. (1978}, Copyright owned by AT&T.

[£5)

1984 tusrigroup Standard by the fusr/group Standards Committee, Santa Clara, California,
USA (November, [984).

3. ANST X3/TR-1-82 1982y, American National Dictionary for Information Processing
Svystems. Information Processing Systems Technical Report.

4. 180 046:1983, luformation Processing — SO 7-Bit Coded Character Set for Information
Interchange.

5. ANSUIEEE 754-1985. American Nutional Standurd for Binary Floating-Foint Arithmetic,
1SO 4217:1987. Codes for the Representation of Ciwrencies and Funds.
1.4 Organization of the Document
This document 1s divided nto four major sections:
1. this introduction:
2. the characteristics of environments that translate and execute C programs;
3. the language syntax. constraints. and semantics;
4. the library facilities.

Examples arce provided to illustrate possible forms of the constructions described. Footnotes
are provided to emphasize consequences of the rules described in the section or elsewhere in the
standard. References are used to refer to other related sections. A set of appendixes summarizes
information contained in the standard. The abstract, the foreword. the examples, the footnotes,
the references, and the appendixes are not part of the standard.

1.5 Base Documents

The language section (Section 3) 1s derived from ““The C Refercnce Manual™™ by Dennis M.
Ritchie. a version of which was published as Appendix A of The C Programming Language by
Brian W. Kemighan and Dennis M. Ritchie. Prentice-Hall. Inc., 1978; copyright owned by
AT&T.

The library section (Section 4} is based on the /984 lusrigroup Standard by the fusr/group
Standards Committee, Santa Clara. California. USA {November 14, 1984).

1.6 Definitions of Terms

In this standard. ““shall™™ is to be interpreted as a requirement on an implementation or on a
program; conversely, “shall not™ 1s to be interpreted as a prohibition.

The following terms are used in this document:

» Alignment — a requirement that objects of 4 particular type be located on storage boundaries
with addresses that are particular multiples of a hyte address.

* Argument — an expression in the comma-separated list bounded by the parentheses in a
function call expression, or a sequence of preprocessing tokens in the comma-separated list
bounded by the parentheses in a function-like macro invocation. Also known as ““actual
argument” or “tactual parameter.”

» Bit — the unit of data storage in the exceution environment large cnough to hold an object
that may have one of two values. It need not be possible to express the address of each
individual bit of an object.

AMERICAN NATIONAL STANDARD X3.159-198Y 1.6

C Standard 3 Introduction

20

40

Byte — the unit of data storage large enough to hold any member of the basic character set
of the execution environment. It shall be possible to express the address of each individual
byte of an object uniquely. A byte is composed of a contiguous sequence ol bits, the number
of which is implementation-delined. The least significant bst is called the {fow-order bit; the
most significant bit is called the high-order bit.

Character -— a hit representation that fits in a byte. The representation of each member of the
basic character set in both the source and execution environments shall fit in a byte.

Constraints syntactic and semantic restrictions by which the exposition of language
elements is to be interpreted.

Diagnostic message — a message belonging to an implementation-defined subset of the
implementation’s message output,

Forward references — references o tater sections of the standard that contain additional
information relevant to this section.

Implementation — a particular set of software, running in a particular translation environment
under particular control options, that performs translation of programs for, and supports
executton of functions in, a particular execution environment,

Implementation-defined behavior -- behavior, for a correct program construct and correct
data, that depends on the characteristics of the implementation and that each implementation
shall document.

Implementation limits — restrictions imposed upon programs by the implementation.

Locale-specific behavior — behavior that depends on local conventions of nationality, culiure,
and language that each implementation shall document.

Multibyte character — a sequence of one or more bytes representing a member of the
extended character set of either the source or the execution environment. The extended
character set is a superset of the basic character set,

Object — a region of data storage in the cxecution environment, the contents of which can
represent values. Except for bit-fields, objects are composed of contiguous sequences of one
or more bytes, the number, order, and encoding of which are cither explicitly specified or
implementation-defined. When referenced, an object may be interpreted as having a particular
type; see 3.2.2.1.

Parameter — an object declared as part of a function declaration or definition that acquires a
value on entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition. Also
known as *‘formal argument™ or *‘formal parameter.’”

Undefined behavior - behavior, upon use of a nonportable or erronecus program construct,
of erroneous data, or of indeterminately valued objects, for which the standard imposes no
requirements. Permissible undefined behavior ranges from ignoring the situation completely
with unpredictable results, 1o behaving during translaticn or program cxecution in a
documented manner characteristic of the environment (with or without the issuance of a
diagnostic message), to tcrminating a translation or execution (with the issuance of a
diagnostic message).

If a4 “'shall™ or “‘shall not’" requirement that appears outside of a constraint is violated,
the behavior is undefined. Undefined behavior is otherwise indicated in this standard by the
words “‘undefined behavior™ or by the omission of any explicit definition of behavior. There
is no difference in emphasis among these three; they all describe “behavior that is
undetined.””

Unspecified behavior — behavior, for a correct program construct and correct data, for which
the standard explicitly imposes no requirements.

AMERICAN NATIONAL STANDARD X3.159-1989 1.6

C Standard 4 Introduction

10

20

tJ
A

30

Other terms are defined at their first appearance, indicated by iralic type. Terms explicitly
defined in this standard are not to be presumed to refer implicitly to similar terms defined
elsewhere. Terms not defined in this standard are to be interpreted according to the American
Nariona! Dictionary foir Information Processing Systemys, Information Processing Svstems
Technical Report ANST X3/TR-1-82 (1982).

Examples

An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

An example of undefined behavior is the behavior on imteger overflow.

An cxample of implementation-defined behavior is the propagation of the high-order bit when
a signed integer is shifted right.

An example of locale-specific behavior i1s whether the islower function returns true for
characters other than the 26 lowercase English letters.

Forward references: bitwise shift operators (3.3.7), expressions (3.3), function calls (3.3.2.24,
the islower function (4.3.1.6), localization (4.4).

1.7 Compliance

A srrictly conforming program shall use only those features of the language and library
specified in this standard. Tt shall not produce output dependent on any unspecified. undefined. or
implementation-defined behavior, and shall not exceed any minimum implementation limit.

The two forms of conforniing implementation arc hosted and freestanding. A couforming
hasted implententation shall accept any strictly conforming program. A conforming freestanding
imiplementation shall accept any strictly conforming program in which the use of the features
specified in the library section {Section 4) is confined to the contents of the standard headers
<float .h>, <limits.h> <stdarg.h>, and <stddef h> A conforming implementation
may have extensions (including additional library functions), provided they do not alter the
behavior of any strictly conforming program.”

A canforming progran is one that is aceeptable to a conforming implementation.’

An implementation shall be accompanied by a document that defines all implementation-
defined characteristics and all extensions.

Forward references: limits <float .h> and <limits.h> (4.1.4) variable arguments
<stdarg.h> (4.8). common definitions <stddef.h> (4.1.5).

2. This implies that 4 conforming implementation reserves no identifiers other than thosc expheity rescrved in this
standard,

3. Strictty conforming programs are intended to be maximally portable among conforming implementations.
Conlorming progrums may depend upon nonportable features of a conforming implementation.

~r

AMERICAN NATIONAL STANDARD X3.159-1989 1.

C Standard 5 Introduction

1.8 Future Directions

With the introduction of new devices and extended character sets, new featurcs may be added
to the standard. Subsections in the language and library -cctions warn implementors and
programmers of usages which. though valid in themselves, may conflict with future additions.

5 Certain features are obsolescent, which means that they may be considered for withdrawal in
future revisions of the standard. They are retained in the standard because of their widespread
use. but their use in new implementations (for implementation features} or new programs (Jor
language or hibrary features) is discouraged.

Forward references: future language directions (3.9.9), future library directions (4.13).

1.8 AMERICAN NATIONAL STANDARD X3.159-1989 1.8

C Standard G Environment

10

A

12
h

2. Environment

An implementation translates € source files and executes C programs in two data-processing-
system envirenments, which will be called the ranslation environmenr and the execurion
environsient in this standard. Their characteristics define and constrain the results of executing
conforming C programs constructed according 1o the svntactic and semantic rules for contorming
implementations.

Forward references: In the environment section (Section 2). only a few of many possible
forward references have been noted.

2.1 Conceptual Models
2.1.1 Translation Environment
2.1.1.1 Program Structure

A C progran need not all be translated at the same time. The text of the program is kept in
units called sowrce files in this standard. A source file together with all the headers und source
files included via the preprocessing directive #include. less any source lines skipped by any of
the conditional inclusion preprocessing directives. is called o manslation wnit. Previously
wanslated translation units may be preserved individually or in libraries. The separate translation
units of a program communicate by (for example) calls 10 functions whose identifiers have
external linkage. manipulation of objects whose identifiers have external linkage. or manipuiation
of data files. Translation units may be separatelv translated and then later linked to produce an
cxecutable program.

Forward references: conditional inclusion (3.8.1), linkages of identifiers (3.1.2.2). source file
inclusion (3.8.2).

2.1.1.2 Translation Phases
The precedence among the syntax rules of translation is specified by the following phases.”

1. Physical source file characters are mapped to the source character set (inlroducing new-line
characters for end-of-line indicators) if necessary. Tagraph sequences are replaced by
corresponding single-character internal representations.

=]

Each instance of a new-line character and an immediately preceding buackslash character is
deleted. splicing physical source hnes o form logical source lines. A source file thar is not
empty shall end in a new-line character, which shall not be immediately preceded by a
backslash character.

3. The source file is decomposed into preprocessing tokens” and sequences of white-space
characters (including comments). A source file shall not end in a partial preprocessing
token or comment. Each comment is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of white-space characters other than new-
ling is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed and macre invocations are expanded. A #include

preprocessing directive causes the named header or source file ro he processed from phase

1 through phasc 4. recursively.

4.

Implementations must behave as il these separate phases oceur. even though many are typically {olded 1ogether

in practice.

M

CAx described in 3.0,

31

the process of dividing a source file’s characters into proprocessing tokens s context-

dependent. For example. see the handling of < within a #include preprocessing directve,

to

AMERICAN NATIONAL STANDARD X3.159-1989 2112

Environment 7 Conceptual Models

25

5. Each source character set member and escape sequence in character constants and string
literals is converted to a member of the execution character set.

6. Adjacent character string literal tokens are concatenated and adjacent wide string literal
tokens are concatenated.
7. White-space characters separating tokens are no longer significant. Each preprocessing

token is converled into a token. 'The resulting tokens are syntactically and semantically
analyzed and translated.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation,
All such translator output is collected into a program image which contains information
needed for cxecution in its execution environment.

Forward references: lexical elements (3.1), preprocessing directives (3.8), trigraph sequences
(2.2.1.1)

2.1.1.3 Diagnostics
A conforming implementation shall produce at least one diagnostic message (identified in an

implementation-defined manner) for every translation unit that contains a viclation of any syntax
rule or constraint. Diagnostic messages need not be preduced in other circumstances.®

2.1.2 Execution Environments

Two execution environments are defined: freestanding and hosted. In both cases, program
startup occurs when a designated C function is called by the execution environment. All objects
in static storage shall be [nirialized (set to their initial values) before program startup. The
manner and timing of such initialization are otherwise unspecified. Program termination retumns
control to the execution environment,

Forward references: initialization (3.5.7).
2.1.2.1 Freestanding Environment

In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called ar program startup are
implementation-defined. There are otherwise no reserved external identifiers. Any library
facilities available to a freestanding program are implementation-defined.

The effect of program termination in a freestanding environment is implementation-defined.
2,1.2.2 Hosted Environment

A hosted environment need not be provided, but shall conform to the following specifications
if present.

2.1.2.2.1 Program Startup

The function called at program startup 18 name. main. The implementation declares no
prototype for this function. It can be defined with no parameters:

int main(veid) { /*...*/ }

or with two parameters (referred to here as arge and argv, though any names may be used, as
they are local to the function in which they are declared):

6. The intent is that en implementation should identify the nature of, and where possible localize. each violation.
Of course, an implementation is free to produce any number of diagnostics as long as a valid program is still
correctly translated. An implementation may also successtully translate an invalid program.

)

AMERICAN NATIONAL STANDARD X3.159-198¢ 2.1.2.21

Environment 8 Conceptual Maodels

20

12
"

fad
N

40

2.1.2.2.1 AMERICAN NATIONAL STANIDARD N3 139-19RY

int main(int arge, char *argv[]) { /*...*/ }
If they are defined. the parameters to the main function shall obey the following constraints:
+ The value of arge shali be nounegative.
+ argv[argc] shall hc a null pointer.

o If the value of arge is greater than zero. the array members argv[0] through
argv[argc-1] inclusive shall contain pointers to strings. which are given implementation-
defined values by the host environment prior to program startup. The intent is to supphy
the program information determined prior to program startup {rom elsewhere in the hosted
cnvironment. If the host environment is not capable of supplying strings with letters in hoth
uppercase and lowercase. the implementation shall ensure that the strings are received in
lowercase.

« If the value of arge is greater than zero, the string pointed to by argv[0] represents the
progran nanme; argv [0] [0] shall be the null character it the program name is not available
from the host environment. It the value of arge is greater thun one, the strings pointed to
by argv{1l] through argv[arge-1] represent the progrant pardimercrs,

+ The parameters arge and argv and the strings pointed to by the argv wray shall be
moditiable by the program. and retain their last-stored values between program startup and
program termination.

2.1.2.2.2 Program Execution

In a hosted environment, a program may use all the functions. macros. type definitions. and
objects described in the hibrary section (Section 4).

2.1.2.2.3 Program Termination

A return from the inuial call 1o the main tunction is equivalent to calling the exit tunction
with the value returned by the main function as its argument. If the main function executes u
return that specifies no value. the termination status returned 1o the host environment is
undefined.

Forward references: definition of terms (4.1, 11, the exit function (4.10.4.3),
2.1.2.3 Program Execution

The semantic descriptions in this standard describe the behavior of an abstract machine in
which issues of optimization are irrelevant.

Accessing a volatile objeet. modifying an ohject. madilying a (e, or calling a function that
does any of those operations are all side effecrs. which are changes 1n the stwte of the execution
environment. Evaluation of an expression may produce side effects. At certain specified points
in the execution sequence called sequence poinrs. all side effects of previous evaluations shall be
complete and no side etfects of subsequent evaluations shall have taken place.

In the abstract machine. all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no nceded side etfects are produced (including any caused by calling a function or
accessing a volatile object).

When the processing ot the abstract machine is mterrupted by receipt of a siginal. only the
values of objects as of the previous sequence point may be relicd on. Objects that miy be
modified between the previous seguence point and the next sequence point need not have
received their correct values yet.

An instance of each object with automatic storage duration 1 associaied with cach entey mto
its block. Such an object exists and retains its last-stored value during the exceution of the hlock
and while the block is suspended (by a call of a lunction or receipt of w signal).

,
1o
L

Environment 9 Conceptual Models

19

30

40

2

The least requirements on a conforming implementation are:

* At sequence points, volatile objects are stable in the sense that previous evaluations are
complete and subsequent evaluations have not yet occurred.

» At program termination, all data written into files shall be identical to the result that execution
ol the program according to the abstract semantics would have produced.

*» The mput and ourput dynamics of interactive devices shall tuke place as specified in 4.9.3.
The intent of these requirements is that unbufferced or line-huffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

What coustitutes an interactive device is implementation-defined,

More stringent correspondences between abstract and actual semantics may be defined by
cach implementation.

Examples

An implementation might define a one-to-onc correspondence between abstract and actual
semantics: at every sequence point. the values of the actual ohjects would agree with those
specified by the abstract semantics. The keyword volatile would then be redundant.

Alternatively. an implementation might perform various optimizations within each translation
unit, such that the actual semantics would agree with the abstract semantics only when making
function calls across translation unit boundarics. In such an implementation, at the time of each
function entry and function return where the calling function and the called function are in
different translarion unirs, the values of all externally linked objects and of all objects accessible
via pointers therein would agree with the abstract semantics. Furthermore. at the time ot each
such function entry the values of the parameters of the called function and of all objects
accessible via pointers therein would agree with the abstract semantics. In this type of
implementation, ohjects referred to by interrupt service routines activaled by the signal
function would require explicit specification of wvolatile storage. as well as other
implementation-dcfined restrictions.

In executing the fragment

char e¢l, ¢2;
/*...%/

cl = ¢l + c2;

the ““integral promotions™” require that the absiract machine promote the value of cach variable to
int size and then add the two ints and truncate the sum. Provided the addition of two chars
can be done without creating an overflow exception, the actual execution need only produce the
same result, possibly omitting the promotions.

Similarly, in the fragment

float £1, f£2;

double d;

VAR ¥

fl = £2 * d;
the multiplication may be executed using single-precision arithmetic 1f the implementation can
ascertain that the result would be the same as if it were executed using double-precision
arithmetic (for example. if d were replaced by the constant 2.0. which has type double).
Alternatively. an operation involving only ints or £loats muy be executed using double-
precision operations if neither range nor precision is lost thereby.

To illustrate the grouping behavior of expressions, in the following fragment

t-a
~2

3 AMERICAN NATIONAL STANDARD X3.159-1989

Environment 10 Conceptual Models

10

—_
o

20

[0]
h

30

(8]
h

1.2.3 AMERICAN NATIONAL STANDARD X3.139-1989

int a, b;
VA
a=a+ 32760 + b + 5;

the expression statement behaves exactly the same as
a= (((a + 32760} + b) + 5);

due 1o the associativity and precedence of these operators, Thus. the resull of the sum " (a +
32760) " is next added to b. and that result is then added to 5 which results in the value
assigned to a. On a machine in which overflows produce an exceptivne and r which the range of
values representable by an int is [—32768.4+32767). the implementation cannot rewrite this
expression as

a= ({(a + b) + 32765);

since if the values for a and b were, respectively. —32754 and =15, the sum a + b would
produce an exception while the original expression would not: nor can the expression be rewritien
either as

a = ((a + 32765) + b);

ar
a=(a+ (b + 32765));
since the values tor a and b might have been, respectively, 4 and 8 or =17 and 12, However

on a machine in which overflows do not produce an cxception and in which the results of
overflows are reversible. the above expresston statement can be rewritten by the implementation
in any of the above ways because the same result will occur.

The grouping of an expression does not completely determine its evaluation. In the tollowing

fragment

#include <stdio.h>

int sum;
char *p;
/*. . %/

sum = sum * 10 - "0’ + (*p++ = getchar()):;
the expression statement is grouped as if it were written as
sum = (({sum * 10) — "0") + ((*(pt++)) = (getchac())}),

but the actual increment of p can occur al any time between the previous sequence point and the
next sequence point (the ;). and the call lo getchar can occur at any point prior to the need of
its returned value.

Forward references: compound statement. or block (3.0.2), expressions (330, files (4,931,

[
I
i

Environment

o
(S

25

30

[98)
n

11 Environmental Considerations

2.2 Environmental Considerations
2.2.1 Character Sets

Two sets of characters and their associated collating sequences shall be defined: the set in
which source files are written, and the set interpreted in the exccution environment. The values
of thc members of the execution character sct are implementation-defined: any additional
members beyoud those required by this secrion are locale-specific.

In a character constant or string literal, members of the execution character set shall be
represented by corresponding members of the source character set or by escape sequences
consisting of the backslash \ followed by one or more characters. A byte with all bits set 10 0,
called the null character. shall exist in the basic execution character set; it Is used to terminate a
character string literal.

Both the basic source and basic execution character sets shall have at least the following
members: the 26 uppercase letters of the English alphabet

A B €C D E F G H I J K 1L M
N 0O P Q R 8 T U V W X Y Z

the 26 lowercase letters of the English alphabet

a b ¢ d e £ g h
n o p g r s t u

4 u
)
x
<
]

the 10 decimal digits
0 1. 2 3 4 5 6 7 8 9
the following 29 graphic characters

R B T T R R 4
po<o= > 2 [N] tr 1y -

the space character, and control characters representing horizontal tab. vertical tab, and form feed.
In both the source and execution basic character sets, the value of each character after 0 in the
above list of decimal digits shall be one greater than the value of the previous. In source files,
there shall be some way of indicating the end of each line of texr: this standard treats such an
end-of-line indicator as if it were a single new-line character. In the execution character set, there
shall be control characters representing alert, backspace, carriage return, and new line. It any
other characters are encountered in a source file (except in a character constant, a string literal. a
header name, a comment, or a preproccssing token that is never converted 1o a ken), the
behavior is undefined.

Forward references: character constants (3.1.3.4), preprocessing directives (3.8). string literals
(3.1.4), comments (3.1.9).

2.2.1.1 Trigraph Sequences

All occurrences in a source file of the following sequences of three characters (called rigraph
sequences’) are replaced with the corresponding single character.

7. The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as described

in 1ISO 646:1983, which is a subset of the seven-bit ASCII code set.

b
b

AMERICAN NATIONAL STANDARD X3.159-198¢9

Environment 12 Environmental Considerations

10

27=
22
22/
27)

> o 3

2?7’
?7?<
2?21
2>

e —

27—

No other trigraph sequences exist. Each 2 that does not begin one of the trigraphs listed above
15 not changed.

Example

The following source line

printf ("Eh???/n");

becomes (after replacement of the trigraph sequence ??/)

printf ("Eh?\n")

2.2.1.2 Multibyte Characters

The source character set muy contain multibyte characters. used to represent members of the

extended character set. The execution character set may also contain multibvie characters. which
20 necd not have the same encoding as for the source character set. For hoth character scts, the
tfollowing shall hold:

30

(IS}
LA

» The single-byte characters defined in 2.2.1 shall be present,
* The presence. meaning, and representation of any additional members is locale-specific.

* A multibyle character muy have a state-dependent encoding. wherein each sequence of
multibyte characters beging in an dnirial shifi stare and enters other implementation-defined
shift states when specific multibyte characters are encountered in the sequence. While in the
initial shift state. all single-byte characters retain their usual interpretation and do not alter the
shift state. The interpretation for subscquent bytes in the sequence 1s a function of the current
shift state,

« A byte with all bits zero shatl be interpreted as a null character independent of shift state.

* A byte with all bits zero shall not occur in the second or subsequent bytes of a multibyte
character.

For the source character set. the following shall hold:

» A comment. string literal. character constant. or header name shall begin and end in the initial
shitt state.

+ A comment, string literal. character constant, or header name shall consist of a sequence of
valid multibyte characters.

(R
[
[R]

AMERICAN NATIONAL STANDARD X3.159-1989

Environment 13 Environmental Considerations

10

20

]
n

40

2.2.2 Character Display Semantics

The active position is that location on a display device where the next character output by the
fpute function would appear. The intent of writing a printable character (as defined by the
isprint function) to a display device is 1o display a graphic representation of that character at
the active posilion and then advance the active position 1o the next position on the current ling.
The direction of writing is locale-specific. If the active position is at the final position of a line
(if there is one), the behavior is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution character set
are intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert. The active position shall not be changed.

\b (hackspace} Moves the active position ta the previous position on the current line. If the
active position is at the initial position of a line, the behavior is unspecified.

\E (form feed) Moves the active position to the initial position at the start of the next logical
page.

\n (new line) Moves the active position to the initial position of the next line.

\xr {carriage retirin) Moves the active position to the initial position of the current line.

\t (horizontal tah) Moves the active position to the next horizontal tabulation position on the
current ling, If the active position is at or past the last defined horizontal tubulation poesition.
the behavior is unspecified.

\v (vertical tab) Moves the active position to the irnitial position of the next vertical tabulation

position. If the active position 1s at or past the last defined vertical tabulation position, the
behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which
can be stored in a single char object. The external representations in a text file need not be
identical to the internal representations, and are outside the scope of this standard.

Forward rcferences: the fpute function (4.9.7.3). the isprint function (4.3.1.7).
2.2.3 Signals and Interrupts

FFunctions shall be implemented such that they may be interrupted at any time by a signal, or
may be called by a signal handler. or both, with no alteration to earlier, but still active.
invocations’ control flow (after the interruption), function return values, or objects with automatic
storage duration, All such objects shall be maintained outside the function image (the
instructions that comprise the executable representation of a function) on a per-invocation basis,

The functions in the standard library are not guaranteed to be reentrant and may modily
objects with staric storage duration.

2.2.4 Environmental Limits

Both the translation and cxecution cnvironments constrain the implementation of language
translators and libraries. The following summarizes the environmental limits on a conforming
implementation.

2.2.4.1 Translation Limits

The implementation shall be able to translate and execute at least one program that contains
at teast one instance of every one of the following limits:”

&. Implementations should avoid imposing fixed translation limits whenever possible.

=]
r2

[

AMERICAN NATIONAL STANDARD X3.159-198y 22401

By

20

30

40

[]
-

2401 AMERICAN NATIONAL STANDARD X3.159-198Y

romment 14 Environmental Considerations
* 15 nesting levels of compound statements. iteration control structures, and selection control
structures
« ¥ nesting levels of conditional inclusion

« 12 pointer. array. and function declarators (in any combinations) modifying an arithmetic. o
structure. a union, or an incomplete type in a declaration

* 31 nesting levels of parenthesized declarators within a full dectarator

* 32 nesting levels of parenthesized expressions within a full expression
+ 31 sigmficant initial characters in an internal identifier or a macro name
* 6 significant initial characters in an exlernal identifier

+ 511 external identifiers in one translation unit

* 127 identifiers with block scope declared 1n one block

* 1024 macro identifiers simultaneously defined in one translation unit

» 31 parameters in one function definition

+ 31 arguments in one function call

» 3] parameters in one macre definition

* 3] arguments in one macro invocation

» 309 characters in a logical source line

* 509 characters in a character string literal or wide string literal (after concatenation)
¢ 32767 bytes in an ohject (in a hosted environment only)

* 8 nesting levels tor #included files

* 257 case labels for a switch statement (excluding those for any nested switch
statements)

+ 127 members in a single structure or union

« 127 enumerdtion conslants in a single cnumeration

* 15 levels of nested structure or union definitions in a single struct-declaration-list
2.2.4,2 Numerical Limits

A conforming implementation shall document all the limits specified in this section. which
shall be specified in the headers <1imits.h> and <float . h>,

2.2.3.2.1 Sizes of Integral Types <limits.h>

The values given below shall be replaced by constant expressions suitable for use in #if
preprocessing directives. Moreover, except for CEAR BIT and MB_LEN MAX. the following
shall be replaced by expressions that have the same type as would an expression that is an object
of the corresponding type converted according to the integral promotions. Their implementation-
delined values shall be equal or greater in magnitude (absolute value) to those shown. with the
same sign.

* number of bits tfor smatlest object that is not a bit-field (byte)
CHAR BIT 8

* minimum value for an object of type signed char
SCHAR MIN -127

* maximum value for an object of type signed char
SCHAR MAX +127

1o
1)
=
io

Environment 15 Environmental Considerations

10

[S¥]
LN

30

9. See 3.1.2.5.

« maximum valuc for an object of typc unsigned char
UCHAR MAX 255

» minimum value for an object of type char
CHAR MIN see helow

» maximum: value for an object of type char
CHAR MAaX see helow

« maximum number of bytes in a multibyte character, for any supported locale
MB_LEN_ MAX 1

» minimum value for an ohject of type short int
SHRT MIN -32767

* maximum value for an object of type short int
SHRT MAX +32767

« maximum value for an object of type unsigned short int
USHRT_MAX 65535

minimum value for an ohject of type int
INT MIN -32767

maximum value for an object of type int
INT MAX +32767

maximum value for an object of type unsigned int
UINT_MAX 65535

minimum value for an object of type long int
LONG_MIN —2147483647

« maximum value for an object ol type long int
LONG_MAX +2147483647

* maximum value for an object of type unsigned long int
ULONG_MAX 4294967295

If the value of an object of type char is treated as a signed integer when used in an
expression. thz value of CHAR_MIN shall be the same as that of SCHAR MIN and the value of
CHAR MAX shall be the same as that of SCHAR MAX. Otherwise, the value of CHAR MIN shall
be { and the value of CHAR_MAX shall be the same as that of UCH}\.R_I"IAX,‘J -

2.24.2.2 Characteristics of Floating Tvpes <float .h>

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide infonmation about an
implementation’s floating-point arithmetic.” The foliowing puramcters arc used to define the
maodel for each floating-point tvpe:

10. The Hoating-point model is intended to clarify the description of cach floating-peint characteristic and does not
require the floating: point arithmetic of the implementution to be identical.

224201 AMERICAN NATIONAL STANDARD X3.159-1989 22422

Environment 16 Environmental Considerations

‘L

10

n

20

30

§ sign (F 1

b base or radix of cxponent representation fan integer > 1)

¢ exponent (an integer between a minimum ¢, and a maximum e ..}
J2) precision (the number of base-H digits in the significand)

1 nonnegative integers fess than A (the significand digits)

A normalized floating-point number v (/7 > 0 if v 2 0} is defined by the following model:

i
D e v : —k) PN
RN S Z .fA x b . Cnin Se Sy nax

L=l

Of the values in the <€£leat .h> header. FLT_RADIX shall be a constant cxpression suitable

for use in #if preprocessing directives: all other vilues need not be constant expressions, All
except FLT RADIX and FLT ROUNDS have separate names for all three floating-pont types.
The floaring-point model representation is provided for all values except FLT ROUNDS.

The rounding mode for floating-point addition is characterized by the value of FLT ROUNDS:

-1 indeterminable

0 toward zero

1 o nearest

2 toward positive mlinity
3 toward negative imfinity

All other values for FLT ROUNDS characterize implementation-defined rounding behavior.

The values given in the tollowing list shall be replaced by implementation-defined expressions

that shall be equal or greater 0 magnitude (absolute value) to those shown. with the same sign:

« radix of exponent representation. b
FLT RADIX 2

= pumber of base-FLT RADIX digits in the floating-point signilicand. p

FLT MANT DIG
DBL_MANT DIG
LDBL_MANT DIG

» number of decimal digits, ¢. such that any floating-point number with ¢ decimal digits can be
rounded into a floating-point number with p radix » digits and back again without change 10

the ¢ decimal digits, L Il it b is « power of 10

o b lOg‘”/)_,L + l() otherwise

FLT DIG 6
DBL DIG 10
LDBL DIG 10

* minimum negalive integer such that FLT RADIX rawsed to that power minus 1 s 4
normalized floating-point number. ¢,

FLT MIN EXP
DBL MIN EXP
LDBL_MIN EXP

s minimum npegative integer such that 10 raised to thar power 1s in the range of normalized

floating-point numbsers. 1y Cann= |
- lognh

FLT MIN 10 EXP -37
DBL MIN 10 EXP -37
LDBL MIN 10 EXP -37
2 AMERICAN NATIONAL STANDARD X3.150-1684 22422

Environment 17 Environmental Considerations

-

maximum integer such that FLT RADIX raised to that power minus | is a representable finite
floating-point number. ¢ .

FLT MAX EXP
DBL MAX EXP

3 LDBL_ MAX EXP
« maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, [log (i1 = b7y x h.am)J
FLT MAX 10 EXP +37
DBL_MAXHIO_EXP +37
10 LDBL_MAX_10_ EXP +37
The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or greater than those shown:
« maximum representable finite floating-point number, (1 — » 7'} x pom
FLT MAX 1E+37
5 DBL_MAX 1E+37
LDBL_MAX 1E+37
The values given in the following list shall be replaced by implementation-defined cxpressions
with values that shall be equal to or less than those shown;
« the difference berween 1.0 and the least value grester than 1.0 that is representable in ths
20 given floating point type. b
FLT EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL EPSILON 1E-9
« minimum normalized positive floating-point number, & ™
253 FLT MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37
Examples

The following describes an artificial floating-point representation that meets the minimum

30 requirements of the standard. and the appropriate values m a4 <float.h> header for type

float:
fH
FEsx 6T x Y fix 16700 =31 <o <432

A=l
FLT_RADIX 16
FLT_MANT DIG 6
35 FLT_EPSILON 9.53674316E-Q7F
FLT DIG 6
FLT MIN EXP -31
FLT MIN 2.93873588E-38F
FLT MIN_10_EXP -38
40 FLT_MAX_ EXP +32
FLT MaXx 3.40282347E+38F
FLT MAX 10 EXP +38

22422 AMERICAN NATIONAL STANDARD X3.159-19%9 22422

Environment 18 Environmental Considerations

The following describes floating-point representations that also meet the reqyuirements lor
single-precision and double-precision normalized numbers in ANSIAEEE 754-1985."" und the
appropriate values in a <€loat . h> header [or types £loat and double:

24
N Es 2R Y fix2t —125 <0 € +128
A=l
533
5 N =SR2k Y X2 —1021 €6 £41024
k=1
FLT_RADIX 2
FLT MANT DIG 24
FLT EPSILON 1,19209290E~07F
FLT_DIG 6
o FLT MIN_EXP -125
FLT MIN 1.17549435E-38F
FLT MIN 10 EXP -37
FLT_MAX EXP +128
FLT MAX 3.40282347E+38F
15 FLT MAX 10_EXP +38
DBL_MANT DIG 53
DBL EPSILON 2.2204460492503131E-16
DBL DIG 15
DBL_MIN EXP -1021
20 DBL MIN 2.2250738585072014E-308
DBL_MIN 10 EXP -307
DBL_MAX_ EXP +1024
DBL_MAX 1.7976931348623157E+308
DBL MAX 10 EXP +308

25 Forward references: conditional inclusion (3.8.1).

I1. The floating-point model in that standard sums powers of A from zero. so the values of the exponent limits are
one less than shown here.

22422 AMERICAN NATIONAL STANDARD X3.159- 1989 22422

C Standard 9 Language

~2
n

30

35

40

45

3. Language

In the syntax notation used in the language section (Section 3), syntactic categories
(nonterminals) are indicated by Jralic type, and literal werds and character set members
(terminals) by bold lype. A colon () following a nonterminal introduces its definition.
Alternative definitions arc listed on scparate lines, except when prefaced by the words “one of.™”
An optional symbol is indicated by the subscript “‘opt.”” so that

{ P.\’]7i'£’SS1(JfJ“Pl }
indicates an optional expression enclosed in braces.
3.1 Lexical Elements
Syntax

token:
keyword
identifier
constant
string-literal
operdator
punctitator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-fiteral
aperator
punctuator
each non-white-space character that cannot be one of the above

Constraints

Lach preprocessing token that is converted to a token shall have the lexical torm of a
keyword. an identifier. a constant, a string literal, an operator, or a punctuator.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and & The
categories of tokens are: kevwords, identifiers. constants, stiing literals. operators. and
punctuators. A preprocessing iohen 1s the minimal lexical element of the language in translation
phases 3 through 6. The catcgories of preprocessing token ace: header names, identifiers.,
preprocessing nimbers. character constanis. string {iterals. operatois, punctuctors. and single
non-white-spacce characters that do not lexically match the other preprocessing token categories.
If a7 ora " character matches the last category. the behavior is undefined. Preprocessing tokens
can be separated by white space: this consists of comments {described later), or white-space
characters {space. horizontal tab, new-line, vertical tab. and form-feed), or both. As described in
3.8, in certain circumstances during translation phase 4. white space (or the absence thereof)
serves as more than preprocessing token separation. White space may appear within a
preprocessing token only as part of a header name or between the quotation characters in a
character constant or siring literal.

If the input stream has been parsed into preprocessing tokens up to a given character. the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token.

AMERICAN NATIONAL STANDARID X3.159-19xy 31

Language 20 Lexical Efemoenis

[{}

20

a0

8]

Examples

The program fragment 1Ex is parsed as a preprocessing number token (one that 15 not a valid
floating or integer constant token). even though a parse as the pair of preprocessing tokens 1 and
Ex might produce a valid expression (for example, it Ex were o macro defined as 410,
Similarly. the program fragment 1E1 s parsed us o preprocessing number (one that s a valil
floating constant token). whether or not E is & macro name.,

The program fragment x+++++y i parsed as 2 ++ ++ + y. which violates o constraint on
increment operators, even though the parse x ++ + ++ y might yvield a correct expression.

Forward references: character constants (3.1.3.4), comments (3.1.9). expressions (3.3) floating
constants (3.1.3.1), header names (3.1.7), macro replacement (3.8.3), postiix increment and
decrement operators (3,3.2.43. prefix increment and decrement operators (3.3.2.1). preprocessing
directives (3.8). preprocessing numbers (3, 1.8, string literals (3.1.4).

3.1.1 Keywords
Syntax

kevward: one of

auto double int struct
break else long switch
case enum registex typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if statie while

Semantics

The above tokens (entirely in lowercase) are reserved (in translation phases 7 and 8y far use
as keyvwords, and shall not be used otherwise.

3.1.2 ldentifiers

Svntax
tdentifier:
nondiornt
identifier nondigit
identifier digit
nondigit: one of
_a b ¢ d e £ g h i 3 k 1 m
n o p 4 r s t u v w x y =z
A B C D E F & BE I J K L M
N O P Q R 8 T O V W X Y Z
digit: one of
0 1 2 3 4 5 6 7 8 9
Description

An identifier is a sequence of nondigit characters (including the underscore and the
lowercase and uppercase letters) and digits. The first character shall be o nondigit character.

Constraints

In translation phases 7 and K. an identifier shall not consist of the same sequence of ¢hiracters
as a kevword.

‘ad
[

AMERICAN NATIONAL STANDARD X3 139- 14980

Language 21 Lexical Elements

10

20

[§n)
h

30

e
A

40

Semantics

An tidentifier denotes an object, a function, or one of the following entities that will be
described fater: a tag or a member of a structure, union, or enumeration; a typedet name: a label
name: 4 omacra name;. or a macro parameter. A member of an enumeration is called an
cmgneration constani, Macro names and macro parameters are not considered further here,
because prior to the semantic phase of program translation any occurrences of macro names in
the source file are replaced by the preprocessing token sequences that constitute their macro
definitions.

There 1s no specific limit on the maximum length of an identirier.
Implementation Limits

The implementation shall treat at least the first 31 characters of an internal name (a macro
name or an identifier that does not have external linkage) as signiticant. Corresponding lowercase
and uppercase letters are different. The implementatton may further restrict the significance of an
external name (an identilier that has external linkage) to six characters and may ignore
distinctions of alphabctical case for such names.'” These limitations on identifiers arc ail
implementation-defined.

Any identifiers that differ in a significant character are different identifiers. It two identifiers
ditfer in a nonsigniticant character, the behavior is undefined.

Forward references: linkages of identifiers (3.1.2.2). macro replacement (3.8.3).
3.1.2.1 Scopes of Identifiers

An identifier is visible (i.e.. can be used) only within a region of program text called its
scope. There are four kinds of scopes: function, file, block, and function prototype. (A function
protofvpe is @ declaraton ol a function that declares the types of its parameters.)

A label name is the only kind of identifier that has funcrion seope. It can be used (in a goto
statement} anywhere in the function in which it appears, and is declared implicitly by its syntactic
appearance (followed by a : and a statement). Label names shall be unique within a function.

Every other identifier has scope determined by the placement of its declaration (in a declarator
or type specitfier). If the declarator or type specifier that declares the identifier appears outside of
any block or list of parameters, the identifier has file scope. which terminates at the end of the
translation unit. It the declarator or type specifier that declares the identifier appears inside a
block or within the list of parameter declarations in a function definition. the identifier has block
scope, which terminates at the } that cleses the associated block. If the declaralor or type
specifier that declares the wdentifier appears within the list ol parameter declarations in a function
prototype (not part of a function definttion), the identifier has function prototype scope. which
terminates at the end of the function declarator. [f an outer declaration of a lexicallv identical
identifier exists in the same name space, 11 i1s hidden unnl the current scope terminates, after
which it again becomes visible.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, unien, and enumeratien tags have scope thal begins just after the appearance of the
tag in « type specifier that declares the tag. Each enumeration constant has scope that begins just
after the appearance of its defining enumerator in an enumerator lisl. Any other identifier has
scope that begins just after the completion of its declarator.

12. See ““future language directions™ (3.9.1).

[

AMERICAN NATIONAL STANDARD X3.159-1989 3.1.2.1

Language

10

20

35

40

3
(&S]

Lexical Elements

Forward references: compound statement, or block (3.6.2), declarations (3.5). enumeration
specifiers (3.5.2.2). function calls (3.3.2.2), tunction declarators {including prototypes) (3.5.4.3),
function definitions (3.7.1), the goto statement (3.6.6.1), labeled statements (3.6.1), name spaces
of identifiers (3.1.2.3). scope of macro definitions (3.8.3.5). source file inclusion (3.8.2). tags
(3.5.2.3). type specifiers (3.5.2).

3.1.2.2 Linkages of Identifiers

An identifier declared in different scopes or in the same scope more than once can be made 1o
refer to the same object or function by a process called linkage. There are three kinds of linkage:
external, internal, and none,

In the set of translation units and libraries that constitutes an entire program, exch instance of
a particular identifier with external flinkdge denotes the same object or function. Within onc
translation unit, cach instance of an identifier with internal linkage denotes the same ohject or
function. ldentifiers with no linkage denote unique entities.

[f the declaration of a file scope identifier for an object or a function contains the storage-
class specifier statie, the identifier has internal linkage."”

[f the declaration of an identifier for an object or a function contains the storage-cluss
specifier extern, the identifier has the same linkage as any visible declaration of the identifier
with file scope. If there is no visible declaration with file scope. the identifier has external
linkage.

If the declaration of an identifier for a function has no storage-class specifier. its linkage iy
determined exactly as if it were declared with the storage-class specifier extern. If the
declaration of an identifier for an object has file scope and no storage-class specifier, its linkage is
external.

The tollowing identifiers have no linkage: an identifier declared to be anything other than an
object or a function; an identifier declared to be a function parameter: a block scope identifier for
an object declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external
linkage, the behavior is undefined.

Forward references: compound statement, or block (3.6.2), declarations (3.5), expressions (3.3),
external definitions (3.7).

3.1.2.3 Name Spaces of Identifiers

If more than one declaration of a particular identifier is visible at any point in a translation
unit, the syntactic context disambiguates uses that reler to different entities. Thus, there are
separate name spaces for various categories of identifiers. as follows:

* labef nanies (disambiguated by the syntax of the label declaration and use):

« the tags of structures, unions, and enuwmerations (disambiguated by following any'' of the
keywords struct, union, or enum);

* the members of structures or unions: each structurc or union has a scparatc name space for its
members {disambiguated by the type of the expression used o access the member via the
or => operator};

12 A function declaration can only contain the storage-class specifier statie if it is at tile scope: see 3.5.1.

14, There is only one name space for tags even though three are possible,

3121 AMERICAN NATIONAL STANDARD X2.159-1989 3.1.2.3

Language 23 Lexical Elemenrs

15

30

35

40

» all other identifiers, called ordinary identifiers (declared in ordinary declarators or as
enumeration constants).

Forward references: cnumeration specifiers (3.5.2.2), labeled statements (3.6.1), structure and
union specifiers (3.5.2.1). structure and union members (3.3.2.3), taps (3.5.2.3).

3.1.2.4 Storage Durations of Objects

An object has a siorage duration that determines its lifetime. There are two storage
durations: static and automatic.

An object whose identifier is declared with external or internal linkage, or with the storage-
class specifier static has siatic storage duration. For such an object, storuge is reserved and
its stored valuc is initialized only once. prior to program startup. The object exists and retains its
last-stored value throughout the execution of the entire program_““

An object whose identifier is declared with no linkage and without the storage-class specifier
statie has automatic storage duration. Storage is guaranteed to be reserved for a new
instance of such an object on each normal entry into the block with which it is associated, or on
a jump from outside the block to a labeled statement in the block or in an enclosed block. [an
initialization is specified for the value stored in the object, it 1s performed on each normal entry.
but not if the block is entered by a jump to a labeled statement. Storage for the object is no
longer guaranteed to be rescrved when exccution of the block onds in any way. (Entering an
enclosed block suspends but does not end exccution of the enclosing block. Calling a function
suspends but does not end execution of the hlnck containing the call)) The value of a pointer that
referred to an object with automaric storage duration that is no longer guaranteed 1o be reserved
is indeterminate.

Forward references: compound statement, or block (3.6.2), function calls (3.3.2.2), initialization
{3.5.7).

3.1.2.5 Types

The meaning of a value stored in an ohject or returned by a function is determined by the
rype of the expression vsed to access it (An identifier declared to be an object is the simplest
such expression: the type is specified in the declaration of the identifier.) Types are partitioned
into ohject types (types that describe objects), funiction rypes (types that describe functions), and
incomplete types (types that describe objects but lack information needed to determine their
sizes).

An object declared as type char is large enough to store any member of the basic execution
character set. [f a member of the required source character set enumerated in 2.2.1 is stored in «
char object. ils value is guaranteed to be positive. I other guantities are stored in a char
object, the behavior is implementation-defined: the values are treuted as cither signed or
nonnegative integers.

There are four signed integer types, designated as signed char, short int. int. and
long int. (The signed integer and other types may be designated in several additional ways. as
described in 3.5.2.)

An object declared as type signed char occupies the same amount of storage as a *"plain”
char object. A “‘plain’’ int object has the natural size suggested by the architecture of the
execution environment (large enough to contain any value in the range INT MIN (o INT MAX
as defined in the header <limits.h>). In the list of signed integer types above. the range of
values of each type is a subrange of the values of the next type in the list.

15. In the case of a volatile object, the last store may not be explicit in the program.

3 AMERICAN NATIONAL STANDARD X3.159-198% 30

(B
in

Language

whn

|0

20

‘o
h

40

i

=

Lexiead Elemenis

For each of the signed integer types, there is a corresponding (but difterenty wnsivned (utever
fvpe tdesignated with the keyword unsigned) that uses the same amount of storase (including
sign information} and has the same alignment requirements. The range of nonnegative vahies of
a signed integer type is a subrange of the corresponding unsigned integer ype. and the
representation of the same value i each type is the sume ' A computation involving unsioned
operands can never overflow. because a result that cannot be represented by the resulting
unsigned integer tvpe is reduced modulo the number that is one greater than the largest value that
can be represented by the resulting unsigned integer type.

There are three floaime tvpes. designated as £loat, double. and long double. The st
ol values of the type £leoat is a subset of the set of values of the type double: the xct of
vilues ol the type double is a subset of the set of values of the vpe leng double.

The type char. the signed and unsigned integer types, and the foating tvpes are collectively
called the hesic tvpes. Even il the implementation defines two or more basic types to have the
same representation, they are nevertheless different types.

The three tvpes char, signed char, and unsigned char are collectively culled the
chuaracter (vpes.

An entmeration comprises a sct of named integer constant values. Each distimel enumeration
constitutes a different ennmerated rvpe.

The void type comprises an empty set of values: it is an incomplete tvpe that cannot he
completed.

Any number of derfved tvpes can be constructed from the object, function. and incomplete
types. as follows:

* AR array fape describes a contiguously allocated nonempty set of objects with a particular
member object type. called the clement tvpe.’ Array types are characterized by their element
tvpe and by the number ot clements in (the array. A array type is said to be derived from its
clement type. and if its element type is 7. the array type is sometimes called “array of 7.7
The construction of an array type from an element type is called “array tyvpe dervation.”™

« A stivcture type describes a sequentially allocated nonempty set of member ahjects. each of
which has an optionally specified name and possibly distinet type.

* A umion tvpe deseribes an overlapping nonempty set of member objects, cuch of which hus an
optionally specitied name and possibly distinct type.

* A fupetion tvpe describes a functon with specificd return type. A function type s
characterized by its return type and the number and types of its parameters. A function type
is satid o be dertved from its return type. and if 1ty return type s T the function type is
sometimes called ““function returning 7,77 The construction of @ function type from a return
type is called “function type dervation.™

* A poinrer fype may be derived from a function type. an object type. or an incomplete type.
called the refercnced tvpe. A pointer tyvpe desertbes an object whose value provides a
reference o an entity of the reterenced type. A pointer type derived trom the referenced tvpe
T 18 sometimes called “pointer to 7.7 The construction of a pointer type from o referenced
type is called “pointer type dervation.™

te. The same representation and alignment requirements are meant o imply terchangeability as arguments o
functions. return values from functions, and menthers of unions.

17. Singe object tvpes do not include incomplete types, an array of incomplele type cannot be constructed,

3.2

)

AMERICAN NATIONAL STANDARD X3.150 {9sv R

|29
N

Language Lexical Elements

These methods of constructing derived types can be applied recursively.

The type char. the signed and unsigned integer types. and the enumerated types are
collectively called integral tvpes. The representations of integral types shall define values by use
of a pure binary numeration system." The representations of floating types are unspecitied.

5 Integral and flowting types wre collectively called arithumeric tvpes. Arithmetic types and
pointer types are collectively called scalar rvpes. Array and structure Lypes are collectively called
aggregate ivpes.”
An array type of unknown size is an incomplete type. It is completed, tor an identifier ot that
type, by specitying the size in a later declaration (with internal or external linkage). A structure
10 or union type ot unknown content (as described in 3.5.2.3) is an incomplete type. It is
completed, for all declarations of that type, by declaring the same structure or union tag with its
delining content later in the same scope.

Array, function. and pointer types are collectively called derived declarator tvpes. A
declarator type derivation from a type T is the construction of a derived declarator type from T
15 by the application of an arrav-type. a function-type. or a pointer-type derivation to 7.

A type is characterized by its rype caiegory. which is either the outermost derivation of
derived type (as noted above in the construction of derived typzs), or the type itself if the type
consists of no derived types.

Any type so far mentioned is an wungualificd tvpe. Each unqualified type has three

20 corresponding gualificd versions of its typer™ a const-qualified version. a volatile-guelified

version, and a version having both qualifications. The qualified or unqualified versions of a type

are distinct types that belong to the same type category and have the same representation and

altgnment requirements.'® A derived type is not qualified by the qualifiers (if any) of the type
from which it 1s derived.

-2
4]

A pointer to void shall have the same representation and alignment requirements as & pointer
to a character type. Similarly. pointers to qualified or unqualified versions of compatible types
shall have the same representation and alignment requirements.'® Pointers to other types need not
have the same representation or alignment requirements.

Examples

30 The type designated as “"£leoat *°° has type “‘pointer to float.”” Its type category is
pointer. not a floating type. The const-qualified version of this type is designated as *"float *
const’ whereas the type designated as “‘const float *7° is not a qualified type — ils type
i1s pointer 1o const-qualified £loat ™ and 1s a pointer 10 a qualified type.

Finally, the type designated as “'struct tag (*[5]) (float)’ has type “rarray of
35 pointer to function returning struct tag.”” The array has length five and the function has a
single parameter of type £loat. Its type category 1s array.

Forward references: character constants (3.1.3.4), compatible tvpe and composite type (3.1.2.6.
declarations (3.5), tags (3.5.2.3). type qualifiers (3.3.3),

18. A positional representation for integers that uses the binary digits 0 and E. in which the values represented by
successive bits are additive, begin with |, and are multiplied by successive integral powers of 2. except perhaps
the bit with the highest position. (Adapted from the American Nutional Dictionary for Information Processing
Sysrems .}

19, Notc that aggregate type does not include union type because an object with union tvpe can only contain one

member at a time.
20, See 3.5.3 regardine qualified array and funchon tvpes,

3125 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.25

Language 26 Lexical Elements

20

35

3.1.2.6 Compatible Type and Composite Type

Two types have compatible tvpe if their types are the same. Additional rules for determining
whether two types are compatible are described i 3.5.2 for type specifiers, in 3.5.3 for type
qualifiers. and in 3.5.4 for declarators.”' Moreover. two structure, union, or enumeration types
declared in separate translation units are compatible if they have the saume number of members,
the same member names, and compatible member types; for two structures. the members shall be
in the same order: for two structures or unions. the bit-fields shall have the same widths; for two
enumerations. the members shall have the same values.

All declarations that refer to the same object or function shall have compatible type:
otherwise. the behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that is
compatible with both of the two types and satisfies the following conditions:

» If one type is an array of known size, the composite type is an array of that size.

« If only one type is a function type with a parameter type list (a function prototype), the
composite type is a [unction prototype with the parameter type list,

» if both types are function types with parameter type lists, the type of each parameter in the
composite parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with external or internal linkage declared in the same scope as another
declaration for that identifier, the type of the identifier becomes the composite type.

Example
Given the following two file scope declarations:

int £{int (*) (), double (*)[3]):
int £(int (*) (char *), double (*)[]):

The resulting composite type for the function is:
int f£{int (*) (char *), double (*)[3]);

Forward references: declarators (3.5.4), enumeration specifiers (3.5.2.2), structure and union
specitiers (3.5.2.1). type definitions (3.5.6), type qualifiers (3.5.3), type specifiers (3.5.2).

3.1.3 Constants
Svntax

corstant!
Hoating-constant
integer-constant
enumeration-constant
character-constant

Constraints

The value of a constant shall be in the range of representable values for its type.

21. Two types need not be identical to be compatible.

2.6 AMERICAN NATIONAL STANDARD X2.159-1080 313

Language 27 Lexical Elements

10

20

30

35

40

Semantics

Each constant has a type. determined by its form and value. as detailed later.
3.1.3.1 Floating Constants
Syntax

Hoattig-constant.:
fractional-constant exponent- part Hoating-suffix

opt
digit-sequence exponent-pairt ﬂua/mq wffn

fractional-constani:
digr'f—.rpqm’mw” . digit-sequence
digir-sequence

CXPONERI-part!
e .w'gno " digit-sequence
E sign digit-seqguenc
8y digit-sequence

sign: oneg of
+ —

digii-sequence:
digir
digit-sequence digit

Hoating-suffix: one of
£f 1 F L

Description

A floating constant has a signiftcand part that may be followed by an exponent parr and a
suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a period (.). followed by a digit
sequence representing the fraction part. The components of the exponent part are an e or E
followed by an expenent consisting of an optionally signed digit sequence. Either the whole-
number part or the fraction part shall be present; either the period or the exponent part shall be
present.

Semantics

The significand part is interpreted as a decimal rational number: the digit sequence in the
exponent part is interpreted as a decimal integer. The exponent indicates the power of 10 by
which the significand part is to be scaled. If the scaled value is in the range of representable
values (for its type) the result is either the nearest representable value, or the larger or smaller
representable value immediatety adjacent to the nearest representable value, chosen in an
implementation-defined manner.

An unsutffized floating constant has type double. If suffixed by the letter £ or F, it has type
float. If sutfixed by the letter 1 or L, 1t has type long double.

3.1.3.2 Integer Constants
Syntax

integer-constant:
decimal-constant integer-suffix
octal-constdint inreg(’r-.wqfﬁ.r“}”
hexadecimal-constant integer-suffix

upt

opt

(&

AMERICAN NATIONAL STANDARD X3.159-1989 3.1.3.

Language 28 Lexical Eleinents

20

ok
h

40

decimal-constant:
nonzero-diest
decimal-constanr digit

ocial-constant.
0
octal-constant ocral-digi

hexadecimal-consiant:
Ox hexadecimal-diglt
OX fexadecimal-digii
hexadecimal-constant hevadecimal-digit

nonzero-digit, one of
1 2 3 4 5 & 7 8 9

octal-digit: one of
01 2 3 4 5 6 7

hexadecimal-digit: one of

0 1 2 3 4 5 6 7 B8 9
a b c d e f£f
A B C D E F

integer-suffiv:
wnsigned-suffiv fnng—sr(}fﬁ\‘(w

long-sitffix unsigned-sufit \V“/’Vf

wnsigned-suffiv: one of
u U

fong-suffiv: one of
1 L

Description

An integer constant begins with a digit. but has no period or exponent part. It may have a
prefix that specifies its base and a suffix rthat specifies s type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits.
An octal constant consists of the prefix 0 optionally followed by a sequence of the digits O
through 7 only. A hexadecimal constant consists of the prefix 0x or 0X tollowed by a sequence
of the decimal digits and the letters a {or A) through £ (or F) with values 10 through 15
respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal consiant. hase 8- that of
a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can be
represented. Unsuffixed decimal: int. long int. unsigned long int: unsullixed octal or
hexadecimal: int, unsigned int. long int. unsigned long int: suffixed by the leter
u or U: unsigned int. unsigned long int: suffixed by the letter 1 or Lt long int.
unsigned long int: sutfixed by both the letters u or U and 1 or L: unsigned long int.

3.1.3.2 AMERICAN NATIONAL STANDARD X3.130-19%0 3.1.3.2

[anguage 29 Lexical Elements

3
N

30

o
N

H)

3.1.3.3 Enumeration Constants
Syntax

CHUMCTEFON-CONSIaNT.
identifrer

Semantics
An identifier declared as an enumeration consiant has type int.
Forward references: enumeration specitiers (3.5.2.2).
3.1.3.4 Character Constants
Svntax

cliarecter-constant:
T e-chiar-seguence’
L’ c-char-sequcince’

¢-char sequence:
c-char
c-char-sequence ¢-char

C-char:
any member of the source character set except
the single-quote 7, backslash \. or new-line character
escape-seqiienee

CSCALC-SOYUENCE!
simple-escape-sequence
octut-escape-seqitence
hexadecimal-escape-sequence

simple-cscape-sequence. one of
VoA AT WA
Na \b A\f \n \r \t A\v

actdl-escape-sequeitce.
\ octal-digit
\ octal-digit octal-digit
N\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence:
\x levadeciniad-digir
hiexadecimal-escape-sequence hexadecimal-digit
Description
An integer churacter constant is a sequence of one or more multibyte characters enclosed in
single-quotes. as in "x7 or “ab’. A wide character constant is the same. except pretixed by the
letter L. With a few exceptions detailed later, the elements of the sequence are any members of
the source character set: they arc mapped in an implementation-defined manner to members of the
execution character set.
The single-quote 7. the double-quote ", the question-mark ?, the backslash \., and arbitrary
mtegral values, are representable according to the following table of escape sequences:

3.1.8.3 AMERICAN NATIONAL STANDARD X3.139-198Y 31.34

Language 30 Lexical Elements

10

20

=]
th

30

L
=

40

single-quote ’ \’

double-quote " \"

question-mark ? \?

backslash \ \\

octal integer Noctal digits
hexadecimal integer \xhevadecimal digits

The double-quote ™ and question-mark ? ure representable either by themselves or by the
escape sequences \" and \?, respectively. but the single-quote * and the backslash \ shall be
represented, respectively. by the escape sequences N’ and \\.

The octal digits that follow the backshish in an ocral escape sequence are taken to be part of
the construction of a single character for an mteger character constant or of o single wide
character for a wide character constant. The numerical value of the octal integer so formed
specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslush and the letter 2 in a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer character
constant or ot a single wide character for a wide character constant. The numerical value of the
hexadecimal integer so formed specities the value of the desired character or wide character.

Each octal or hexadecimal escape seguence is the longest sequence of characters that can
constitute the escape seguence.

In addition, certain nongraphic characters are representable by cscape scquences consisting off
the backslash \ followed by a lowercase letter: \a. \b. \£. \n, \r. \t_ and \v. " If uny other
escupe sequence is encountered. the behavior is undefined.”

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of representable
values for the tvpe unsigned char for an integer character constant. or the unsigned tvpe
corresponding to wehar t for a wide character constant.

Semantics

An integer character constant has type int. The value of an integer character constant
containing a single character that maps into 1 member of the basic execution character set is the
numerical value of the representation of the mapped character nterpreted as an ueger. The
value of an integer characier constant containing more than one character. or containing a
character or escape sequence not represented in the basic exccution character sel. Is
implementation-defined. If an integer character constant contains a single character or escape
sequence, its value is the one that results when an object with type char whose value is that of
the singie character or escape sequence is converted to type int.

A wide character constant has type wchar_t, an integral type defined in the <stddef.h>
header. The value of a wide character constant containing a single muktibyte character that maps
into a member of the extended execution characrer set is the wide churacter (code) corresponding
to that multibyte character, as defined by the mbtowe function, with an implementation-defined
current locale. The value of a wide character constant containing more than one multibyte
character. or containing a multibyte character or escape sequence not represented in the extended
execution character set. 1s implementation-de fined.

22 The semantics of these characters were discussed in 2.2.2.

23, Sec Ufuture Janguage directions™ (3.9.2).

3.1.34 AMERICAN NATIONAL STANDARD N3.150.1084 3.1.34

Language 31 Lexical Elements

(%)
n

40

Examples
The construction “ \O’ is commonly used to represent the null character.

Consider implementations that use two’s-complement representstion for integers and eght bits
for objects that have type char. In an implementation in which type char has the same range
of values as signed char. the integer characier constant * \xFF’ has the value —1: if type
char has the same range of values as unsigned char, the character constant * \xFF’ has the
value +255 .

Even if eight bits are used for objecis that have type char. the construction " \x123’
specifies an integer character constant containing only onc character. (The value of this single-
character integer character constant is implementation-defined and violates the above constraint.)
To specify an intcger character constant containing the two characters whose values are 0x12
and "3, the construction ' \0223' may be used, since a hexadecimal escape sequence Is
terminated only by a nonhexadecimal character. (The value of this two-character integer
character constant is implementation-defined also.)

Even if 12 or more bits are used for objects that have iype wehar_t. the construction
L’\1234’ specifies the implementation-defined value that results from the combination of the
values 0123 und “ 47,

Forward references: characters and integers (3.2.1.1) common definitions <stddef.h>
(4.1.5), thc mbtowe function (4.10.7.2).

3.1.4 String Literals
Syntax

string-literal:
"s-char-sequence "
opl

L"s-char-sequence "
oM

s-char-sequence:;
s-char
s-char-sequence s-char

s-char.
any member of the source character set except
the double-quote ", backslash \, or new-ling character
e3cape-sequence
Description

A character string literal is a sequence of zero or more multibyte characters enclosed in
double-quotes, as in "xyz". A wide string literal is the same. except prefixed by the letier L.

The same considerations apply to each element of the sequence in a character string literal or
a wide string literal as if it were in an integer character constant or a wide character constant.
excepl that the single-quote 7 is representable either by itselt or by the escape sequence \’ . but
the double-quote " shall be represented by the escape sequence \".

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of
adjacent character string literal tokens. or adjacent wide string lileral tokens. are concatenated into
a single multibyte character sequence. If a character string literal token is adjacemt to a wide
string literal token, the behavior 1s undefined.

3.1.34 AMERICAN NATIONAL STANDARD X3.159-1989 314

Language 32

o

10

n

30

32 Lexical Elements

In translation phase 7. a byte or code ol value zero is appended to each multibvte character
sequence that results from a string literal or literals.”" The multibyte character sequence is then
used to initalize an array of static storage duration and length just suflicient 1o contan the
sequence. For character string literals, the array elements have type char. and are initialized
with the individual bytes of the multibyte character sequence: for wide string literals, the array
clements have type wchar t. und are nmtialized with the sequence of wide characters
corresponding to the multibvte character sequence.

Identical string literals ot either form need not be distinet. It the program attempts to modify
a string literat of etther form, the behavior s undefined.

Example
This puir ol adjacent character string literals
rn \x12|| ||3H

produces a single character string literal containing the two characters whose values are \x12
and " 37 because escape sequences are converted into single members of the execution character
set just prior to adjacent string literal concatenation.

Forward references: common definitions <stddef . h> (4.1.5).

3.1.5 Operators

Svntax
operator. one of

L1 ¢y . -
++ — & * + - ~ 1V sizeof
/ % << > < > <<= >= == 1= * | && ||
= *= /= %= 4= -= <<= >>= §g= "= |=
. # #4

Cunstraints

The operators [1. (). and ? : shall oceur in pairs. possibly separated by expressions. The
operators # and ## shall occur in macro-defining preprocessing directives only.
Semantics

An operator specifies an operation to be performed {an cvafuation) that vields a valuc. or
yields a designator. or produces a side effect. or a combination thereof. An operand is an entity
on which an operator acts.

Forward references: cxpressions (3.3}, mucro replacement (3.8.3).

240 A character string ateral need not be @ stnng (see 411 because a null character may be emibedded in it by a

\O cscape sequence.

AMERICAN NATIONAL STANDARD X3 50198 RIS

Language 33 Lexical Elements

10

20

(%]
A

30

[os)
N

40

3.1.6 Punctuators
Svntax

punctiator: one of
L1 ¢ 3y * , =« = 5 ... #
Constraints
The punctuators [1. (). and { } shall occur (atter translation phase 4) in pairs. possibly
separated by expressions. declarations, or statements, The punctuator # shall occur in
preprocessing directives only,

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance but does
not specify an operation to be performed that yields a value, Depending on context. the same
symbol may also represent an operator or part ol an operator.

Forward references: cxpressions (3.3), declarations (3.5), preprocessing directives (3.8,
statements (3.6).

3.1.7 Header Names

Syntax
header-name:
<h-char-sequence>
vyg-char-sequence”
h-char-seguence:
h-cher
h-char-sequence h-char
h-char.
any member of the source character set except
the new-line character and >
([-('/f(lf'-A'C(/H(’II(‘(‘.'
g-char
g-char-sequence g-char
¢-char:
any member of the source character sci except
the new-line character and ™
Constraints

[leader name preprocessing tokens shall only appear within a4 #include preprocessing
directive.

Semantics

The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 3.8.2.

If the characters ‘. \, ", or /* occur in the sequence between the < and > delimiters, the
behavior is undefined. Simuilarly. it the characters ', \, or /* occur in the sequence between the
" delimiters. th2 behavior is undefined.”

25. Thus, scquences of characters that resemble escape sequences cause undefined behavior,

AMERICAN NATIONAL STANDARD X5/ 1591919 317

Language 34 Lexical Elements

Example
The following sequence of characters:

0x3<l/a.h>le2
#include <1/a.h>

5 #define const.member(@s$
forms the following sequence of preprocessing tokens (with each individual preprocessing foken
delimited by a { on the left and a } on the right).

10x3}{<H{1H/Ha} . Hh}>H1e2}
{#}{include} {<1/a.h>}

10 {#)}/define} {const}{.}|{member}{@}{$}
Forward references: source file inclusion (3.8.2).
3.1.8 Preprocessing Numbers
Syntax

pp-nuniher.

15 digit

drgit

pp-number digir
pp-mimber nondigit
pp-nuniher e sign
20 pp-numiber E sign
pp-nnmher
Description

A preprocessing number begins with a digit optionally preceded by a period (.) and may be
tollowed by letters. underscores, digits, periods, and e+, e—. E+. or E— character sequences.

25 Preprocessing number tokens lexically include all floating and integer constant tokens.
Scmantics
A preprocessing number does not have type or a value; it acquires both after a successful
conversion {as part of translation phase 7) to a floating constant token or an intcger constant
token.
0 3.1.9 Comments

Except within a character constant, a string literal, or a comment. the characters /* introduce
a comment. The contents of a comment are examined only 0 identify multibyte characters and
. . 2
w find the characters */ that terminate it.%

26, Thus, comments do not nest.

317 AMERICAN NATIONAL STANDARD X3.159-1989 319

Language 35 Conversions

10

3.2 Conversions

Several operators convert operand values from one type to another automatically. This
section specifies the result required from such an implicit conversion, as well as thosc that result
from a cast operation (an explicit comversion). The hst in 3.2.1.5 summarizes the conversions
performed by most ordinary operators; it is supplemented as required by the discussion of each
operator in 3.3,

Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (3.3.4).
3.2,1 Arithmetic Operands
3.2.1.1 Characters and Integers

A char, ¢ short int, or an int bit-field, or their signed or unsigned varieties. or an
enumeraticn type. may be used in an expression wherever an int or unsigned int may be
used. If an int can represent all values of the original type, the value is converted to an int:
otherwise, it is converted (o an unsigned int. These are culled the integral promaotions.”’
All other arithmetic types are unchanged by the integral promotions.

The integral promotions preserve value including sign. As discussed carlier, whether a
“plain’ char is treated as signed is implementation-defined.

Forward references: enumeration specifiers {3.5.2.2). structure and union specifiers (3.5.2.1).
3.2.1.2 Signed and Unsigned Integers

When a value with integral type is converted to another integral type, if the value can be
represented by the new type, its value ts unchanged.

When u signed integer is converted 1o an unsigned integer with equal or greater sice. if the
value of the signed integer is nonnegative, its value is unchanged. Otherwise: if the unsigned
integer has grester size, the signed mteger is first promoted to the signed integer corresponding 1o
the unsigned integer; the value is converted to unsigned by adding to it one greater than the
Jargest number that can be represented in the unsigned integer type. ™

When a value with integral type is demoted to an unsigned integer with smaller size, the
result is the nonnegative remainder on division by the number one greater than the largest
unsigned number that can be represented in the type with smaller size. When a value with
integral type is demoted to a signed integer with smaller size, or an unsigned integer is converted
to its corresponding signed integer, if the value cannot be represented the result is
implementation-defined.

27. The integral promotions are applied only as part of the usual arithmetic conversions. 1o certain argument
expressions, to the operands of the unary +. = and ~ operators, and to both operands of the shift operators, as
specified by thetr respective sections,

28 I a two's-complement representation, there is no actual change in the bit pattern exeept filling the high-order
bits with copies of the sign bit if the unsigned integer has greater size.

)

AMERICAN NATIONAL STANDARD X3.159-1989 3.2.1.2

Language 36 Conversions

20

[R]
“h

30

!
N

3.2.1.3 Floating and Integral

When a value of Boating type 1= converted to integaal type. the fractional part s discarded, 1
the value of the ntegral part cannot be represented by the integral tvpe. the behavios i
undetined. ™

When o value of mregral type 1s converted o floating type, IF the value boing comvericd o
the range of values that can be represented but cannot be represeated exactly. the result is cither
the nearest higher or nearest Jower value, chosen in an implementation-defined tmer.

3.2.1.4 Floating Types

When u £loat is promoled to double or leng double. or 4 double iy promoled o
long double. its value is unchanged.

When a double is demoted 10 £loat or a long deuble o double or £loat. i e
alue being converted is outside the range of values rhat can be represented. the behavier s
undefined. If the value being converted is i the range of values that can boe reprosented b
cannot be represented cxactly. the result is either the newrest higher or peaest lower vijog.
chosen in an implementation-defined manner,

3.2.1.5 Usual Arithmetic Conversions

Many bimary opertors that expect operands of arithmetis brpe catise conversions and vield
result types in a similar way. The purpose s 1o vield 2@ commarn tpe. which 5y also the trpe of
the result. This pattern iy calied the usiad aritlivetic convervionis:

First if either operand has tvpe long deuble. the other operand s converled (6 Long
double.
Otherwise. it either operand has type double. the other operand is converted o doulle.
Otherwise, if either operand has type £loat, the ather operand is converted 1o float.
Otherwise, the ntegral promotions are performed on both operands. Then Hie follov g
rules are applicd:
I either operand has type unsigned long int. the other operand s converted to
unsigned long int.
Otherwise, if one operand has tvpe Long int and the other hus vpe unsignea
int. if a long int can represent ali values of an unsigned int. the operand of
tvpe unsigned int is converled 1o long int: if 4 long int Canno! meprescit
all the values of an unsigned int. both cperands dre converted © unsigned
leng int.
(therwise. it either operand has tvpe long int. the other operand v convedted i
long int.
Otherwise, it either operand has type unsigned int. the other operand
converted (o unsigned int.
Otherwise. both operands have bpe int.
The values of floating operands and ot the resulis of fioaing capressions may be rcpreseriied

Sl

i greater precision and range than that requived by the topevhe tpes are not chianged therehy

29. The remaindering operation performed when w vatue of htegral wope s converted o unsiened tvpe nead aot i
perfornied when o value of floating nype s converted o unsigned types Thuse the ranze ot portuble Hontng

values is (= 1.UAvpe MBXA+1).
. The cast and assignment operttors sl must perform therr specifisd conorsions ox descsibod o 3 70 2 ool
3214

3213 AMERICAN NATIONAL STANDARD N3150 10y 3.3

Language 37 Conversions

o

to

10

N

20

30

3.2.2 Other Operands
2.2.2.1 Lvalues and Function Designators

An fvalue is an expression (with an object type or an incomplete type other than void) that
designates an object.’’ When an object is said to have a particular tvpe, the type is specified by
the Ivalue used to designate the object. A madifiabie lvalue is an [value that does not have array
type, does not have an incomplete type. does not have a const-qualified (yvpe. and if it is a
structure or union, does not have any member (including, recursively. any member of ail
contained structures or unionsy with a const-qualified type.

Except when it is the operand of the sizeof operator. the unary & operator. the ++ operator,
the == operator, or the left operand of the . operator or an assignment operator, an lvalue that
does not have array tvpe is converted to the value stored in the destgnated object {and 15 no
fonger an lvalue). If the Ivalue has quaiified type. the value has the unqualified version of the
tvpe of the Ivalue: otherwise. the value has the type of the Ivalue. If the Ivalue has an incompletz
tvpe and does not have array type, the behavior is undefined.

Except when it 1s the operand of the sizeof operator o the unary & operator. or is 4
character string literal used to ininalize an array ol character type. or is @ wide string literal used
(o initialize an array with element type compatible with wehar t. an tvalue that has tvpe “array
of tvpe™ i converted 1o an expression that has type “pointer 10 rvpe” that points to the initial
element of the array object and is not an Ivalue.

A function designaror is an expression that has function type. Except when it 1 the operand

N . - 37 o .
of the sizeof operator= or the unary & operator. @ function designator with type ~“function
returning fvpe ' s converted Lo an expression that has type ““pointer to function returning fype.””

Forward references: address and indircction operators (3.3.3.2°0 assignment operators (3.3.16).
common definitions <stddef . h> (4.1.5), mitialization (3.5.7). postfix increment and decrement
operators (3.3.2.4), prefix increment and decrement operators (3.3.3.15 the sizeof operator
(3.3.3.4), structure and union members (3.3.2.3).

3.2.2.2 void

The (nonexistent} value of a void expression (an expression that has type void) shall not be
used in any wey, and implicit or explicit conversions (except to void) shall not be applied to
such an expression. I an expression of any other type occurs in a contexl where o void
expression is requived, its vatue or designator is discarded. (A void expression is eveluated for
its side effects.)

3.2.2.3 Pointers

A pointer to void may be converted to or from a pointer to any incomplete or object type.
A pointer to any incomplete or object type may be converted 10 a pointer o void and back
again: the result shall compare equal to the original pointer.

For any qualifter ¢. a pointer to a non-¢-quahfied type may be converted to a pointer to the
y-qualified version of the type: the values stored in the original and converted pointers shall
canipare egual.

31 The name lvalue’™™ comes originatly from the assignment cxpression EL = E2. in which the left operand E1

must be a (modifiabley value. Tt s perbaps better considered as representing ant object “locator value.” Wha
is sometimes called “rvalue™ s i this standard deseribed as the value of en expression.””

An obvious cxample of an Ivalue is an identilier of an object. As o turther example. If E is 4 unary expression
that 1s a pointer to arc object, *E is an Ivalue that designates the object to which B points.

- Because this conversion does not oceur. the operand of the sizeof operator remains & function designator and

violates the constraint i 3.3.3.4.

1.5 AMERICAN NATIONAL STANDARD X3.139. 1950 3223

Language 38 Conversions

An integral constant cxpression with the value 0, or such an expression cast 10 lype void *,
is called a null pointer constant.™ 1 a null pointer constant is asstgned to or compared for
equality to a pointer, the constant is converted to a peointer of that type. Such a pointer. called
nulf pointer, is guaranteed 10 compare unequal to a pointer to any object or function.

5 Two nult pointers. converted through possibly different sequences of casts to pointer types,
shall compare cqual.

Forward references: cast opcrators (3.3.4), equality operators (3.3.9), simple assignment
(3.3.16.1).

32, The macro NULL is defined in <stddef . h> as a null pointer constant: see 4.1.5.

3.2.23 AMERICAN NATIONAL STANDARD X3.159-1U89 3,223

Language 39 Expressions

3.3 Expressions

An expression is & sequence of operators and operands that specifies computation of a value,
or that designates an object or a function, or that generates side effects, or that performs a
combination thereof.

5 Between the previous and next sequence point an object shall have its stored value modified
at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed
only to determire the value to be stored.*

Except as indicated by the syntax™ or otherwise specified later (for the function-call operator
(), &&, ||, ?:, and comma operators), the order of evaluation of subexpressions and the order
10 in which side effects take place are both unspecified.

Some operators (the unary operator ~, and the binary operators <<, >>, &, ~, and |,
collectively described as birwise operaiors) shall have operands that have integral type. These
operators return values that depend on the internal representations of integers, and thus have
implementation-defined aspects for signed types.

15 If an exception occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

An cbject shall have its stored value accessed only by an Ivalue that has one of the following
36
types:

20 « the declared type of the object,
¢ a qualified version of the declared type of the object,
= a type that is the signed or unsigned type corresponding to the declared type of the object,
* a type that is the signed or unsigned type corresponding to a qualified version of the declared
type of the object,
25 = an aggregate or union type that includes one of the aforementioned types among its members

(including, recursively, a member of a subaggregate or contained union), or

* a character type.

34. This paragraph renders undefined statement expressions such as

i= 4+4i + 1;

while allowing
i=4i4+1;

35. The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the
order of the major subsections of this section, highest precedence first. Thus, for example, the expressions
allowed as the operands of the binary + operator (3.3.6) shall be those expressions defined in 3.3.1 through
3.3.6. The exceptions are cast expressions (3.3.4) as operands of unary operators (3.3.3), and an operand
comtained between any of the following pairs of operators: grouping parentheses () (3.3.1), subscripting
brackets [] (3.3.2.1), functuon-call parentheses {) (3.3.2.2), and the conditional operator ?: (3.3.15).

Within each major subsection, the operators have the same precedence. Left- or right-associativity is indicated
in each subsection by the syntax for the expressions discussed therein.

36. The intent of this list is to specify those circumslances in which an object may or may not be aliased.

33 AMERICAN NATIONAL STANDARD X3.159-1989 33

Language 40 Expressions

20

30

40

331

3.3.1 Primary Expressions
Syntax

primary-expression:
identifier
constant
string-literal
(expression)

Semantics

An identifier is a primary cxpression, provided it has been declared as designating an object
(in which case it is an lvalue) or a function (in which case it is a function designator),

A constant is a primary expression. Its type depends on its form and value, as detailed in
313,

A string literal is a primary expression. It is an Ivalue with type as detailed in 3.1.4.

A parenthesized expression is a primary expression. Its type and value are identical to those
of the unparenthesized expression. It is an lvalue. a function designator, or a void expression if
the unparenthesized expression is, respectively, an lvalue, a function designator, or a void
expression.

Forward references: declarations (3.5).
3.3.2 Postfix Operators
Syntax

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argumenr—e_\'pression-h‘xlnm
postfix-expression . identifier
posifix-expression => identifier
postfix-expression ++
postfix-cxpression —-—

)

argument-expression-list:
assignment-expression
argument-expression-tist , assignment-expression

3.3.2.1 Array Subscripting

Constraints

<

‘pointer 1o object fype,”" the other expression shall

LR

One of the expressions shall have type

have integral type. and the result has type **fvpe.

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted
designation of an element of an array object. The definition of the subscript operator [] is that
E1[E2] 15 identical to (* (E1+(E2))). Because of the conversion rules thar apply to the
binary + operator, if E1 is an array cbject (equivalently. a pointer to the initial element of an
array object) and E2 is an integer, E1 [E2] designates the E2-th element of E1 (counting from
7Ero).

Successive subscript operators designate an element of a multidimensional array object. If E
is an sn-dimensional array (#22) with dimensions /xfx ... xk, then E (used as other than an
Ivalue) is converted to a pointer to an (n—1)-dimensional array with dimensions jx ... xk. If the
unary * operator is applied 1o this pointer explicitly. or implicitly as a result of subscripting. the

AMERICAN NATIONAL STANDARD X3.159-1989 3.3.2.1

Language 41 Expressions

20

30

35

result is the peinted-to (n—1)-dimensional array. which itself is converted into a pointer if used as
other than an lvalue. It follows from this that arrays are stored in row-major order (last subscript
varies fastest).

Example
Consider the array object defined by the declaration
int x[3][5];

Here x is a 3x5 array of ints; more precisely, x is an array of three element objects, each of
which is an array of five ints. In the expression x[41]. which is equivalent to {(* (x+(1))).
x is first converted to a pointer to the initial array of five ints. Then 1 is adjusled according to
the type of x, which conceptually cniails multiplying 1 by the sizc of the object 10 which the
pointer points, namely an array of five int objects. The results are added and indirection is
applied to yield an array of five ints. When used in the expression x[41] [J], that in turn iy
converted to a pointer to the first of the ints. so x{i] [J] yields an int.

Forward references: additive operators (3.3.0), address and indirection operators (3.3.3.2), array

declarators (3.5.4.2).
3.3.2.2 Function Calls
Constraints

The expression that denotes the called function® shall have type pointer to function returning
void or returning an object type othcr than an array type.

I[f the expression that denotes the called function has a type that includes a prototype. the
number of arguments shall agree with the number of parameters. Each argument shall have a
type such that its value may be assigned to an object with the unqualified version of the type of
its corresponding parameter.

Semantics

A postfix expression followed by parentheses () containing a possibly empty., comma-
separated list of expressions iy a function call, The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

It the expression that precedes the parenthesized argument list in a function call consists
solely of an identifier, and if no declaration is visible for this identifier, the identifier is implicitly
declared exactly as if, in the innermost block containing the function call. the declaration

extern int identifier () ;
appeared.™

An argument may be an expression of any object type. In preparing for the call to a function,
the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument ™ The value of the function call expression is specified in 3.6.6.4.

37. Most often. this is the result of converting an identifier that is & function designator,

38. That is, an identifier with block scope declared to have exiernal linkage with type function withou! parameter
information and retuming an int. I in fact it is not defined as having tvpe ““function rcturning int.” the
behavior 1s undefined.

39. A function may change the valucs of its parameters, but thesc changes cannot affect the values of the
arguments. On the other hand, it is possible to pass a pointer to an object, and the function may change the
value of the object pointed to. A parameter declared to have array or function type iy converted o o parameter
with a pointer type as described in 3.7.1,

3.3.2.1 AMERICAN NATIONAL STANDARD X3.150.1989 3.3.2.

(%]
I

Language 42 Fxpressions

A

20

30

o
N

)

a4

[-J
129

If the expression that denotes the calicd funciton has a tvpe that does not include a protoivixe.
the ntegral promotions are perfornied on each arguwment and argoments that have tvpe £loat are
promoted o double. These are called the defesdr wrgmment promotions. It the number of
arguments does not agree with the number of parwnceters, the bebhavior s undefined. I the
function is defined with 4 type that docs not include @ prototvpe. and the tvpes of the arauments
atter promotion are not compatibie with those of the parameiers atfter promotion, the behavior Is
undefined. 1t the function 1s defined with a type that includes o prototype, and the types ot the
arguments after promotion are not compatible with the types of the parameters. o if the protoivpe
ends with an ellipsis (, . . .). the behavior is undetfined.

If the expression that denotes the catled function has a tvpe thal nchides a prowype, the
arguments are implicitly converted. as i by assignmient. 10 the types of the corresponding
parameters. The ellipsts notaton in a functon prototvpe declarator causes argument npe
conversion to stop after the last declared parameter. The default argumient promotions are
performed on trailing arguments. [f the furchon s defined with a type that is not compatible
with the type (of the expression) pointed 1o by the exprossion that denotes the calied tunction, the

behavier is undehined.

No other conversions are performed implicithyy in purticular, the vumber and tvpes of
arguments are not compared with those ol the parameters in o fanction detiniton that does not
include a tunction prototype declarator.

The arder of evaluation of the function designator. the arguments. and subexpressions within
the arguments is unspecificd. but thwere 18 a4 segquence pomi belove the acteal call.

Recursive function catls shall be permitted. botly directly and indirectly throueh any chaw of
other functions.
Example
In the function cali
(*pEI£10)]) (£2(), £30 + £40))
the functions £1. £2. £3. and £4 mav be valled in any order. All side effecrs shall be
coimpleted betore the function pointed to by pE[£1 ()] s cntered.

Forward references: function declarators tincluding promonypes) «3.5:4.3). function definitions
(3.7.1). the return statement (3.6.6.4) simple assienment (3.3.16. 1),

3.3.2.3 Structure and Union Members
Constraints

The first operand of the . operator shall have a quahticd or ungualificd structiure or union
type. and the second operand shall name & member of that type.

The frst operand of the => operator shall have type pointer 1o qualitted o1 unqualitied
structure”” or pointer to qualified or unqualiticd union.”” and the sceond operand shall name «
member of the tvpe pointed 1o.

Semantics

A posthix expression tollowed by a dot . and an identificr designates a member of o4 strocture
or union object. The value s that of the named member, and s an ivalue 1F the Brst expression
i~ an Ivalue, I the first expression hus qualified type, the result hus the so-qualified version of
the type of the designated member,

AMERICAN NATIONAL S TANDARD XN s 1yse 1323

Language 13 Fxpressions

10

ra
hn

A postiix expression followed by an arrow —> and an identitier designates a member of a
structure or union object. The valuce is that of the named member of the object 1o which the first
expression points. and is an Ivalue.™ If the first expression is 4 pointer to a qualified type. the
result has the so-qualified version of the rype of the designated member.

With one cxception, it a member of a union object is accessed after a value has been stored in
a different member of the object. the behavior is implementation-detined.”’ One special
guarantee is made in order to simplify the use of unions: If a wunion contains several structures
that share a common mitial sequence (see below). and if the un on object currently contains one
of these struciures. it is permitted o inspect the comunon initial part of any of them. Two
structures share a common initial seqeence if corresponding members have compatible types (and,
for bit-fields, the sanie widths) for a sequence of one or wore initiul members,

FExamples

It £ is a function returning a structure or union, and x is a member of that structure or union,
£0) .x iy a valid postlix expression but is not an value,

The following is a valid fragment:

union {
struct |
int alltypes;
} n;
struct {
int type;
int intnode;
} ni;
struct {
int type.,
double doublenode;
} nf;
} u;

u.nf.type = 1;
u.nf _doublencde = 3.14;
VALY
if (u.n.alltypes == 1)
/*...*/ sin(u.nf doublencde) /*...*/
FForward references: address and indirection operators (3.3.3.2), structure and union speciliers
(35.2.1.

3.3.2.4 Postfix Increment and Decrement Operators
Constraints

The operand of the postiix increment or decrement operator shall have qualified or unqualified
scalar type and shall be o modifiable Ivalue.

0.1 &E iy a valid pointer expression (where & is the “address-ol™™ operator. which generates a pointer 1o its
operand). the expression (&E) —>MOS is the samie as E.MOS,

4

. Ihe “"byte orders™ for scalar wypes are invisible 1o isolated programs that do not indulge in type punning (for

example, by assigning 1o one member of o union and inspecting the storage by accessing another member that
is an appropriately sized array ol character tvpe), but must be accounted for when conforming o externally
imposed storage Tayots.

3 AMERICAN NATIONAL STANDARD X3.159-19%9 3.324

Language 44 Expressions

h

20

(]
_h

30

ol
_n

40

Semantics

The resuli of the postfix ++ operator is the value of the operand. After the result is obtained.
the value of the operand is incremented. (That is, the value 1 of the appropriate type is added to
it.) Scc the discussions of additive operators and compound assignment {or information on
constraints. types. and conversions and the cffects of operations on pointers. The side effect of
updating the stored value of the operand shall occur between the previous and the next sequence
point.

The postfix —— operator is analogous to the postfix ++ operator, except that the value of the
operand is decremented (that is. the value | of the appropriate type Is subtracted from it),

Forward references: additive operators (3.3.6). compound assignment (3.3.16.2).
3.3.3 Unary Operators
Syntax

HH(If‘_\"f’.\]{?}'{’&\'f‘(li?.‘
postfix-expression
++ Hi?(u"\'*(’.\'[JJ‘(’A\‘.\':“(IH
—— WiNEY-expression
UHATN-OPCIAtor Cdsl-capression
sizeof wnwrv-expression
sizecft (rvpe-name)
unary-operator. one of
& * + - ~ |
3.3.3.1 Prefix Increment and Decrement Operators

Constraints

The operand of the prefix increment or decrement operator shall have qualified or unqualified
scalar type and shall be a modifiable [value.

Semantics

The value of the operand of the prefix ++ operator is incremented. The result is the new
value of the operand after incrementation. The expression ++E is equivalent to {E+=1). See
the discussions of additive operators and compound assignment for information on constraints,
types. side effects. and conversions and the effects of operations on pointers.

The prefix —~=— operator is analogous to the prefix ++ operator, except that the value of the
operand 1s decremented.

Forward references: additive operators (3.3.6). compound assignment (3.3.16.2).
3.3.3.2 Address and Indirection Operators
Constraints

The operand of the unary & operator shall be either a function designator or an lvalue that
designates an object that is not a bit-ficld and is not declared with the register storage-class
specifier.

The operand of the unary * nperator shall have pointer type.
Semantics

The result of the unary & (address-of) operator is & pointer to the object or function
designated by its operand. If the operand has type “‘rype.”” the result has type *'pointer to fype.”

The unary * operator denotes indirection. If the operand points to a function, the result is a
function designator; if it points to an object, the result is an lvalue designating the object. 1f the

3324 AMERICAN NATIONAL STANDARD X3.159 98¢ 3332

Language 45 Expressions

20

25

30

operand has type “‘pointer to type,”’ the result has type “‘fype.”” If an invalid value has been
assigned to the pointer, the behavior of the unary * operator is undefined.*?

Forward references: storage-class specifiers (3.5.1), structure and union specifiers (3.5.2.1),
3.3.3.3 Unary Arithmetic Operators

Constraints

The operand of the unary + or — operator shall have arithmetic type; of the ~ operator,
integral type; of the ! operator, scalar type.

Semantics

The result of the unary + operator is the value of its operand. The integral promotion is
performed on the operand, and the result has the promoted type.

The result of the unary ~ operator is the negative of its operand. The integral promotion is
performed on the operand, and the result has the promoted type.

The result of the ~ operator is the hitwise complement of its operand (that is, each bit in the
result is set if and only if the corresponding bit in the converted operand is not set). The integral
promotion is performed on the operand, and the resuit has the promoted type. The expression ~E
is equivalent to (ULONG MAX-E) if E is promoted to type unsigned long, to
(UINT MAX-E) if E is promoted to type unsigned int. (The constants ULONG MAX and
UINT_ MAX are defined in the header <limits.h>)

The result of the logical negation operator ! is O if the value of its operand compares unequal
to 0, 1 if the value of its operand compares equal to 0. The result has type int. The expression
'E is equivalent to (0==E).

Forward references: limits <€loat .h> and <limits.h> (4.1.4),
3.3.3.4 The sizeof Operator
Constraints

The sizecf operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type. or to an lvalue that designates a bit-
field object.

Semantics

The sizeof operaior yields the size (in bytes) of its operand, which may be an expression
or the parcnthesized name of a type. The size is determined from the type of the operand, which
is not wtsclf cvaluated. The result is an integer constant.

When applied to an operand that has type char, unsigned char, or signed char, (or a
qualified version thereof) the result is 1. When applied to an operand that has array type, the
result is the total number of bytes in the array.*® When applied to an operand that has structure
or union type, the resuit is the total number of bytes in such an object, including internal and
trailing padding.

42. It is always true that if E is a function designator or an lvalue that is & valid operand of the unary & operator,

*&E is a function designator or an lvalue equal to E. If *P is an Ivalue and T is the name of an object pointer
type, the cast expression * (T) P is an lvalue that has a type compatible with that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer. an address
inappropriately aligned for the type of object peinted to, and the address of an object that has automatic storage
duration when execurion of the block with which the object is associated has terminated.

43 When applied {0 a parameter declared to have array or function type, the sizeof operator yields the size of
the poimnter obrained hy canverting as in 3.2.2.1; see 3.7.1.

33.32 AMERICAN NATIONAL STANDARD X3.159-198&9 3.3.34

Language 46 Expressions

10

15

20

25

30

35

The value of the result is implementation-defined, and its type (an unsigned integral type) is
size_t defined in the <stddef.h> header.

Examples

A principal use of the sizeof operator is in communication with routines such as storage
allacators and 1/0 systems. A storage-allocation function might accept a size (in bytes) of an
object to allocate and return a pointer to void. For example:

extern void *alloc(size_t):
double *dp = alloc(sizeof *dp);

The implementation of the alloc function should ensure that its return value is aligned suitably
for conversion to a pointer to double.

Another use of the sizeof operator is to compute the number of clements in an array:
sizeof array / sizeof array[0]

Forward references: common definitions <stddef .h> (4.1.5), declarations (3.5), structure and
union specifiers (3.5.2.1), type names (3.5.5).

3.3.4 Cast Operators

Syntax
cast-expression:
unary-expression
{ type-name) cdasi-expression
Constraints

Unless the type name specifies void type, the type name shall specify qualified or unqualified
scalar type and the operand shall have scalar type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to
the named type. This construction is called a cast.* A cast that specifies no conversion has no
effect on the type or value of an expression.

Conversions that involve pointers (other than as permitted by the constraints of 3.3.16.1) shall
be specified by means of an explicit cast; they have implementation-defined and undefined
aspects:

A pointer may be converted to an integral type. The size of integer required and the result
are implementation-defined. If the space provided is not long enough, the behavior is
undefined.

An arbitrary integer may be converted to a pointer. The result is implementation-
defined.®

A pointer to an object or incomplete type may be converted to a pointer to a different
object type or a different incomplete type. The resulting pointer might not be valid if it is
improperly aligned for the type pointed to. It is guaranteed, however, that a pointer to an
object of a given alignment may be converted to a pointer to an object of the same

44, A cast does not yield an Ivalue. Thus, a cast to a qualified type has the same effect as a cast to the unqualified
version of the type.

45. The mapping functions for converting & pointer to an integer or an integer to a pointer are intended to be
consistent with the addressing structure of the execution environment.

3334 AMERICAN NATIONAL STANDARD X3.159-1989 334

Language 47 Expressions

10

20

25

30

35

40

altgnment or a less strict alignment and back again; the resuit shall compare equal to the
original pointer. (An object that has character type has the least strict alignment.)

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If u converted
pointer is used to call a function that has a type that is not compatible with the type of the
called function, the behavior is undefined.

Forward references: equality operators (3.3.9), function declarators (including prototypes)
(3.5.4.3), simple assignment (3.3.16.1), type names (3.5.5).

3.3.5 Multiplicative Operators

Syntax
multiplicative-expression:
cast-expression
muftiplicative-expression * cast-expression
multiplicative-expression [cast-expression
multiplicative-expression % cast-expression
Constraints

Each of the operands shall have arithmetic type. The operands of the % operator shall have
integral typc.

Semantics
The usual arithmetic conversions are performed on the operands.
The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the
second; the result of the % operator is the remainder. In both operations, if the value of the
second operand is zero, the behavior is undefined.

When integers are divided and the division is inexact, if both operands are positive the result
of the / operator is the largest intcger less than the algebraic quotient and the result of the %
operator 18 positive. If either operand is negative, whether the result of the / operator is the
largest integer less than or equal to the algebraic quotient or the smallest integer greater than or
equal to the ajgebraic quotient is implementation-defined, as is the sign of the result of the %
operator. If the gquotient a/b is representable, the expression {(a/b) *b + asb shall equal a.

3.3.6 Additive Operators

Syntax
additive-expression:
nuiltiplicative-expression
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression
Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an cbject type and the other shall have integral type. (Incrementing is equivalent to
adding 1.)

For subtraction, one of the following shall hold:
* hoth operands have arithmetic type;

« both operands are pointers to qualified or unqualified versions of compatible object types; or

AMERICAN NATIONAL STANDARD X3.159-198% 336

Language a8 Expressions

10

r-2
N

30

40

» the left operand is a pointer to an object type and the right operand has inteeral e
{Decrementing 15 cquivalent (o subtracting 1))

Semantics

If both operands have arithmetic tvpe, the usual arithmetic conversions are performed on
them.

The result of the binary + operator is the sum of the operands,

The resull of the binury — aperator is the difference resulting from the subtraction of cthe
second operand from the frst.

For the purposes ot these operators. a pointer to a nonarray object behoves the same a3 o
pointer to the first element of an array ol length one with the type of the object as its elemom
type.

When an expression that has integral type is added to or subtracted from a pointer, the rewuht
has the type of the pointer operand. If the pointer operand points to an efement of an wreay
object. and the array is large enough, the result points 1o an element offset from the origing
clement such that the ditfference of the subscripts of the resuliing and original array elements
equals the integral expression. In other words, if the expression P opoints e the 7-th element of
an array object, the expressions (PY+N {equivalently. N+ (P)) und (P)~-N (where N has the
value #) point to, respectively. the MAn-th and —n-th elements of the array object. provided they
exist. Moreaver. if the expression P points to the last element of an array ebject. the expression
(P)+1 points one past the last element of the array object. and it the expression Q puints one
past the last element of an array object, the expression (@) —1 pomnts to the last element ot the
array object. If both the pointer operand and the result point to elements of the same array
object. or one past the last element of the array object, the evaluation shall not produce an
overflow. otherwise. the behavior ix undefined. Unless both the pointer operand and the result
point to elements of the same amay object. or the pointer operand points one past the st element
of an array object and the result points 1o an element of the same arrayv ohbject. the behavior is
undefined if the resulr is used as an operand of the unary * operitor,

When two pointers to clements ol the same array object are subtracted. the rexult s the
difference of the subscripts of the two array clements. The size of the result is implementation
defined. and its type (a signed integral type) is ptrdiff t defined in the <stddef.h> header.
As with any other arithmetic overflow, if the result does not fit in the space provided. the
behavior is undefined. In other words. if the expressions B and Q point to, respectively. the 7 th
and J-th clements of an array object. the expression (P)—(Q) has the value —j provided the
value fits in an object of type ptrdiff t. Moreover. if the expression P points ¢ither 10 an
element of an array object or one past the last element of an array object. and the expression @
points to the last element of the same array object. the expression (@) +1) — {P) has the same
value as ({(Q)— (P})+1 and as — {((P)—((L) +1)}. and has the value zero it the cxpression P
points onc pust the last element ol the array object, even though the expression () +1 does not
point 1o an element of the array object. Unless both pointers point to elemerts of the same amay
object, or one past the last element of the array ohject. the behavior is undefined.”

46. Another way to approach poeater arithmetic is lirst to convert the pointer(s} to character pomnter(si: In this

scheme the integral expression added to or sublracted from the converted pointer i first multiplicd by the size
of the ohject originally poimnted to, and the resulting poinier is conyeried back 0 the originat tpe. For pomier
subtraction. the result of the difference between the character pointers 15 simtlarly divided by the wive of the
object originally pointed to.

When viewed in this way, an implementation necd only provide one extra bate twhich may overlap anothe
object in the program) just after the end of the object in order 1o satisfy the “one past the last clement™
requIremnents.

336

AMERICAN NATIONAL STANDARD X3.150-1984% 236

Language 49 Expressions

Forward references: common definitions <stddef . h> (4.1.5).
3.3.7 Bitwise Shift Operators
Syntax
shift-expression:
5 additive-cxpression
shift-expression << additive-expression
shift-cxpression >> additive-expression
Constraints
Guch of the operands shall have integral type.
H{} Semantics

The integral promotions are pertormed on each of the operands. The type of the result is that
of the promoted left operand. If the value of the right operand is negative or is greater than or
equal to the width in bits of the promoted left operand, the behavior is undefined.

The result of E1 << E2 is E1 left-shitted E2 bit positions; vacated bits are filled with zeros.
If E1 has an unsigned type, the value of the result is E1 multiplied by (he quantity. 2 raised to
the power E2, reduced modulo ULONG_MAX+1 if E1 has type unsigned long. UINT MAX+1
otherwise. (The constants ULONG MAX and UINT MAX we defined in the header
<limits . h>».)

v

The result of E1 >> E2 is E1 right-shifted E2 hit positions. If E1 hay an unsigned type or if

20 E1 has a signed type and a nonnegative value, the value of the result s the integral part of the

quotient of B divided by the quantity. 2 raised 1o the power E2. If E1 has a signed type anc a
negative value. the resulting value is implementation-defined.

3.3.8 Relational Operators

Syntax
25 relutional-expression.
shift-cxpression
relationaf-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-capression
30 relationat-expression >= shift-expression
Constraints

One of the following shall hold:
* both operands have arithmelic type:
* both operands are pointers to qualified or unqualificd versions of compatible object types: or
35 * both operands are pointers to qualified or unqualified versions of comparible incomplete tvpes.
Semantics
If both of the operands have arithmeltic tvpe. the usual arithmeltic conversions are performed.

For the purposes of these operators. a pointer to a nonarray object behaves the same as a

pointer {o the first element of an array of length one with the type of the object as its element
44 Lype.

When two pointers are compared, the result depends on the relative locations in the address
space of the objects pointed to. If the objects pointed 1o are members of the same aggregate
object, pointers to structure members declared later compare higher than pointers to members
declared earlicr in the structure, and pointers to array elements with larger subscript values

336 AMERICAN NATIONAL STANDARD J3.159-1680 3.3.8

Language 50 Expressions

30

“ad
A

compare higher than pointers to elements of the same array with lower subscript values. All
pointers to members of the same union object compare equal. If the objects pointed to are not
members of the same aggregate or unien object, the result is undefined, with the following
exception. If the expression P points to an element of an array object and the cxpression Q
points o the last element of the same array object, the pointer expression Q+1 compares higher
than P, even though Q+1 does not point to an element of the array object.

If two pointers to object or incomplete types both point to the same object. er both point one
past the last element of the same array object, they compare equal. If two peinters to object or
incomplete types compare equal, both point to the same abject. or both point one past the last
element of the same array object.”’

Each of the operators < (less than), > (greater than), <= (less than or equal (0} and >=
{greater than or equal t0) shall vicld | if the specified relation is true and 0 if it is false.® The
result has type int.

3.3.9 Equality Operators

Syntax
equality-expression:
relutional-expression
equality-expiession == relational-expression
equality-expression V= relational-expression
Constraints

One of the following shall hold:
* both operands have arithmetic type:
¢ both operands are pointers to qualified or unqualiied versions of compatible types;

« one operand is a pointer t0 an object or incomplete type and the other is a pointer o a
qualtfied or unqualified version of void; or

» one operand is a pointer and the other is a null pointer constant.
Semantics

The == (equal to) and the '= (not equal to) operators are analogous to the relational
operators except for their lower precedence.*® Where the operands have types and values suitable
for the relational operators, the semantics detailed in 3.3.8 apply.

If two pointers 1o object or incomplete types are both null pointers, they compare equal, If
two pointers to object or incomplete types compare eqgual, they both are null pointers. or both
point to the same object. or both point one past the last etement of the same array object. If two
poinlers 1o function types are both null peinters or both peint 1o the same function, they compare
equal. If two pointers to function types comparc cqual. cither both are null pointers. or both
point to the same function. [f one of the operands is a pointer to an object or incomplete type
and the other has type peointer 1o a qualified or unqualified version of void. the peinter to an
object or incomplete type is converted to the type of the other operand.

471t invalid prior pointer operations, such as accesses ourside array bounds, produced undefined behavior, the

effect of subsequent comparisons is undefined.

48. The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates. it means
{a<b)<c: in other words, ""if a is less than b compare | to c; otherwise. compare 0 to e.”’

49, Because of the precedences. a<b == c<d is | whenever a<b and ¢<d have the same truth-value.

AMERICAN NATIONAL STANDARD X3.159-1989 3.39

Language 51 Expressions

10

15

20

25

30

35

3.3.10 Bitwise AND Operator

Syntax
AND-expression:
equality-expression
AND-expression & equality-expression
Constraints

Each of the operands shall have integral type.
Semantics
The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the
result is set if and only if each of the correspending bits in the converted operands is set).

3.3.11 Bitwise Exclusive OR Operator

Syntax
exclusive-OR-expression.
AND-expression
exclusive-OR-expression ~ AND-expression
Constraints

Each of the operands shall have integral type.
Semantics
The usual arithmetic conversions are performed on the operands.

The result of the ~ operator is the bitwise exclusive OR of the operands (that is, each bit in
the result is set if and only if exactly one of the corresponding bits in the converted operands is

set).
3.3.12 Bitwise Inclusive OR Operator

Syntax
inclusive-OR-expression:
exclusive-OR-expression
tnclusive-OR-expression | exclusive-OR-expression
Constraints

Each of the operands shall have integral type.
Semantics
The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in
the result is sct if and only if at lcast onc of the corresponding bits in the converted operands is
set).

33.10 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.12

Language 52 Expressions

20

30

35

40

3.3.13 Logical AND Operator
Syntax

fogical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OQR-expression

Constraints
Each of the operands shall have scalar type.
Semantics

The && operator shall yield 1 i both of its operands compare unequal to O; otherwise, it
yiclds 0. The result has type int.

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; there
is a sequence point after the evaluation of the first operand. If the first operand compares equal
to 0, the second operand is not evaluated.

3.3.14 Logical OR Operator
Syntax

logical-OR-expression:
logical-AND-expression
logical-OR-expression | | lagical-AND-expression

Constraints
Each of the operands shail have scalar type.
Semantics

The || operator shall yield 1 if either of its operands compare unequal to 0; otherwise. it
yields 0. The result has type int.

Untlike the bitwise | operator, the || operator guarantees left-to-right evaluation; there is a
sequence point after the evaluation of the first operand. If the first operand compares unequal to
0, the second operand is not evaluated.

3.3.15 Conditional Operator
Syntax

condittonal-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints
The first operand shall have scalar type.
One of the following shall hold for the second and third operands:
* both operands have arithmetic type;
+ both operands have compatible structure or union types;
« both operands have void type:
* both operands are pointers to qualificd or unqualificd versions of compatible types;
* one operand is a pointer and the other is a null pointer constant; or

» one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version of void.

"
%}
s

AMERICAN NATIONAL STANDARD X3.159-1989

Language

20

25

30

35

N
%]

Expressions

Semantics

The first operand is evaluated: there is a sequence point after its evaluation. The secord
operand is evaluated only if the first compares uncqual 1o 0; the third operand is evaluated only if
the first compares equal to 0; the value of the second or third operand (whichever is evaluated) is
the result.*

If both the second and third eperands have arithmetic type. the usual arithmetic conversions
are performed to bring them to a common type and the result has that type. If both the operands
have structure or union type. the result has that type. If both operands have veid type. the result
has void type.

If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer (0 a type qualified with all the type qualifiers of the
types pointed-io by both operands. lurthermore, it both operands are pointers o compatible
types or differently qualified versions of a compatible type. the result has the composite type: if
one operand is a null pointer constant, the result has the type of the other operand: otherwise. one
operand is a pointer to void or a qualified version of void. in which case the other operand is
converted to type pomter to void, and the result has that type.

Examples

The common type that results when the second and third operands are pointers is determined
in two independent stages. ‘The appropriate qualifiers, for cxample, do not depend on whether the
two pointers have compatible types.

Given the declarations

const void *c_vp;

void *vp;

const int *c_ip;

volatile int *v_ip;

int *ip;

consit: char *c_cp;
the third column in the following table is the common type that is the result of a conditional
expression in which the first two columns are the second and third operands (in either order):

¢c_vp ¢_ip const void *

v _ip O volatile int *

c¢_ip v_ip const volatile int *
vp c_cp const void *

ip c_ip const int *

vp ip void *

50. A conditional cxpression docs not yield an Ivaluc.

3.3.15

AMERICAN NATIONAL STANDARD X3.159-19%¢ 3.3.15

Language 54 Expressions

[
h

30

3.3.16 Assignment Operators

Syntax
ASSICAMENT-Xpression:
conditionaf-expression
UHATV=CXPECSSION QSSEERMICIT-0Operalor assiginment-eXpressicon
assignmment-operator: one of
= *= /= %= += —= <<= by &= A= |=
Constraints

An assignment operator shall have a modifiable Ivalue as its left operand.
Semantics

An assignment operator stores a value In the object designated by the left operand. An
assignment expression has the value of the feft operand wlier the assignment, but is not an Ivalue,
The type of un assignment expression is the type of the lelt operand unless the left operand has
qualified type. in which case it 15 the unqualified version of the type of the left operand. The
side effect of updating the stored vaiue of the left operand shall vecur between the previous and
the next sequence point.

The order of evaluation of the operands is unspecified.
3.3.16.1 Simple Assignment
Constraints
Onc of the following shall hoid:®'
s the left operand has qualified or unqualified arithmetic type and the right has arithmetic type:

* the left operand has a qualified or ungualified version of a structure or union type compatible
with the type of the right:

+ both operands are pointers 1o qualified or unqualified versions of compatible types. and the
type pointed to by the left has ull the qualifiers of the type pointed to by the right:

* one operand is a peinter woan object or incompleic tvpe and the other s a poiater o a
qualified or unqualified version of veid, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right: or

« the lett operand is a pointer and the right is @ null pointer constant,
Semantics

In simple assigiment (=), the value of the right operand i3 converted to the type of the
assignment expression and replaces the value stored in the object designated by the left operand.

It the value being stored in an object 1s accessed from another object that overlaps in any way
the storage of the first object. then the overlap shall be exact and the two objects shall have
gualified or unqualified versions of a compatible tvpe; otherwise, the behavior is undefined.

51 The asyminetric appearatnce of (hese constraints with respect 1o type quakifiers 18 due 10 the conversion

(specitied in 3.2.2.1) that changes Ivalues to the value of the exprassion™ which removes any type qualifiers

fror

n the tvpe category of the expression,

AMERICAN NATIONAL STANDARD X3159-198 33061

Language 55 Expressions
Example
In the program fragment
int f (void):
char c;
5 VAU ¥4
[*. %) (e = £Q)) == -1) [f*...*/
the int value returned by the function may be truncated when stored in the char, and then
converted back to int width prior to the comparison. [n an implementation in which “*plain™
char has the same range of values as unsigned char (and char is narrower than int), the
10 result of the conversion cannot be negative, so the operands of the comparison can never compare
equal. Therefore, for full portability, the variable e should be declared as int.
3.3.16.2 Compound Assignment
Constraints
For the operators += and —= only. either the left operand shall be a pointer to an cbject type
15 and the right shall have integral type. or the left operind shull have qualified or unqualified
arithmetic type and the right shall have arithmetic type.
For the other operators. each operand shall have arithmelic tvpe consistent with those allowed
by the corresponding binary operator.
Semantics
20 A componnd assignment of the form E1 op= E2 differs from thc simple assignment
expression EL = E1 op (E2) only in that the Ivalue E1 iy evaluated only once.
3.3.17 Comma Operator
Syntax
expression:
25 USSIZRAICHT-CAPreSSTent
CXPression , assignment-expression
Semantics
The left operand of 4 comma operator is evaluated as a void expression; there is a sequence
point after its evaluation. Then the right operand is evaluated; the result has its type and value.™
30 Example
As indicated by the syntax. in contexts where a comma is a punctuater (in lists of arguments
to functions and lists of initializers) the comuna operator as described in this section cannot
appear. On the other hand, it can be used within a parenthesized expression or within the second
cxpression of a conditional operator in such contexts. I the function call
35 f{a, (=3, t+2), c)

the function has three arguments, the sccond of which has the value 5.

Forward references: nitialization (3.5.7).

52. A comma operator does not vield an Ivalue.

3.3.16.1 AMERICAN NATIONAL STANDARD X3.159-1989 3317

T Ge .
Language 56 Constant Expressions

10

20)

[
N

30

L
L

3.4 Constant Expressions
Syntax

CONSIANRTI-CXPression.
conditional-expression

Description

A constanr expresston can be evaluated during translation rather than ruptime. and
accordingly may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment. increment, decrement, function-call. or
. g . 53
COmINA operators, except when they are contained within the operand of a sizeof operator.™

Each constant expression shall evaluate to a constant that is in the range of representable
values for its type.

Semantics

An expression that evaluates to a constant is required in several contexts.™ If a floating
expression is evaluated in the translation environment, the arithmetic precision and range shall be
al least as great as if the expression were being evaluated in the execution environment,

An integral constant expression shall have integral type and shall only have opcrands that are
inleger constants, enumeration constants, character constants, sizeof cxpressions, and floating
constants that are the immediale operands of casts. Cast operators in an integral constant
expression shall only convert arithmetic types 1o integral types, except as parl of an operand to
the sizeof operator.

More latitude is permitted for constant expressions in initiaiizers. Such a constant expression
shall evaluate to one of the following:

« an arithmetic constant expression,

* 4 null pointer constant,

« an address constant, or

+ an address constant for an ohject type plus or minus an integral constant expression.

An writhmeric constant expression shall have arithmetic type and shall only have operands
that are integer constants, floating constants, enumeration constants, character constants, and
sizeof expressions. Cast operators in an arithmetic constant expression shall only convert
arithmetic types 1o arithmetic lypes, except as part of an operand to the sizeo£ operalor.

An address constant is a pointer to an lvalue designating an eobject of static storage duration,
or 10 a function designator; it shall be created explicitly, using the unary & operator, or implicitly.
by the use of an expression of array or function type. The array-subscript [] and member-access

and —> operators. the address & and indirection * unary operators. and pointer casts may be
used in the creation of an address constant, but the value of an object shall not be accessed by
use of these operators.

33, The operand of @ sizeof operator is not evaluated (3.3.3.4), and thus any operator in 3.3 may be used.

540 AN integral constant expression must be used to specify the size of a bit-tield member of a structure, the value
of an c¢numeration constant, the size ol an array, or the value of a case constant. Further constraints that
apply 1o the integral constant expressions used in conditional-inclusion preprocessing directives are discussed in
Y
280

AMERICAN NATIONAL STANDARD X3.159-1089 34

Language 57 Constant Expressions

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for nonconstant
. 5
expressions.™

Forward refercnces: initialization (3.5.7).

§5. Thus, in the following initialization,

static int i =2 || 1 / O;

the expression is a valid integral constant expression with value one.

34 AMERICAN NATIONAL STANDARD X3.159-1989 34

Language 58 Declarations

[
i

30

3.5 Declarations

Syntax
declaration:
declaration-specifiers inir-dcclarator—lisrnpr ;
declaration-specifiers:
storage-class-specifier de(‘larari/m—Sp(f(‘!ﬁersop .
type-specifier d(’(“/al‘(lﬁnﬂ-S[)P(‘Uf(‘)‘so ;
type-qualifier declamrinn-spedﬁer.supr
inir-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator
declarator = initializer
Constraints

A declaration shall declare at least a declarator, a tag, or the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier (in
a declarator or type specifier) with the same scope and in the same name space, except for tags as
specified in 3.5.2.3.

All declarations in thc same scope that refer to the same object or function shall specify
compatiblc types.
Semantics

A declaration specifies the interpretation and attributes of a set of identifiers. A declaration

that also causes storage to be reserved for an object or function named by an identifier is a
definition >

The declaration specifiers consist of a sequence of specifiers that indicate the linkage, storage
duration, and part of the type of the entitics that the declarators denote. The init-declarator-list is
a comma-separated sequence of declarators, each of which may have additional type information,
or an initializer, or both. The declarators contain the idenrifiers (if any} being declared.

If an identitier for an object is declared with no linkage. the type for the object shall be
complete by the end of its declarator. or by the end of its init-declarator if it has an initializer.

Forward references: declarators (3.5.4), enumeration specifiers (3.5.2.2), initialization (3.5.7),
tags (3.5.2.3).

56. Function definitions have a different syntax, described in 3.7.1.

AMERICAN NATIONAL STANDARD X3.159-1989 35

Language 59 Declarations

3.5.1 Storage-Class Specifiers
Syntax

storage-cluss-specifier:
typedef
5 extern
static
auto
register

Constraints

10 Ar most, one storage-class specifier may be given in the declaration specifiers in a
declaration.”’

Semantics

The typedef£ specifier is called a *'storage-class specifier’’ for syntactic convenience only; it
is discussed in 3.5.6. The meanings of the various linkages and storage durations were discussed
15 in 3.1.2.2 and 3.1.2.4.

A declaranon of an identifier for an object with storage-class specifier register suggests
that access to the object be as fast as possible. The extent to which such suggestions are
effective is implementation-defined ™

The declaration of an identifier for a function that has block scope shall have no explicit
20 storage-class specifier other than extern.

Forward references: typc dcfinitions (3.5.6).
3.5.2 Type Specifiers
Syntax

type-specifier:

void

char

short

int

long
30 float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
fypedef-name

rJ
L

s
h

57. See **future language directions™” (3.9.3}.

58. The implementation may treat any register declaration simply as an auto declaration. However, whether
or not addressable storage is actually used, the address of any part of an object declared with storage-class
specifier register may not be computed. cither cxplicitly (by use of the unary & operator as discussed in
3.3.3.2) or implicitly (hy converting an array name to a pointer as discussed in 3.2.2.1). Thus the only operator
that can be applied to an array declared with storage-class specifier register is sizeof.

351 AMERICAN NATIONAL STANDARD X3.159-19%9 3.5.2

Lan

[0}

A

20

1
LA

e
=

T
“h

=)
"
i

suage Hid Llecharations
Constraints

Fach bist of 1vpe specificrs shall be oae aof the fotlowing sets cdelimned by convnas, © hen

there 1s more than one set on a linerr e tope speciliers may occur 10 any order, poss
intermixed with the other decloration specitiers,

* void

* char

¢ signed char

* unsigned chazx

* short. signed short, shoxt int, or gagnedt shoxt int
* unsigned short. ¢r unsigned short int

* int. signed. signed int, or no (ype specifien,

* unsigned. or unsigned int

* long. signed long. long int. or signed long 1ut
* unsigned long. or unsigned long int

* float

s double

* long double

« struct-or union speciied

« cnum-specifier

« (vpedel-name

Semantics

1

Specificrs 1or siructures, unions, ared enumicrations are discussed in 3520 thousin 35208

Declarations ol tyvpedel” names are discussed in 3.5.6. The characteristios of the other tvpes are
discussed in 3.1.2.5.

Each of the above comma-sepuialed sets designates the same 1vpe, exeep! it T bit-fivlde
the lvpe signed int (or signed) ma differ from ot (or no Lype spec

Forward references: cnumcration specificrs (352 20 stiwcnme aind anion spocitior (33 2000

tags (3.5.2.3) type definitions (3.5.6),
3.5.2.1 Structure and Union Specitiers
Syntax

SEPUCT-OF - W OR-SDECTROT,
SEPcE-or-iihlodi identifter { stvticodectaratioa-dise
it
StrncE-on-ltion ddentitier
SUPHE - =Ha 0
struct
union
Stract-dectaraliosi-list
stract-declaration

serict-declaration=list strucr declaration

AMERICATN NATIEON AL 3TN YR 550050 sy o

Language 61 Declarations

10

25

30

[s}
wn

40

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list.
type-specifier spec'{ﬁer—qual(ﬁwvlr'sr()

tvpe-qualifier 51)(’(‘iﬁ€1>quah_'ﬁ(’r—lf.ﬁom

struct-declurator-lisi:
struct-declarator
struct-declarator-list , struct-declurator

struct-declarator:
declarator
dec!ararornm I coRstant-expression

Constraints

A structurc or union shall not contain a member with incomplete or function type. Hence it
shall not contain an instance of itself (but may contain a pointer to an instance of itself).

The expression that specifics the width of a bit-field shall be an integral constant expressicn
that has nonnegative value that shall not exceed the number of bits in an ordinary object of
compatible type. If the value is zero, the declaration shall have no declarator.

Semantics

As discussed in 3.1.2.5, a structure is a type consisting of a sequence of named members,
whose storage is allocated in an ordered sequence, and a union is a type consisting of a sequence
of named members, whose storage overlap.

Structure and union specifiers have the same form.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a transtation unit. The struct-declaration-list is a sequence of declarations for the members
of the structure or union. If the struct-declaration-list contains no named members. the behavior
is undefined. The type is incomplete until after the } that terminates the list.

A member of a structure or union may have any object type. In addition, a member may be
declared to consist of a specified number of bits (including a sign bit, if any). Such a member is
called a hit-fieid;™ its width is preceded by a colon.

A bit-field shall have a type that is a qualified or unqualified version of onc of int.
unsigned int, or signed int. Whether the high-order bit position of a (possibly qualified)
“plain’ int bit-ficld is treated as a sign bil is implementation-defined. A bit-field is interpreted
as an integral type consisting of the specified number of bits.

An implementation may allocate any addressable storage unit large enough to hold a bit-field.
If enough space remains, a bit-field that immediately follows another bit-field in a structure shall
be packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field
that does not fit is put into the next unit or overlaps adjacent units is implementation-defined.
The order of zllocation of bit-fields within a unit (high-order to low-order or low-order to high-
order) is implementation-defined. The alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.* As a special case of this, a bit-field structure member with a width of 0 indicates that

59. The unary & (address-of) operator may not be applied to a bit-field object: thus. there are no pointers to or
arrays of bit-field objects.

60. An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

1 AMERICAN NATIONAL STANDARD X3.159-1589 3.5,

il
[E%]

Language 62 Decclarations

no further bit-field is to be packed into the unit in which the previous bit-ficld, i€ any, wus
placed.

Tiach non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

5 Within a structure object, the non-bit-field members and the units in which bit-fields reside
have addresses that increase tn the order in which they are declared. A pointer 10 a struclure
object, suitably converted, points to its initial member (or if that member is a bit-field, then to the
unit in which it resides), and vice versd. There may therelore be unnamed padding within a
structure object, but not at its beginning, as necessary to achieve the appropriate alignment.

10 The size of a union is sufficient to contain the largest of its members. The value of at most
one of the members can be stored in a union object at any time. A pointer to a union object,
suitably converted, peints to each of its members (or if a member is a bit-field. then to the unit in
which it resides), and vice versa.

There may also be unnamed padding al the end of a structure or union, as necgssary 1o
15 achieve the appropriate alignment were the structure or union 1o be an clement of an array.

Forward references: taps (3.5.2.3).
3.5.2.2 Enumeration Specifiers
Syntax

entim-specifier:
20 enum fdenffﬁerof { enumerator-list '}
enum identifier

enumeraror-list:
enumerator
enumerator-list , enumerator

25 CHHMEFator:
enumeration-constant
enumeration-constant = constant-expression

Constraints

The expression that defines the value of an enumeration constant shall be an integral constant
30 expression that has & value representable as an int.

Semantics

The identifiers in an enumerator list are declared as constants thar have type int and may
appear wherever such are permitted.*’ An enumerator with = defines its enumeration constant as
the value of the constant expression. If the first enumerator has no =, the value of its
enumeration constant is 0. Each subsequent enumerator with ne = defines ils enumeration
constant as the value of the constant expression obtained by adding 1 to the value of the previous
enumeration constant. (The use of enumerators with = may produce enumeration constants with
values that duplicate other values in the same enumeration.) The enumerators of an enumeration
are also known as its members.

d
h

40 Each enumerated type shall be compatible with an integer type; the choice of type is
implementation-defined.

61. Thus. the identifiers of enumeration constants declared in the same scope shall all be distinct from each other
and from other identifiers declared in ordinary declarators,

5]
I~

3521 AMERICAN NATIONAL STANDARD X3.159-1989 35

Language 63 Declarations

20

25

30

35

Example

enum hue { chartreuse, burgundy, claret=20, winedark };
[*...%/

enum hue col, *cp;

f*...%*/

col = claret;

cp = &col;

f*, .. %/

/*...*%/ (*cp !'= burgundy) /*...*/

makes hue the tag of an enumeration, and then declares col as an objcet that has that type and

cp as a pointer to an object that has that type. The enumerated values are in the set {0, 1, 20,

21}
Forward references: tags (3.5.2.3).
3.5.2.3 Tags
Semantics
A type specifier of the form
struct-or-union identifier { struct-declaration-iist '}

or
enum ‘dentifier { enumerator-list }

declares the identifier to be the tag of the structure, union, or enumeration specified by the list.
The list defines the struciure conient, union content. or enumeration content, If this declaration
of the tag is visible, a subsequent declaration that uses the tag and that omits the bracketed list
specifies the declared structure, union, or enumerated type. Subsequent declarations in the same
scope shall omit the bracketed list.

If a type specifier of the form
struct-or-union identifier

occurs prior to the declaration that defines the content, the structure or union is an incompleze
type.?* It declares a tag that specifies a type that may be used only when the size of an object of
the specified type is not needed.”* If the type is to be completed, another declaration of the tag
in the same scope (but not in an enclosed block, which declares a new type known only within
that block) shall definc the content. A declaration of the form

struct-or-unon identifier ;

specifies a structure or union type and declares a tag, both visible only within the scope in which
the declaration occurs. It specifies a new type distinct from any type with the same tag in an
enclosing scops (if any).

A type specifier of the form

62. A similar construction with enum does not exist and is not necessary as there can be no mutual dependencies
between the declaration of an enumerated type and any other type.

63. It ts not needed, for example, when a typedef name is declared to be a specifier for a structure or union, or
when a pointer to or a function returning a structure or union is being declared. (See incomplete types in
3.1.2.5.) The specification shall be complete before such a function is called or defined.

35.2.2 AMERICAN NATIONAL STANDART) X3.159-1089 3523

Language 64 Declarations

10

20

30

L)
LN

struct-or-union { struct-declaration-tist '}
or
enum { enumerator-list '}

specifies a new structure, union, or enumerated type. within the translation unit, that can only be
referred 10 by the declaration of which it is a part,*

Fxamples
This mechanism allows declaration of a self-referential structure.

struct tnode {
int count;
struct tnode *left, *right;
i
specifies a structure that contains an intcger and two pointers to objects of the same type. Once
this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp 0 be a pointer to an object of the given type.
With these declarations. the expression sp—>left refers to the left struct tnode pointer of
the object to which sp points: the expression s . right—>count designates the count member
of the right struct tnode pointed 10 from s.

The following alternative formulation uses the typedef mechanism:

typedef struct tnode TNODE;
struct tnode {
int c¢ount;
TNODE *left, *right;
}:
TNODE s, *sp;
To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures, the declarations

struct sl { struct s2 *s2p; /*...*/ }; [/* D1 */
struct s2 { struct sl *slp: /*...%/ }; /*x D2 */

specify a pair of structures that contain pointers to each other. Note, however. that if s2 were
already declared as a tag in an enclosing scope. the declaration D1 would refer to fr, not 1o the
tag s2 declared in D2, To eliminate this context sensitivity. the otherwise vacuous declaration

struct s2;

may he inserted ahead of D1. This declares a new tag s2 in the inner scope: the dectaration D2
then completes the specification of the new type.

Forward references: type definitions (3.5.6).

64 Of course. when the declaraton s ol a typedef name. subsequent declarations can make use of the typedet
name to declare objects having the specified structure, union. or enumerated type.

3523 AMERICAN NATIONAL STANDARD X3.159-1989 3

AN
13>
Y]

Language 65 Declarations

3.5.3 Type Qualifiers
Svntax

type-qualifier:
const
5 volatile

Constraints

The same type qualifier shall not appear more than once in the same specifier list or qualifier
list, either directly or via one or more typedefs.

Semantics

10 The properties associated with gualified tvpes are meaningful only for expressions that are
Ivalues %

If an attempt 1s made to modify an object defined with a const-qualified type through use of
an lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer
to an ohject defined with a volatile-qualified type through use of an lvalue with non-volatile-

15 qualified type, the behavior is undefined.”

An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring to such
an object shall be evaluated strictly according to the rules of the abstract machine. as described in
2.1.2.3. Furthermore. at every sequence point the value last stored in the object shall agree with
20 that preseribed by the abstract machine, except as modified by the unknown factors mentioned
previously.”” What constitutes an access to an object that has volatile-qualified type is
implementation-defined.

If the specification of an array type includes any type qualifiers, the element type is so-
qualified, not the array type. If the specification of a function type includes any type qualifiers,
the behavior is undefined.®

2
wn

For two qualified types to be compalible, both shall have the identically qualificd version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect
the specified type.

Examples
30 An object declared
extern const volatile int real time clock;
may be modifiable by hardware, but cannot be assigned to. incremented, or decremented.

The following declarations and expressions illustrate the behavior when type qualifiers modify
an aggregate type:

65. The implementation may place a const object that is not velatile in a read-only region of storage.
Moreover, the implementation need not allocate storage for such an object if its address is never used.

66. This applies to those objects that behave as if they were defined with qualified types, even if they are never
actually defined as objects in the program (such as an object at a memory-mapped input/outpul address).

67. A velatile declaration may be used to describe an object corresponding to a memory-mapped input/output
port or an object accessed by an asynchronously interrupting function. Actions on objects so declared shall not
be “‘optimized out” by an implementation or reordered except as permitted by the rules for evazluating
expressions,

68. Both of these can only occur through the use of typedefs.

AMERICAN NATIONAL STANDARD X3.159-1989 353

0
i
Tad

Language 66 Declarations

const struct s { int mem; } ¢s = { 1 };

struct s nas; /* the object nes is modifiable */

typedef int A[2][3};

const A a = {{4, 5, 6}, {7, 8, 9}}; /*arruy of wray of const int */
5 int *pi;

const int *pci;

ncs = cs; /* valid */
¢S = nos; /* violares madifiable halve constraint for = */f
pi = &ncs.mem; /* walid */

10 Pi = &cs.mem; /J* violates ivpe consiraints for = %/
pci = &cs.mem; /* valid */
pi = al[0}; /* invalid: alQ] has type “‘const int *° */
3.5.4 Declarators
Syntax

15 declarator:
pointer direct-declararor

opt
direct-declarator:
identifier

{ declaraior)

20 divect-declarartor | c'(,ms!cmhc.xpressinnom)]
direct-declarator (parameter-rype-list)
direct-declarator { I'Lierzriﬁer-h'srom)

pointer:
* f_ype-qualr'ﬁer-z’isro .
25 * fype—quah_'ﬁer-li‘s‘fopr pointer

type-qualifier-list:
rpe-gqualifier
type-gualifier-list type-qualifier

parameter-type-list:
30 parameter-list
parameter-list

parameter-list.
parameter-declaration
parameter-list , parameter-declaration
35 parameter-declaration:
declaration-specifiers declararor
declaration-specifiers ahslra('f-de(‘laratornp .
identifier-list:
identifier
40 identifier-fist , identifier
Semantics
Each declarator declares one identifier, and asserts that when an operand of the same form as
the declarator appears in an expression, it designates a function or object with the scope. storage
duration, and type indicated by the declaration specifiers.

45 In the following subsections. consider a declaration

T D1

353 AMERICAN NATIONAL STANDARD X2.159.19%9 354

Language 67 Declarations

10

20

25

30

35

where T contains the declaration specifiers that specify a type T (such as int) and D1 is @
declarator that contains an identifier ident. The type specified for the identifier idenr in the
various forms of declarator 1s described inductively using this notation.

If, in the declaration **T D1,”” D1 has the form
identifier
then the type specified for ident 1s 7.
If, in the declaration *‘T D1,”” D1 has the form
(D)

then ident has the type specified by the declaration *'T D.”" Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complex declarators may be altered
by parentheses.

Implementation Limits

The implementation shall allow the specification of types that have at least 12 pointer, array,
and function declarators (in any valid combinations) modifying an arithmetic, a structure, a union,
or an incomplete type, either directly or via one or more typedefs.

Forward references: type definitions (3.5.6).
3.5.4.1 Pointer Declarators
Semantics
If, in the declaration ““T D1,”” D1 has the form
type-qualifie h.vfnp[D

and the type specified for ident in the declaration *T D' is “‘derived-declarator-type-tist 1.
then the type specified for ident is ‘“devived-declarator-type-list type-qualifier-list pointer to T."
For each type qualifier in the list, ident is a so-qualified pointer.

For two pointer types to be compatible, both shall be identically gualified and both shall be
pointers to compatible types.

Examples

The following pair of declarations demonstrates the difference between a *‘variable pointer to

[E] X3

a constant value’” and a ‘‘constant pointer to a variable value.™

const int *ptr_ to_ constant;
int *const constant_ptr;

The contents of an object pointed to by ptr_to_constant shall not be modified through that
pointer, but ptr_to_constant itself may be changed to point to another object. Similarly.
the contents of the int pointed to by constant _ptr may be modified, but constant_ptr
itself shall always point to the same location.

-
The declaration of the constant pointer constant_ptr may be clarified by including a
definition for the type ‘‘pointer to int.”

typedef int *int_ptr;
const int_ptr constant ptr;

declares constant_ptr as an object that has type *‘const-qualified pointer 1o int.”

AMERICAN NATIONAL STANDARD X3.159-1969 3541

Language 68 Declarations

3.5.4.2 Array Declarators
Constraints
The expression delimited by [and] (which specifies the size of an array) shall be an integral
constant expression that has a value greater than zero.
5 Semantics

If. in the declaration **T D1.”" D1 has the form

D [constant-expression
[! (J[)l]

and the wype specified for ideni in the declarauon T D s “derived-dedclararor-type fise T,
then the wype specified for idenz is derived-deciarator-type-list array of T.7°% U the size is not
10 present. the array type is an incomplete type.
For two array types to be compatible. boih shall have compatible element types, and if both
size spacifiers are present, they shall have the same valuc.

Examples

float falll], *afpl17];

(94}

declares an array of £leat numbers and an array of pointers to £loat numbers.
Note the distinction between the declarations

extern int *x;
extern int yl[];

The first declares x 1o be a pointer to int; the second declares v 10 be an array of int of
20 unspecified size (an incomplete type), the storage for which 15 defined elsewhere.

Forward references: function definitions (3.7.1), initialization {3.5.7).
3.5.4.3 Function Declarators (Including Prototypes)
Constraints
A function declarator shall not specify a return type that s a function type or an array type.
25 The only storage-class specifier that shall occur in a parameter declaration i1s register.

An identifier list in a function declarator that 1v not part of a function definition shall be
empty.

Semantics
If. in the declaration ©'T D1.”" D1 has the form

30 D (parameier-ivpe-1isi)
or

D (m’ennﬁwulmf”m)

and the tvpe specified for ident in the declaration T D Is “derived-declarator-tvpe-list T.°
then the type specified for ident s “derived-declarator-type-list function returning 7.7
35 A parameter type list specihes the types of, and nay declare identifiers for, the parameters of

the function. If the lst terminates with an ellipsis ¢, . . .). no information about the number or
types of the parameters after the comma is supplied.” The special case of void as the only

(9. When several “"array of " specifications are adjacent. a mulidimensional array is declared.
70. The macros defined in the <stdarg.h> header (4.8) may he used to access arguments that correspond to the
ellipsis.

3542 AMERICAN NATIONAL STANDARD X1 139-1089 3543

Language 69 Declaratiors

20

40

itern in the list specifies that the function has no parameters.

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract
declarator that specifies a function with a single parameter. not as redundant parentheses around
the identifier for a declarator,

The storage-class specifier in the declaration specifiers for a parameter declaration. if present,
15 ignored unless the declared parameter is one of the members of the parameter type list for a
function definirion.

An identifier list declares only the identifiers of the parameters of the function. An empty list
in a function declarator that is part of a function definition specifies that the function has no
parameters. The empty list in a function declarator that is not part of a function definition
specifies that no information about the number or types of the parameters is supplied.”

For two function types to be compatible. both shall specify compatible return types.’
Moreover, the parameter type lists. if both are present, shall agree in the number of parameters
and in use of the ellipsis terminator; corresponding parameters shall have compatible types. If
one type has a parameter type list and the other type is specified by a function declarator that is
not part of a function definition and that contains an empty identifier list, the parameter list shail
not have an ellipsis terminator and the type of each paramieter shall be compatible with the type
that results from the application of the default argument promotions. If one type has a parameter
type list and the other type is specified by a function definition that contains a {possibly empty)
identifier list, both shall agree in the number of parameters, and the type of cach prototype
parameter shall be compatible with the type that results from the application of the defauit
argument promotions fo the type of the corresponding identifier. (For each parameter declared
with function or array type, its type for these comparisons is the one that results from conversion
1o a pointer type, as in 3.7.1. For each parameter declared with qualified type, its type for these
comparisons is the ungualified version of its declared type.)

Examples
The declaration
int f(woid), *fip(), (*pfi) ():

declares a function £ with no parameters returning an int, a function £ip with no parameter
specification returning a pointer to an int, and a pointer p£fi to a function with no parameter
specification returning an int. It is especially useful to compare the last two. The binding of
*fip () is *{fip()). so that the declaration suggests, and the same construction in an
expression requires. the calling ot a function £ip, and then using indirection through the pointer
result to yield an int. In the declarator (*pfi) (), the extra parentheses are necessary to
indicate that indirection through a pointer to a function vields a function designator, which is then
used to call the function: it returns an int.

If the declaration occurs outside of any function, the identifiers have file scope and cxicrnal
linkage. If the declaration occurs inside a function. the identifiers of the functions £ and £ip
have block scope and either internal or external linkage (depending on what file scops
declarations for these identifiers are vistble). and the identifier of the pointer p£i has block scope
and no linkage.

Hete are two more intricate examples.

7t. See future language directions™ (3.9.4).

72, If both function types are “old style.”” parameter types are not compared.

3.54.3 AMERICAN NATIONAL STANDARD X3.159-1989 3543

Language 70 Declarations

10

20

[
N

30

a0
LA

int (*ap£fi[3]) (int *x, int *y):

declares an array ap£i of three pointers o functions returning int. Each of these funcrions has
two parameters that are pointers to int. The dentifiers x and y are declared for descriptive
purposes only and go out of scope at the end of the declaration of ap£i. The declaration

int (*fpfi{int (*) (long), int)) (int, ...}:

declares a function £pfi that returns a pointer to a function returning an int. The function
fp£i has two parameters: a pointer to a function returning an int (with onc parameter of type
long), and an int. The pointer retwrned by fpfi points to a function that has one int
parameter and accepts zero or more additional arguments of any type.
Forward references: function definitions (3.7.1), type names (3.5.5).
3.5.5 Type Names
Syntax

Iype-name:

spectfier-qualtfier-list absn‘ac‘r—dc’(‘!ummrrw

abstract-declarator:

pointer

pomrer{)m direct-abstract-declarator
direct-abstract-declarator:

{ abstract-declarator)

di:‘()(‘r—ahsrm(‘t—d(’(‘]m‘mnr)[[c‘nmrant~m‘pressfnnur 1

direci-abstract-declarator { paramerer-type-fist)

opt - opr

Semantics

In several contexts, it is desired to specify a type. This is accomplished using a type name,
which is syntactically a declaration for a function or an object of that type that omits the
identifier.”?

Examples

The constructions

(a) int

(b int *

(c) int *[3]

(d) int (*)[3]

(e) int *{)

(f) int (*) (void)

(2) int (*const []) (unsigned int, ...}

name respectively the types (a) int, (b) pointer to int, (¢) array of three pointers to int, (d)
poiater to an array of three ints. (e) function with no parameter specification returning a pointer
1o int, ([} pointer to function with no parameters returning an int, and (g) array of an
unspecified number of constant pointers to functions, each with one parameter that has type
unsigned int and an unspecified number of other parameters, returning an int.

73. As indicated by the syntax, cmpty parentheses in a type name are interpreted as ‘“‘function with no parameter

specification,”” rather than redundant parentheses around the omitted identifier.

31543 AMERICAN NATIONAL STANDARD X3.159-19%9 3.5.5

Language 71 Declarations

(8]

10

15

20

30

40

45

h
=)

3.5.6 Type Definitions
Syntax

typedef-name:
identifier

Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an
identifier to be a typedef name that specifies the type specified for the identifier in the way
described in 3.3.4. A typedef declaration does not introduce a new type, only a synonym for
the type so specified. That is, 1 the following declarations:

typedef T type ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers
in T (known as T), and the identifier in D has the type ‘‘derived-declarator-type-list T’ where
the derived-declarator-type-list s specified by the declarators of D. A typedef name shares the
same name space as other identifiers declared in ordinary declarators. If the identifier is
redeclared in an inner scope or is declared as a member of a structure or union in the same or an
inner scope, the type specifiers shall not be omitted in the inner declaration.

Examples
After

typedef int MILES, KLICKSP ()
typedef struct { double re, im; } complex;

the constructions

MILES distance;

extern KLICKSP *metricp;
complex x;

complex z, *zp;

are all valid declarations. The type of distance is int, that of metricp is “‘pointer to
function with no parameter specification returning int,’’ and that of x and z is the specified
structure; zp is a pointer to such a structure. The object distance has a type compatible with
any other int object.

After the declarations

typedef struct sl { int x; } tl1l, *tpl;
typedef struct s2 { int x; } t2, *tp2;

type £1 and the type pointed to by tpl are compatible. Type t1 is also compatible with type
struct sl, but not compatible with the types struct s2, £2, the type pointed 10 by tp2,
and int.

The following obscure constructions

typedef signed int t;

typedef int plain;

struct tag {
unsigned t:4;
const t:5;
plain r:5;

}:

declare a typedef name t with type signed int, a typedef name plain with type int, and a
structurc with three bit-field members, one named t that contains values in the range [0,15]. an

AMERICAN NATIONAL STANDARD X3.159-1989 3.5.6

Language 72 Declarations

unnamed const-qualified bit-field which (if 1t could be accessed) would contain values in at leust
the range [~ 15,415}, and one named x that contains values in the range [0.31] or values in at
least the range [—15,4+15]. (The choice of range is implementation-defined.} The first two bil-
field declarations differ in that unsigned is u type specifier (which forces £ to be the name of a

5 structure member), while const is a type gqualifier (which modifies £ which is still visible as a
typedef name). If these declarations are followed in an inner scope hy

t £(t (v));
long t;

then a function £ is declared with tvpe *‘function returning signed int with one unnamed
10 parameter with type pointer to function returning signed int with one unnamed parameter
with type signed int.”” and an identificr £ with type long.

On the other hand, typedef names can be used to improve code rcadability. All three of the
following declarations of the signal function specify exactly the same type, the first without
making use of any typedef names.

15 typedef void fv(int), (*pfv) (int).

void (*signal (int, void ({*) (int))) (int):
fv *signal (int, £v *);
pfv signal (int, pfv):

Forward references: the signal function (4.7.1.1}.
20 3.5.7 Initialization
Syntax
fnitializer:
USSIGRMEN-CAPIressIon
{ initiglizer-list '}
25 { rtuitialicer-list , }
thitializer-list:
frittalizer
initializer-list , initializer
Constraints
30 There shall be no more initializers in an initializer list than there are objects to be initialized.

The type ol the entity 10 be initialized shall be an object type or an array of unknown size.

All the expressions in an initializer for an object that has static storage duration or in an
initializer list for an ebject that has aggregate or union type shall be constant expressions.

If the declaration of an identifier hus block scope. and the identifier has external or internal
linkage, the declaration shall have no initializer for the identifier.

(o)
[

Semantics
An initializer specifies the initial value stored in an object.
All unnamed structure or union members are ignored during initialization.

If an cbject that has automatic storage duration is not initialized explicitly, its value is
40 indeterminate.” 1l an object that has static storage duration is not initialized explicitly. it is

74, Unlike in the base document, any automatic duration object may be initialized.

3.5.0 AMERICAN NATIONAL STANDARD X3.139 1989 357

Language 73 Declarations

(3

20

25

40

mnitialized mplicitly as if every member that has arithmetic type were assigned O and every
member that has pointer type were assigned a null pointer constant,

The initializer for a scalar shall be a single expression. optionally enclosed in braces. The
initial value of the object is that of the expression; the same type constraints and conversions as
for simple assignment apply. taking the type of the scalar to be the unquatlified version of its
declared type.

A brace-enclosed initializer for a union object initializes the member that appears first in the
declaration list of the union type.

The initializer for a structure or union object that has autornatic storage duration either shall
be an initialicer list as described below. or shall be a single expression that has compatible
structure or union type. In the latter case, the initial value of the object is that of the expression.

The rest of this section deals with initializers {or objects that have aggregate or union type.

An array of character type may be initialized by a character string literal, optionally enclosed
in braces. Successive characters of the character string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

An array with element type compatible with wchar_t may be initialized by a wide string
literal, optionally enclosed in braces. Successive codes of the wide string literal (including the
terminating zero-valued code if there 1s room or if the array is of unknown size) initialize the
clements of the array.

Otherwise, the initializer for an object that has aggregate type shall be a brace-cnclosed list of
initializers for the members of the aggregate, written in increasing subscript or member order: and
the initializer for an object that has union type shall be a brace-enclosed initializer tor the first
member of the union.

If the aggregate contains members that are aggregates or unions, or it the first member of a
union is an aggregate or union, the rules apply recursively to the subaggregates or contained
unions. If the initializer of a subaggregate or contained union begins with a left brace. the
initializers enclosed by that brace and its matching right brace initialize the members of the
subaggregate or the first member of the containcd union. Otherwise, only cnough initializers
from the list are taken to account for the members of the subaggregate or the hrst member of the
contained union; any remaining initializers are left fo initialize the next member of the aggregate
of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are members of an aggregate,
the remainder of the aggregate shall bc imitialized implicitly the same as objects that have static
storage duration,

If an array of unknown size is initialized. its size is determined by the number of initializers
provided for its elements. At the end of its initializer list, the array no longer has incomplete

type.
Examples
The declaration
int x[] = { 1, 3, 5 };

defines and initializes x as a one-dimensional array object that bas three elements, as no size was
specified and there are three initializers.

AMERICAN NATIONAL STANDARD X3.159-1989 357

Language 74 Declarations

10

35

40

float y[41({3] = {
{1. 3,51},
{2, 4, 61},
{ 3, 5, 71},

}:

is u definition with a fully bracketed initialization: 1, 3. and 5 initialize the first row of y (the
array object y[01), namely y[0] [0], y[0]1[1], and y[0] [2]. Likewise the next two lines
iniflalize y[1] and y[21. The mitializer ends early, so y[3] is initialized with zeros,
Precisely the same effect could have been achieved by

float y[41[3] = {
i, 3, 5, 2, 4, 6, 3, 5, 7
}:

The initializer for y [0] does not begin with a left brace, so three items from the list are used.
Likewise the next three are taken successively for y[1] and y[2]. Also,

float z[4][3] = {
{11}y, {23 {313} (41
}

initializes the first column of z as specified and initializes the rest with zeros.
struct { int a(3], b; } wll ={ (1}, 2 };

is a definition with an inconsistently bracketed initialization. It defines an array with two element
structures: w[0] .a{0] 1s 1 and w[1].a[0] is 2; all the other clements are zero.

The declaration

short q[4]([3]1[2] = {

{11},
{2, 31,
{4, 5 6}

};

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional
array object: gqf01[07[0] is I, q[1]1[0][0] is 2, q[1I[0][1] is 3. and 4, 5, and 6
initialize q[2] [01([0], q[2]1[01[1]. and q[2] [1] [0], respectively; all the rest are zero.
The initializer for g[0] [0] does not begin with a left brace, so up to six items from the current
list may be used. There is only one, so the values for the remaining five elements are initialized
with zero. Likewise, the initializers for q[1] [C] and q[2] [0] do not begin with a left brace,
so each uses up 1o six items, initializing their respective two-dimensional subaggregates. I there
had been more than six itemns in any of the lists, a diagnostic message would have been issued.
The same inttialization result could have been achieved by:

short q[4][3](2] = {
1, 0, 0, 0, 0, O,
2,3, 0,0, 0,0,
4, 5, 6

or by:

AMERICAN NATIONAL STANDARD X3.159-1989 3.5.7

Language 75 Declarations

10

20

25

30

357

short q[4][3][2] = {

{
{11},
}f
{
{2 31,
},
{
{4, 51},
{61},
}

};
in a fully bracketed form.

Note that the fully bracketed and minimally bracketed forms of initialization are. in general,
less likely to cause confusion.

One form of initialization that completes array types involves typedef names. Given the
declaration

typedef int A[]:;
the declaration

Aa= {1, 2}, b= {3, 4, 5};
is identical to

int a] = {1, 2}, bl]l] = {3, 4, 5};
due to the rules for incompiete typcs.

Finally, the declaration

char s[] = "abe", t[3] = "abe";
defines “‘plain’’ char array cbjects s and t whose elements are initialized with character string
literals. This declaration is identical to

char s[] = { 7a’, 'b’, ‘e¢’, '\0' },

t[l = ("a’, 'b", ‘e’ };

The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abe";
defines p with type ‘‘pointer to char’ that is initialized to point to an object with type *‘array
of char” with length 4 whose elements are initialized with a character string literal. If an
attempt is made to use p to modify the contents of the array, the behavior is undefined.
Forward references: common definitions <stddef .h> (4.1.5).

AMERICAN NATIONAL STANDARD X3.159-198Y 3.5.7

Language 76

3.6 Statements
Syntax

statement.
labeled-statement
S compound-statement
expression-statemeni
selection-statement
iteration-statement
jump-statement

10 Semantics

Statements

A statement specifies an action to be performed. Except as indicated, statements are executed

in sequence.

A fildl expression 1s an expression that i1s not part of another expression.

Fach of the

following is a full expression: an initializer; the expression in an expression statement: the
15 controlling expression of a sclection statement (A€ or switch); the controlling expression of a

while or do statement; each of the three (optional) expressions of a for statement: the

(optional) expression in a return statcment. The end of a full expression is & sequence point.

Forward references: cxpression and null siatements (3.6.3), sclection statements (3.6.4),

iteration statements {3.6.9). the return statement (3.6.6.4),
20 3.6.1 Labcled Statements
Syntax

labeled-sratement :

identifrer : statement
case consiant-expression : statement
25 default : statement

Constraints

A case or default label shall appear only in a switch statement. Further constrainis on

such labels are discussed under the switch statcment.

Semantics

30 Any statement may be preceded by a prefix that declares an identifier as a label name, Labels
in themselves do not alter the flow of control, which continues unimpeded across them.

Forward references: the goto statement (3.6.6.1), the switch stalement (3.6.4.2).

3.6.2 Compound Statement, or Block
Syntax

35 compound-statenment:

{ declaration-list statenment-lisr }
apr opt

declaration-list:
declaration
declaration-list dectaration

40 statement-list:
statenient
Statemeni-list starement

36 AMERICAN NATIONAL STANDARD X3.159-1989

Language 77 Statements

oo
wn

Lnd
A

40

Semantics

A compound statement (also called a dlock) allows a set of statements to be grouped into one
syniactic unit, which may have its own set of declarations and mitahizations (as discussed in
3.1.2.4). The initializers of objects that have automatic storage duration arc cvaluated and the
values are stored in the ohjects in the order their declarators appear in the translation unit.

3.6.3 Expression and Null Statements
Syntax
expression-statement:
expression ;
opt
Semantics
The expression n an expression statement is evaluated as a void expression for is side
eftects.”
A nufl statement (consisting of just a semicolon) performs ne operations.

Examples

If a function call is evaluated as an expression stalement for its side effects only. the
discarding ol its value may be made explicit by converting the expression to a void expression by
means of a cast:

int p{int);
f*. . .%/
(void)p (0)

In the program fragment

char *s;
f*...%/
while (*s+4+ != "\0'}

’

a null statement 1s used to supply an empty loop body to the iteration statement.

A nujl statement may also be used to carry a label just before the closing } of a compound
staterment.

while (lcopl} {

/*...*/
while (loop2) {
/*...x/

if (want_out)
goto end_loopl:

[*.. . %/
}
[*...0%/
end loopl: ;

}

Forward references: iteration statements (3.6.5).

75. Such ay assignments, and function calls which have side effects.

AMERICAN NATIONAL STANDARD X3.159-1989 3.6.3

Language 78 Statements

N

10

30

40

364

J.6.4 Selection Statements
Syntax

selection-statement:
if (expression) statement
if (expression) statenmient else statewent
switch { ewpression) statement

Semantics

A selection statement selects among a set of statements depending on the value of a
controlling expression.

3.6.4.1 The if Statement
Constraints

The controlling expression of an 1 £ statement shall have scalar type.
Semantics

In both forms, the first substatement is executed if the expression compares unequal to 0. In
the else form, the second substatement is exccuted if the expression compares equal to 0. If
the first substatement is reached via a label, the sccond substatement 18 not executed.

An else is associated with the lexically immediately preceding else-less if that is in the
same block (but not in an enclosed block).

3.6.4.2 The switch Statement
Constraints

The controlling expression of a switch stalement shall have integral type. 'The expression
of each case label shall be an integral constant expression. No two of the case constant
expressions in the same switch statement shall have the same value after conversion. There
may be at most one default label in a switch statement. (Any enclosed switch statement
may have a default label or case constunt expressions with values that duplicate case
constant expressions in the enclosing switch slatement.)

Semantics

A switch statement causes control to jump to, into. or past the statement that is the swiich

hody, depending on the value of a controlling expression, and on the presence of a default

label and the values of any case labels on or in the switch body. A case or default labelis
accessible only within the closesl enclosing switch statement.

The integral promations are performed on the controlling expression. The constant expression
in each case label is converted to the promoted type of the controlling cxpression. If a
converted value maiches that of the promoted controlling expression. control jumps to the
statement following the matched case label. Otherwise. it there 15 a default label, control
jumps to the labeled statement. If no converted case constant expression matches and there 15
no default fabel, no part of the switch body is executed.

Implementation Limits

As discussed previously (2.2.4.1). the implementation may limit the number of case values
in a switch statement.

Example

In the artificial program fragment

AMERICAN NATIONAL STANDARD X3 139-1989 3642

Language 79 Statements

switch (expr)

{
int 1 = 4;
£(1);
5 case 0:
i=17; [* falls through into default code */
default:
printf ("%d\n", i);
}

10 the object whose identifier is i exists with automatic storage duration (within the block) but is
never initialized, and thus if the controlling expression has a nonzero value, the call o the
printf function will access an indeterminate value. Similarly, the call to the function £ cannot
be reached.

3.6.5 Iteration Statements
15 Syntax

iteration-staiement:
while (expression) statement
do statement while (expression) ;
for (e.\‘presxw'on{)p{ ; e..\‘pressr‘(mam ; ax‘pressionrw Y siatement

20 Constraints
The controlling expression of an iteration statement shall have scalar type.
Semantics

An iteration statement causes a statement called the /oop hody to be executed repeatedly until
the controlling expression compares equal to 0.

25 3.6.5.1 The while Statement

The evaluation of the controlling expression takes place before each execution of the loop
body.

3.6.5.2 The do Statement
The evaluarion of the controlling expression takes place after each execution of the loop body.
30 3.6.5.3 The for Statement
Except for the behavior of a continue statement in the loop body, the statement
for (expression-1 ; expression-2 ; expression-3) statement
and the sequence of statements

expression-1
35 while (expression-2) {
sratement
expression-3 ;

}

are equivalent,’®

76. Thus, expression-! specifies initialization for the loop: expression-Z2, the controlling expression, specifies an
evaluation made before each iteration, such that execution of the loop continues until the expression compares
equal to 0; expression-3 specifies an operation (such as incrementing) that is performed after each iteration.

3.64.2 AMERICAN NATIONAL STANDARD X3.159-1989 1653

Lunguage &0

30

35

40

3653

Statements

Both expression-/ and expression-3 may be omitted. Lach s evaluated as a void expression.

An omitted expression-2 15 replaced by a nonzero constant,
/

Forward references: the continue statement (3.6.6.2).

3.6.6 Jump Statements
Syntax

jump-starenieni:
goto identifier
continue ;
break ;

return (’.\'I?I‘(’,i‘.&'i()” pr M
! (

Semantics

A jump statement causes an unconditional jump to another place.

3.6.6.1 The goto Statement

Constraints

The idenufier in a gotoe statement shall name a label located somewhere in the enclosing

function.

Semantics

A goto statement causes an unconditional jump to the staternent prefixed by the named label

in the enclosing function.

Example

It 15 sometimes convenient to jump into the middle of a complicated sct of statements. The
following outline presents one possible approach (o a problem based on these three assumptions:

[. The general initialization code accesses objects only visible to the current function.

b2

(%)

PPN

gote first time;

for (:;) {
/* derermine next operation */
AN ¥

if (need to reinitialize) |

/> reinitialize-only code */

[x..x/

first time:

/% veneral initialization code */

Py
continue;
}
/* handle other OPErations *x/
J*...%/

The general initialization code is too large to warrant duplication.

AMERICAN NATIONAL STANDARD X3.159-1989

The code to determiine the next operation must be at the head of the loop. (To allow it to
be reached by continue statements, for example,)

3.6.6.1

Language 81 Statements

20

30

35

3.6.6.2 The continue Statement
Constraints

A conti.nue statement shall appear only in or as a loop body.
Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing ileration staternent; that is, to the end of the loop body. More precisely, in each of the
statements

while ({(/*...*/) { do { for (/*...*/) {
/*. .. %/ /*. . %/ /*. .. %/
continue; continue; continue;
VANV /*.. . %] J*... %/

contin: ; contin: ; contin: ;

} } while (/*...*/); }

unless the continue statement shown 18 in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin;.”’

3.6.6.3 The break Statement
Constraints

A break statement shall appear only in or as a switch body or loop body.
Semantics

A break statement terminates execution of the smallest enclosing switch or iteration
statement.

3.6.6.4 The return Statement
Constraints

A return statement with an expression shall not appear in a function whose return type is
void.

Semantics

A return statement terminates execution of the current function and returns control to its
catler. A function may have any number of return statements. with and without expressions,

If a return statcment with an cxpression is cxceuted, the value of the expression is returned
to the caller as the value of the function call expression. If the expression has a tvpe different
from that of the function in which it appears, it is converted as if it were assigned to an object of
that type.

If a return statement without an expression is executed, and the value of the function call
is used by the caller, the behavior is undefined. Reaching the } that terminates a function is
equivalent 1o execuling a return stalement without an expression.

77. Following the contin: label 15 a null statement.

3.6.6.2 AMERICAN NATIONAL. STANDARD X3.159- U89 3.0.0.4

Language 82 External Definitions

20

o
N

3.7 External Definitions
Syntax

translation-unit:
external-declaration
ranstation-unit externa(-declararion

external-declaration:
Junction-definition
declaration

Constraints

The storage-class specifiers aute and register shali nol appear in the declaration
specifiers in an external declaration.

There shall be no more than one external definition for cach identifier declared with internal
linkage n a translation unit, Moreover, if an identifier declared with internal linkage is used in
an expression (other than as a part of the operand of 4 sizeof operator), there shall be exactly
one external definition for the identifier in the translation unit.

Semantics

As discussed in 2.1.1.1, the unit of program text alter preprocessing is a translaton unit
which consists of a sequence of external declarations. These are described as “external™™ because
they appear outside any function (and hence have file scope). As discussed in 3.5 a declaration
that also causes storage 1o be reserved for an object or a function named by the identifier is
definition.

An external definition is an external deciuration that is also o definition of a function or an
object. If an identifier declared with external linkage is used in an expression tother than as part
of the operand of a sizeof operator), somewhere in the entire program there shall be exactly
one external definition for the identifier: otherwise, there shall be no more than one.”™

3.7.1 Function Definitions
Syntax

Junction-definition:
declaration-specifiers . declarator d(/('/m'r'm'on—/1'.\'[{)pr compoitnd-siaternieni
! ¢

Constraints

The identifier declared in a function dehnition {which is the name of the tunction) shall have
a function type, as specified by the declarator portion of the function definition.™

78. Thus. if an identifier declared with exlernal linkage is not used in an expression, there need be no external
definition for it.
79. The intent is that the type category in a function definition cannot he inherited from u 1ypedet:

typedef int F(void); /* tvpe FUs Cfunction of no argwments retiorning int’ x/
F £, g, /* € and g hath have txpe conpatihie with B %/

FE£{ /*...*%} /* WRONG. svutuxiconstratit ¢iror */

Fg() { /*...*/} J* WRONG . declures that @ renrns o funcrion */

int f(veid) { /*...%/ } /* RIGHT: £ has type compatible with B *f

int g} { /*...%/ } /* RIGHT: g has tvpe compatible with B %/

F *e(void) { /*...*/ } /* e retwrns a pointer (o« funciion */

F *((e)) (void) { /*...*/ } /* same: purentheses irrelevan: */

int (*fp)} (void}; /* £p points 1o d thunction thar has tvpe B */

F *Fp; /* Fp points (o fochion thar has ivne B %/

3.7

AMERICAN NATIONAL STANDARD X3.15%-1989 7.1

Language 83 External Definitions

15

20

25

30

35

The return type of a function shall be void or an object type other than array.

The storage-class specifier, if any, in the declaration specifiers shall be either extern or
static.

If the declarator includes a parameter type list, the declaration of each purameter shall include
an identifier {except for the special case of a parameter list consisting of a single parameler of
type void, in which there shall not be an identifier). No declaration list shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall have at
least one declarator, and those declarators shall declare only identifiers from the identifier hst.
An identifier declared as a typedef name shall not be redeclared as a parameter. The declarations
in the declaration list shall contain no storage-class specifier other than register and no
initializations.

Semantics

The declarator in a function definition specifies the name of the function being defined and
the identifiers of its parameters. If the declarator includes a parameter type list, the list also
specifies the types of all the parameters; such a declarator also serves as a function prototype lor
later calls to the same function in the same transiation unit. If the declarator includes an
identifter list," the types of the parameters may be declared in a following declaration list. Any
parameter thal is not declared has type int.

If a function that accepts a variable number of arguments is defined without a4 parameler type
list that ends with the ellipsis notation, the behavior is undefined.

On entry 10 the function the value of each argument expression shall be converted to the type
of its corresponding parameter, as if by assignment to the parameter. Array expressions and
function designators as arguments are converted to pointers before the call. A declaration of a
parameter as ‘‘array of type’’ shall be adjusted to *‘pointer 10 fvpe,”’ and a declaration of a
parameter as ‘‘function returning fype’’ shall be adjusted to *‘pointer to function returning fype.”
as in 3.2.2.1. The resulting parameter type shall be an object type.

Each parameter has automatic storage duration. Its identifier 1s an Ivalue.*! The layout of the
storage for parameters is unspecified.

Examples

extern int max(int a, int b)

{

return a > b ? a : b;

}

Here extern is the storage-class specifier and int is the type specifier (each of which may be
omitted as those are the defaults); max (int &, int b) is the function declarator; and

{ return a > b ? a : b; }

is the function body. The following similar definition uses the identifier-list form for the
parameter declarations:

&0. See ‘‘future language directions’ (3.9.5).

81. A parameter is in effect declared at the head of the compound statement that constitutes the function body, and
therefore may not be redeclared in the function body (except in an enclosed block).

3.7.1

AMERICAN NATIONAL STANDARD X3.159-1989 3.7.1

Language 84 External Definitions

10

15

30

fad
n

40

371

extern int max(a, b)
int a, b;
{
return a > b ? a : b;

}

Ilere int a, b; is the declaraton list for the parameters, which may be omitied because those
are the defaults. The difference between these two definitions is that the first form acts as a
prototype declaration that forces conversion of the arguments of subsequent calls to the function,
whereas the second form may not.

To pass one function to another, one might say

int £(void);
VA ¥
g(f);

Note that £ must be declared explicitly in the calling function, as its appearance in the expression
g (£) was not followed by (. Then the definition of g might read

gl(int (*funcp) (void))

{
/*. .. %/ (*funep) () /* or funcp() ... */

}
or, equivalently,

gl{int func(void))

{
/*...%/ func() /* or (*func) () ... */
}
3.7.2 External Object Definitions
Semantics

If the declaration of an identifier for an object bas file scope and an initializer, the declaration
is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer. and
without a storage-class specifier or with the storage-class specifier static, constitutes a
tentative definition. If a translation unit contains onc or more tentative definitions for an
identificr, and the translation unit contains no cxternal definition for that identifier, then the
behavior is exactly as if the translation unit contains a file scope declaration of that identifier,
with the composite type as of the end of the translation unit, with an initializer equal to 0.

If the declaration of an identifier for an object is a tentative definition and has internal
linkage. the declared type shall not be an incomplete type.

Examples
int il = 1; /* definition, external linkage */
static int i2 = 2; /* definition, internal linkage * /
extern int i3 = 3; /* definition, exiernal linkage */
int i4; /[* tentative definition, external linkage */
static int i5; /* tentative definition, internal linkage */
AMERICAN NATIONAL STANDARD X3.159-1989 372

Language 85 Extermal Definitions

int il; /* valid temative definition, refers to previous *J
int i2; /* 3.1.2.2 renders undefined, linkage disagieement */
int i3; /* valid tentative definition, refers to previous */
int i4; /% valid tentative definition, refers to previous */

5 int i5; /* 3.1.2.2 rendery undefined, linkage disagreement */
extarn int il; /' * refers to previous, whose linkage is external */
extern int i2; /* refers to previous, whose linkage is internal */
extern int i3; /* refers to previous, whase linkage is external */
extern int i4; /* refers to previous, whose linkage is external */

10 extern int i5; /* refers to previous, whose linkage is internal */

3.7.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.7.2

Language

10

)
A

40

86

3.8 Preprocessing Directives

Syntax

preprocessing-file:

giroup:

2roup
srow opt

group-part
aroup group-part

group-pari:

pp-1okens new-line
o Coopi
if-section

control-fine

if-section:

if-group e[rf—gmu,m’op! clse-gmup”p, endif-line

if-group:

if constanr-expression new-line grm,lp“p[
ifdef idewifier new-line group
ifndef ideniifier new-line gmupom

elif-groups:

elif-group
elif-groups elif-group

elif-group:

elif

else-group:

else new-line group,, .
[

endif-line:

endif new-line

confrol-line:

{paren:

line pp-tokens new-line

error pp-mkensom new-line

pragma pp-mkens()pt rew-line
new-line

EIE S R R

constant-expression new-line g!'oupnpr

include pp-tokens new-line

define identifier replacement-list new-line
define identifter Iparen [derm_'ﬁer—fistom
undef identifter new-line

Preprocessing Directives

Y replacement-list new-line

the left-parenthesis character without preceding white-space

replacement-{ist.

pp-mkens“m

pp-tokens:

preprocessing-token
pp-tokens preprocessing-token

new-line:

the new-line character

AMERICAN NATIONAL STANDARD X3.159-158Y

Language 87 Preprocessing Directives

Description

A preprocessing directive cansists of a sequence of preprocessing tokens that begins with a #
preprocessing token that is either the first character in the source file (optionally atter white space
containing no new-line characters) or that follows white space containing at least one new-line

5 character. and is ended by the next new-line character.
Constraints
The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducing # preprocessing token through just before
the terminating new-line character) are space and horizontal-tab (including spaces that have

10 replaced comments or possibly other white-space characters in translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include other
source files, and replace macros. These capabilities are called preprocessing, because
conceptually they occur before translation of the resulting translation unit,

15 The preprocessing tokens within a preprocessing directive arc not subject to macro expansion
unless otherwise stated.

1.8.1 Conditional Inclusion
Constraints
The expression that controls conditional inclusion shall be an integral constant expression

20 except that: it shall not contain a cast; identifiers (including those lexically identical to keywords)

are interpreted as described below:* and it may contain unary operator expressions of the form
defined identifier

or
defined (identifier)

25 which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is
predefined or if it has been the subject of a #define preprocessing directive without an
intervening #undef directive with the same subject identifier). O if it is not.

Each preprocessing token that remains after all macro replacements have occurred shall be in
the fexical form of a token.

30 Scmantics

Preprocessing directives ol the forms
if constant-expression new-line group
4
elif cousiant-expression new-line group i
p
check whether the controlling constant expression evaluates {0 nonzero.

35 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the
controlling constant expresston are replaced (except for those macro names modified by the
defined unary operator), just as in normal text. If the token defined is generated as a result
of this replacement process or use of the defined unary operator does not match onc of the two

82 Thus, preprocessing directives are commonly called “‘lines.”” These “‘lines” have no other syntactic

significance, as all white space is equivalent cxcept in certain situations during preprocessing (see the #
character string literal creation operator in 3.8.3.2, for example),

83, Because the controtling constant expression is evaluated during translation phase 4, all identifiers either are or
are not macro names — there simply are no keywords. enumeration constants. and so on.

AMERICAN NATIONAL STANDARD X3.159-1989 38.1

Language 8E Preprocessing Directives

30

specitied forms prior to macro replacement. the behavior is undefined. After all replacements due
to macro expansion and the defined unary operator have been performed. all remaining
identifiers are replaced with the pp-number 0, and then each preprocessing token is converted
into a token. The resulting tokens comprise the controlling constant expression which is
evaluated according to the rules of 3.4 using arithmetic that has at least the ranges specified in
2.2.4.2. excepl that int and unsigned int uct as if they have the same representation as.
respectively, long and unsigned long. This includes inlerpreting character constants, which
may involve converting escape sequences into execution character set members. Whether the
numeric value for these character constants matches the value obtained when an identical
character comstant occurs in an expression (other than within a #if or #elif directive) iy
implernentation-defined.™ Also, whether a single-character character constant may have a
negative value is implememation-defined.

Preprocessing directives of the forms

ifdef identifier new-line group
ifndef identifier new-lineg group

o

o

check whether the identifier is or is not currently defined as a macro name. Their conditions are
cquivalent to #if defined ideatifier and #1£ 'defined identifier respectively.

Euach dircctive’s condition is checked in order. If it evaluates to false (zero), the group that it
controls iy skipped: directives are processed only through the name that determines the directive
in order to keep track of the Ievel of nested conditionals: the rest of the directives” preprocessing
tokens are ignored, as are the other preprocessing tokens in the group. Only the first group
whose control condition cvaluates (o true {nonzero) is processed. If none of the conditions
evaluates to true, and there is a #else directive. the group controlled by the #else is
processed: lacking a #else directive, all the groups until the #endif arc skipped.™

Forward references: macro replacement (3.8.3), source file inclusion (3.8.2).
3.8.2 Source File Inclusion
Constraints

A #include dircctive shall identify a header or source file that can be processed by the
impiementation.

Semantics
A preprocessing directive of the form
include <h-char-sequence> new-fine

searches a sequence of implementation-defined places for a header identified uniquely by the
specified sequence between the < and > delimiters, and causes the replacement of that directlive
by the entire contents of the header.” How the places are specificd or the header identified is
implementation-defined.

84 Thus. the constanl expression in the following #if directive and 1€ staterent is not guaranteed to evaluate to
the same value n these two conlexts.

$if 'z’ - rar == 25
if ("z' - 'a’ == 25)

85, As indicated by the syntax. a preprocessing token shall not follow a #else or #endif directive before the
terminating new-line character. However, comments may appear anywhere in a source file, including within a
preprocessing directive.

AMERICAN NATIONAL STANDARD X31.159-19%Y 382

Language 89 Prepracessing Directives

10

30

A preprocessing directive of the form
include “g-char-sequence™ new-line

causes the replacement of that directive by the entire contents of the source file identified by the
specified sequence hetween the ™ delimiters. The named source file is searched for in an
implementatior-defined manner. If this search is not supported, or if the search fails, the
directive is reprocessed as if it read

include <h-char-seguence> new-line
with the identical contained scquence (including > characters, tf any) from the original dircetive.
A preprocessing directive of the form
include pp-tokens new-line

(that does not match one of the two previous forms) s permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined
as a macro namc ts replaced by its replacement list of preprocessing tokens.) The directive
resulting after all replacements shall match one of the two previous forms.*™ The method by
which a sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair
of " characters is combined into 4 single header name preprocessing token is implementation-
detined.

There shall be an implementation-defined mapping between the delimited sequence and the
external source file name. The implementation shall provide unique mappings for sequences
consisting of one or more letters {as defined in 2.2.1) followed by a period (.} and a single
letter. The implementation may ignore the distinctions of alphabetical case and restrict the
mapping to six significant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because

of a #include directive in another file, up to an implementation-defined nesting limit (sec
2.24.1).

Examples
The most common uses of #include preprocessing directives are as in the following:

#include <stdioc.h>
#include "myprog.h"

This cxample illustrares a macro-replaced #include directive:

#if VERSION == 1
#fdefine INCFILE "versl.h"
#elif VERSION ==
#define INCFILE ‘'"vers2.h" /* and s an *f
#else
#define INCFILE "versN.h"
#endif
#include INCFILE

Forward references: macro replacement (3.8.3).

86. Note that adjacem string literals are not concatenated into a single string literal (see the translation phases in
2.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

Lot

[

AMERICAN NATIONAL STANDARD X3.159-1984 382

Language 90 Preprocessing Dirccrives

15

20

25

30

40

3.8.3 Macro Replacement
Constraints

Two teplacement lists are identical if and only if the preprocessing okens in hoth have the
same number, ordering, spelling, and white-space scparation, where all white-space scparations
are considered identical.

An identifier currently defined as a macro without use of Iparen (an ahjeci-like macro) may be
redefined by another #define preprocessing directive provided that the second definition is an
object-like macro definition and the two replacement lists are identical,

An identifier currently defined as a macro using lparen (a function-like macro) may be
redefined by another #define preprocessing directive provided that the sccond definition is a
function-like macro definition that has the same number and spelling of parameters. and the two
replacement lists are identical.

The number of arguments in an invocation of a function-like macre shall agree with the
number of parameters in the macro definition, and there shall exist 4 } preprocessing token that
terminates the invocation.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

Semantics

The identifier immediately following the define is called the macro name. There is one
name spacc for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list for either
form of macro.

It a # preprocessing token, followed by an identifier, occurs lexically at the point at which a
preprocessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subseguent instance of the macro name" o be

replaced by the replacement list of preprocessing tokens that constitute the remainder of the
directive. The replacement list is then rescanned for more macro names as specified below.

A preprocessing directive of the form
define identifier Iparen idennf/jcﬂ'-li.\'f”‘m y replacement-list new-line

defines a function-like macro with arguments. similar syntactically to a function cali. The
parameters are specified by the optional Tist of identifiers, whose scope extends from their
declaration in the identifier list until the new-line character that terminates the f#define
preprocessing directive. Each subsequent instance of the function-like macre name followed by a
(as the next preprocessing token introduces the sequence of preprocessing tokens that is replaced
by the replacement list in the definition (an invocation of the macro). The replaced sequence of
preprocessing tokens is terminated by the matching) preprocessing token. skipping inlervening
matched pairs of left and right parenthesis preprocessing tokens. Within the sequence of
preprocessing tokens making up an invocation of a function-like macro, new-line is considered a
normal white-space character.

87. Since. by macro-replacement time, all character constants and string literals are preprocessing tokens, not
sequences possibly containing identifier-like subsequences (see 2.1.1.2, translation phases), they are never
scanned for macro names or parameters.

AMERICAN NATIONAL STANDARD X3.154-1989 383

Language 91 Preprocessing Directives

10

15

20

25

40

3.83

The sequence of preprocessing tokens hounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within rthe Tist
are separated by comma preprocessing tokens, but comma preprocessing tokens between
matching tnner parentheses do not separate arguments. If (before argument substitution) any
argument consists of no preprocessing tokens, the behavior is undefined. If there are sequences
of preprocessing tokens within the list of arguments that would otherwise act as preprocessing
directives, the behavior is undefined.

3.8.3.1 Argument Substitution

After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded by a # or
preprocessing token or followed by a ## preprocessing token (see below), is replaced by the
corresponding argument after all macros contained therein have been expanded. Before being
substituted, each argument’s preprocessing tokens are complerely macro replaced as if they
formed the rest of the translation unit; no other preprocessing tokens are available.

3.8.3.2 The # Operator
Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be followed
by a parameter as the next preprocessing token in the replacemenr list.

Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing token,
both arc replaced by a single character string literal preprocessing token that contains the spelling
of the preprocessing roken sequence for the corresponding argument. Each occurrence of white
space bhetween the argument’s preprocessing tokens becomes a single space character in the
character string literal. White space before the first preprocessing token and after the last
preprocessing token comprising the argument is deleted. Otherwise, the original spelling of each
preprocessing token in the argument is retained in the character string literal. except for special
handling for producing the spelling of string literals and character constants: a \ character is
inserted before each " and \ character of a character constant or string literal (including the
delimiting " characters). If the replacement that results is not a valid character string literal, the
behavior is undefined. The order of evaluation of # and ## operators 1s unspecified.

3.8.3.3 The ## Operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list
for either form ot macro definition.

Semantics

If. in the replacement list, a parameter is immediately preceded or followed by a ##
preprocessing token, the parameter is replaced by the corresponding argument’s preprocessing
token sequence.

For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instance of a ## preprocessing token in the
replacement list (not from an argument) is deleted and the preceding preprocessing token is
concatenated with the following preprocessing token. If the result is not a valid preprocessing
token, the behavior is undefined. The resulting token is available for further macro replacement.
The order of evaluation of ## opcrators is unspecified.

AMERICAN NATIONAL STANDARD X3.159-1989 3833

Language 92 Preprocessing Directives

Lh

a
h

2
A

40

45

3834 AMERICAN NATIONAL STANDARD X2 130- 1989 RN

3.8.3.4 Rescanning and Further Replacement

After all paramcters in the replacement list have been substituted. the resuiting preprocessing
token sequence is rescanned with all subsequent preprocessing tokens of the source file for more
macro names to replace.

If the name of the macro being replaced is found during this scan of the reptacement fist o
including the rest of the source file’s preprocessing tokens), it Is not replaced. Further, if any
nested replacements encounter the name of the macro being replaced. it is not seplaced. These
nonreplaced macro name preprocessing wkens are no tonger available for further replacement
even if they are later (relexamined in contexts in which that macro nunic preprocessing tohen
would otherwise have been replaced.

The resulting completely macro-reptaced preprocessing token sequence 15 nel processed as o
preprocessing directive even 1f it resembles one.

3.8.3.5 Scope of Macro Definitions

A macro definition lasts (independent of block structure) until @ coresponding #undef
directive Is encountered or (if none is encountered) until the end of the translation unit.

A preprocessing directive of the form
undef jdentifier new-line

causes the specified identifier no longer to be defined as a4 macro name. [t is ignored i the
speeificd identifier 15 not currently defined as & macro name.

Examples
The simplest use of this tacility is to define a “'manifest constant.”” as in
#define TABSIZE 100
int table[TABSIZE];

The following defines a function-like macro whose value is the maximum of ity arguments. It
has the advantages of working for any compatible tvpes of the arguments and of gencrating -
line code without the overhead of function calling. 1t has the disadvantages of cvaluating one or
the other of its arguments a second time (including side effects} and generating more code than 4
function if invoked several times. It also cannot have its address taken. as it has none.

#define max{a, b) {({a) > (b) ? (a) : (b))
The parentheses ensure thar the arguments and the resubiing expression are bound properly.

To iltustrate the rules tor redefinition and reexamination. the sequence

#define x 3

#define £(a) £(x * (a))
#fundef x

ffdefine x 2

#define g f

ffdefine =z z[0]
#define h g~
#define m(a) aiw)
#define w 0,1

#define t(a) a

f(y+l) + £(£(z)) % t{t{g) (O) + t)(1);
g(x+(3,4)-w) | h 5) &m
(£) *m(m) ;

results in

(P4

Language 93 Preprocessing Directives

£(2 * (y+1}) + £(2 * (£(2 * (2[0])))}) % £(2 * (0)) + t(1);
£(2 * (2+(3,4)-0,1)) | £(2 * (~ 5)) & £(2 * (0,1))"*m(0,1);

To illustrate the rules for creating character string fiterals and concatenating tokens. the
sequence

5 f#fdefine str(s) # s
fidefine xstr(s) strx (s)
#define debug(s, t) printf("x" # s "= %d, x" § t "= %s", \
x ## s, x ## t)
#define INCFILE(n) vers ## n /* from previous $include example */

10 #define glue(a, b) a ## b
#idefine xglue(a, b) glue(a, b)
#tdefine HIGHLOW "hallo"
fdefine LOW LOW ", world"

debug (1, 2):
15 fputs (str(strncmp("abec\0d", "abc", '\4’) /* this goes away */
== 0) str(: @\n), s);
#include xstr (INCFILE(Z2) .h)
glue (HIGH, LOW);
xglue (HIGH, LCW)

20 results in

printf("x" LU L %d, x" "2n ve %S", xl, xz)’.
fputs ("strnemp (\"abe\\0d\", \"abc\", "\\4’) == 0" ": @\n", s);

#include "vers2.h" (after macro replacement. before file access)
"hello";
25 "hello" ", world"

or, after concatenation of the character string literals.

printf{"xl= %d, x2= %s", x1, x2);

fputs ("strnemp (\"abe\\0d\", \"abc\", '\\4’) == 0: @\n", s);
#include "vers2.h" (after macre replacement, befoire file access)
30 "hello";

"hello, world"
Space around the # and ## tokens in the macro definition is optional.

And finally, to demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
35 #define OBJ_LIKE /* white space */ (1-1) /* other */
#define FTN_LIKE (a) (a)
#define FIN LIKE(a) (/* note the white space */ \
a /* other stuff on this line
*/)
40 But the following redefinitions are invalid:
#idefine OBJ_LIKE (0) /* different token sequence */
#define OBJ_LIKE (1 = 1) /* different white spuce */

fidefine FTN_LIKE(b) (a) /* different parameter usage */
#define FIN LIKE(b) (b) /* different parameter spelling */

3835 AMERICAN NATIONAL STANDARID X3.159- 1084 3.8.3.5

Language 94 Preprocessing Direclives

10

20

2
n

384

3.8.4 Line Control
Constraints

The string literal of a #line directive, it present, shall be a character string literal.
Semantics

The line number of the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 (2.1.1.2) while processing the source file 0
the current token.

A preprocessing directive of the form
line digir-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a
source line that has a line number as specified by the digit sequence (interpreted as a decimal
integer). The digit sequence shall not specify zero, nor a number greater than 32707,
A preprocessing directive of the form
line digit-sequence “s-r'har»sequenc‘é(w" new-fing
sets the line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

A preprocessing directive of the form
line pp-tokens new-line

{that does not match one of the two previous forms) is permitted. The preprocessing tokens after
line on the directive are processed just as in normal text {each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens). The directive resulting
after all replacements shall match one of the two previous forms and is then processed as
appropriate.

3.8.5 Error Directive
Semantics
A preprocessing directive of the form
error pp-mken.s‘am new-line

causcs the implementation o produce a diagnostic message that includes the specified sequence
of preprocessing tokens.

3.8.6 Pragma Directive
Semantics
A preprocessing directive of the form
pragma pp~mkcnsom new-iine

causes the implementation to behave in an implementation-defined manner. Any pragma that is
not rccognized by the implementation is ignored.

AMERICAN NATIONAL STANDARD X3.159-1989 3.R.A

Language

10

20

187

95 Preprocessing Directives

3.8.7 Null Directive

Semantics

A preprocessing directive of the form

new-line

has no effect.

3.8.8 Predefined Macro Names

The following macro names shall be defined by the implementation:

__STDC_ _

The line number of the current source line (« decimal constant).

__ The presumed name of the source file (a character string literal).

_ The date of translation of the source file (a character string literal of the form

"Mmm dd yyyy". where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the
value is less than 10). If the date of translation is not available, an
implementation-defined valid date shall be supplied.

The time of translation of the source file (a character string literal of the form
"hh:mm:ss" as in the time generated by the asctime function). If the time of
translation is not available, an implementation-defined valid time shall be supplied.

The decimal constant 1, intended to indicate a conforming implementation.

The values of the predefined macros (except for _ _LINE__ and __FILE__) remain
constant throughout the translation unit.

None of these macro names, nor the identifier defined, shall be the subject of a #define
or a #undef preprocessing directive. All predefined macro names shall begin with a leading
underscore followed by an uppercase letter or a second underscore.

Forward references: the asctime function (4.12.3.1).

AMERICAN NATIONAL STANDARD X3.159-1989 38.8

Language 96 Futurc Language Directions

3.9

3.9 Future Language Directions
3.9.1 External Names

Restriction of the significance of an external name to fewer than 31 characters or to only one
case 1s an obsolescent feature that is a concession to existing inplementations.

3.9.2 Character Escape Sequences

Lowercase letters as escape sequences are reserved for future standardization. Other
characters may be uscd 1n cxiensions,

3.9.3 Storage-Class Specifiers

The placement of a storage-class specifier other than at the beginning of the declaration
spectfiers in a declaration is an obsolescent feature.

39.4 Function Declarators

The use of function declarators with empty parentheses (not prototype-format parameter type
dectarators) 1s an obsolescent feature.

3.9.5 Function Definitions

The use of tunction definitions with separate parameter identifier and declaration lists (not
prototype-format parameter type and identifier declarators) is an obsolescent feature.

3.9.6 Array Parameters

The use of two parameters declared with an array type (prior to their adjustment to pointer
type) in separate Ivalues to designate the same object is an obsolescent feature.

AMERICAN NATIONAL STANDARD X3.139-1989 396

C Standard 97 Library

10

20

25

30

4. Library

4.1 Introduction
4.1.1 Definitions of Terms

A string i8 a contiguous scquence of characters terminated by and including the first null
character. A ‘‘pointer to’’ a string is a pointer to its imtial (lowest addressed) character. The
“length’” of a string is the number of characters preceding the nuil character and its “*value™" is
the sequence of the values of the centained characters, in order.

A letrer ts a printing character in the execution character set corresponding to any of the 52
required lowercase and uppercase letters in the source character set, listed in 2.2.1.

The decimal-point character is the character used by functions thal convert floating-point
numbers to or from character scquences to denote the beginning of the fractional part of such
character sequences.™ It is represented in the text and examples by a period, but may be changed
by the setlocale function.

Forward references: character handling (4.3), the setlocale tunction (4.4.1.1).
4.1.2 Standard Headers

Each library function is declared in a header.*® whose contents are made available by the
#include preprocessing directive. The header declares a set of related functions, plus any
necessary types and additional macros needed to facilitate their use.

The standard headers arc

<assert.h> <locale.h> <stddef .h>
<ctype.h> <math.h> <stdio.h>
<errno.h> <setjmp.h> <stdlib.h>
<flocat.h> <signal.h> <string.h>
<limits.h> <stdarg.h> <time.h>

If a file with the same name as one of the above < and > delimited sequences, not provided
as part of the implementation, is placed in any of the standard places for a source file to be
included, the behavior is undefined.

Headers may be included in any order; each may be included more than once in a given
scope, with no effect ditterent from being included only once, except that the effect of including
<assert .h> dzpends on the definition of NDEBUG. If used. a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However,
if the identifier is declared or defined in more than one header, the second and subsequent
associated headers may be included after the initial reference to the identifier. The program shall
not have any macros with names lexically identical to keywords currently defined priar to the
inclusion.

Forward references: diagnostics (4.2).

88, The functions that make use of the decimal-point character are localeconv, fprintf, fscanf, print£,
scanf, sprintf, sscanf, vEfprintf vprintf, vsprintf, atof, and strtod.

89. A header is not necessarily a source file, nor are the < and > delimited sequences in header names pecessarily
valid source file names.

AMERICAN NATIONAL STANDARD X3.159-198¢ 4.1.2

Library 98 Introduction

20

RR]

4.1.2.1 Reserved Identifiers

Each header declares or defines all identifiers listed in its associated section, and optionally
declares or defines identifiers listed in its associated future library directions section and
identifiers which are always reserved either for any use or for use as file scope identifiers.

* All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always rescrved for any use.

» All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary identifier and tag name spaces.

* Each macro name listed in any of the following sections (including the futare library
directions) is reserved for any use if any of 118 associated headers is included,

¢ All identifiers with external linkage in any of the following sections (including the future
library directions) are always reserved for use as identifiers with external linkage.™

¢ Each identifier with file scope listed in any of the following sections (including the future
library directions} is rescrved for use as an identifier with file scope in the same name space if
any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier with the
same name as an identifier reserved in that context (other than as allowed by 4.1.6). the behavior
is undefined.”!

4.1.3 Errors <errno.h>

The header <errno.h> defines several macros, all relating to the reporting of error
conditions,

The macros are

EDOM
ERANGE

which expand to integral constant expressions with distinct nonzero values, suitable for use in
#if preprocessing directives; and

errno

which expands to a modifiable Ivalue” that has type int, the value of which is set to a positive
error number by several library functions. It is unspecified whether errno is a macro or an
identifier declared with external linkage. If a macro definition is suppressed in order to access an
actual object, or a program defines an identifier with the name errno, the behavior is undefined.

The value of errno is zero at program startup, but is never set to zero by any library
function.”® The value of exrno may be set to nonzero by a library function call whether or not
there is an error, provided the use of errno is not documented in the description of the function
in the standard.

90. The list of reserved identifiers with external linkage includes exrrno, setjmp, and va_end.

91. Since macro names are replaced whenever found, independent of scope and name space, macro names
matching any of the reserved identifier names must not be defined if an associated header, il any. is included.
92. The macro errno need not be the identifier ot an object. It might expand to a modifiable Ivaluc resulting

from a function call (for example. *errno ()).

93. Thus, a program that uses errne for error checking should set it to zero before a library function call, then
inspect it before a subsequent library function call. Of course. a library function can save the value of errno
on entry and then set it to zero, as long as the original value is restored if errno’s value is still zero just
before the return.

4.1.2.1 AMERICAN NATIONAL STANDARD X2.159-1989 413

Library 99 Introduction

15

25

30

Additional macro definitions, beginning with E and a digit or E and an uppercase letter.** may
also be specified by the implementation.

4.1.4 Limits <float.h> and <limits.h>

The headers <float.h> and <limits.h> define several macros that expand (o various
limits and parameters.

The macros, their meanings, and the constraints (or restrictions) on their values are listed in
2.24.2,

4.1.5 Common Definitions <stddef .h>

The following types and macros are defined in the standard header <stddef .h>. Some are
also defined in other headers, as noted in their respective sections.

The types are
ptrdiff t
which is the signed integral type of the result of subtracting two pointers;
size_t
which is the unsigned integral type of the result of the sizeof operator; and
wchar_t

which is an integral type whose range of values can represent distinet codes for all members of
the largest extended character set specified among the supported locaies; the null character shali
have the code value zero and each member of the hasic character set defined in 2.2.1 shall have a
code value equal to its value when used as the fone character in an integer character constant.

The macros are
NULL
which expands to an implementation-defined null pointer constant; and
offsetof (ivpe, member-designator)

which expands to an integral constant expression that has type size_t, the value of which is the
offset in bytes, to the structure member (designated by member-designator), from the beginning
of its structure (designated by rvpe). The member-designaror shall be such that given

static rype t;

then the expression & (t .member-designator) evaluates to an address constant. (If the specified
member is a bit-field, the behavior is undefined.)

Forward references: localization (4.4).

94. See *'future library directions™ (4.13.1).

4.13

AMERICAN NATIONAL STANDARD X3.159-1689 4.1.5

Library 100 Introduction

4.1.6 Use of Library IFunctions

Each of the following statements applics unless explicitly stated otherwise m the detaifed
descriptions that follow. If an argument to a function has an invalid value (such as a value
outside the domain of the function. or a pointer outside the address space of the program. or a

5 null pointer). the behavior is undetined. I a function arcument is deseribed as being an array.

the pointer actually passed to the tunction shall have a value such that all address computations
and accesses to objects (that would be valid 1t the potnter did ponnt to the first element of such an
array) are in fact valid. Any function declared in g header may be additionalty implemented as a
macro defined in the header, so a library function should not be declared explicily if its header is

10 included. Any macro definition of a function can be suppressed locally by enclosing the name of

the function in parcatheses, because the name is then not foilowed by the left parenthesis that
indicates expansion of a macro function name. For the same syatactic reason. it 1s permitied 1o
take the address of u library function even if it is also defined as a macro.”™” The use of #undef
to remove any macro definition will also ensure that an actual function is referred to. Any

15 invocation of a library function that is implemented as & mucro shall expand to code that

evaluates each of its arguments exactly once, fully protected by parentheses where necessary. 5o
it is generally safe 1o use arbitrary expressions as arguments, Likewise. those tfunction-like
macros described in the following sections may be invoked inan expression anywhere o function
with a compatible return type could be called”™ Al object-like macros listed as expanding 1o

20 integral constant expressions shall additionally be suttable for use in #if preprocessing

directives.

Provided that a library function can be declarcd without reference to any type defined mn a
header. it is also permissible to declare the function. cither explicitly or implicitly, and use 1t
without including its associated header. If a tfunction that accepts a varable number of arguments

25 15 not declared (explicitly or by including its associated heuader). the behavior is undetined.

Examples
The function atoi may be used in any ol several ways:
* by use of its associated header (possibiv sencrating a macro CXpansion]

#include <stdlib.h>

30 const char *str;

95,

96.

/*. .. %/
i = atoi(str);

This means that an implementation must provide an actual tuncrion for each library function. even il it also
provides a macro for thar function

Becuuse external identifiers and some macro names beginning with an underscore are reserved, implementations
may provide special semantics for such names. For example, the identifier BUTLTIN abs could be used (o
indicate generation of in-line code for the abs function. Thus. the appropriate header could specify

#define abs(x) BUILTIN abs(x}
for a compiler whose code generator will aceept i1,
In this manner, a user desiring to guarantee that a given library function such as abs will be o genuine
function may write

#undef abs

whether the implementation’s header provides ¢ macro implementation of abs o a buwilt-in implementation.
The protolype for the function. which precedes and is hidden by any muacro definiion. is thereby revesicd also,

416 AMERICAN NATIONAL STANDARIY N3.159- 1982 4.1.6

1.ibrary 101 Introduction

* by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi
const char *str;

5 FAL
i = atoi(str):

or

#include <stdlib.h>
const char *str;

10 Jr...x/
i = (ateoi) (strx);

* by explicit declaration

extern int atoi(const char *).;
const char *str;

15 FER Y
i = atoi(str);

* by impiicit declaration

const char *str;
/:k___*/

20 i = atoi(str);

4.1.6 AMERICAN NATIONAL STANDARD X3.159-1989 4.1.6

Library 102 Diagnostics <assert.h>

4.2 Diagnostics <assert .h>
The header <assert .h> defines the assert macro and refers to another macro.
NDEBUG

which is nor defined by <assert . h> If NDEBUG is defined as a macro name at the point in
the source filc where <assert.h> is included. the assert macro is defined simply as

fidefine assert (ignore) ((veid)O0)

The assert macro shall be implemented as a macro, not as an actual tunction. If the macro
definition is suppressed in order to access an actual function, the behavior is undefined.

4.2.1 Program Diagnostics
4.2.1.1 The assert Macro
Synopsis

#include <assert.h>
void assert (int expression);

Description

The assert macro puts diagnostics into programs. When it is executed. if expression is
false (that is. compares equal to 0), the assert macro writes information about the particular
call that failed (including the text of the argument, the name of the source file. and the source
line number — the latter are respectively the values of the preprocessing macros __FILE__ and

__LINE) on the standard error file in an implementation-defined format.” It then calls the

abort function.
Returns
The assert macro returns no value.

Forward references: the abort function (4.10.4.1).

97. The message written might be ol the form

Asscrtion failed: expression. Gle vz, line smn

AMERICAN NATIONAIL. STANDARD X3.159-1989 4.2.1.

Library 103 Character Handling <ctype.h>

10

30

4.3 Character Handling <ctype.h>

The header <ctype.h> declares several functions useful for testing and mapping
characters.”™ In all cases the argument is an int, the value of which shall be representable as an
unsigned char or shall equal the value of the macro EOF. If the argument has any other
value, the behavior is undefined,

The behavior of these functions is affected by the current locale. Those functions that have
implementation-defined aspects only when not in the "C™ locale are noted below.

The term printing character refers to a member of an implementation-defined set of
characters, each of which occupies one printing position on a display device; the term control
character refers 10 a member of an implementation-defined set of characters that are not printing
characters.”

Forward references: EOF (4.9.1), localization (4.4).
4.3.1 Character Testing Functions

The functicns in this section return nonzero (true) if and only if the value of the argument ¢
conforms to that in the description of the function.

4.3.1.1 The isalnum Function
Synopsis

#include <ctype.h>
int isalnum(int c¢):

Description
The isalrnum function tests for any character for which isalpha or isdigit is true.
4.3.1.2 The isalpha Function
Synopsis
#include <ctype.h>
int isalpha(int c);
Description

The isalpha function tests for any character for which isupper or islower is true, or
any character that 15 one of an implementation-defined set of characters for which none of
iscntxl, isdigit, ispunct, or isspace is true. In the "C" locale, isalpha returns
true only for the characters for which isupper or islower is true.

4.3.1.3 The iscntrl Function
Synopsis

#include <ctype.h>
int iscntrl (int c);

98, Scc “future library dircctions™ (4.13.2).

99. In an implementation that uses the seven-bit ASCII character set, the printing characters are those whose values
lie fram 0x20 (space) through 0x7E (tilde); the control characters are those whose values lie from 0 (NUL)
through Ox1F (US). and the character 0x7F (DEL).

AMERICAN NATIONAL STANDARD X3.159-1989 4.3.1.3

Library 104 Character Handling <ctype.h>

30

35

Description

The isentrl function tests for any control character.
4.3.1.4 The isdigit Function
Synopsis

#include <ctype.h>
int isdigit (int c);

Description

The isdigit function tests for any decimal-digit character (as defined in 2.2.1).
4.3.1.5 The isgraph Function
Synopsis

#include <ctype.h>
int isgraph{int c);

Description

The isgraph function tests for any printing character cxeept space (1’).
4.3.1.6 The islower Function
Synopsis

#include <ctype.h>
int islower (int c¢);

Description

The islower function tests for any character that is a lowercase letter or is one of an
implementation-delined sct of characters for which nonc of iscntrl, isdigit. ispunct. or
isspace is true. In the "C" locale. islower returns true only for the characters defined as
lowercasc letters (as defined in 2.2.1).

4.3.1.7 The isprint Function
Synopsis

#include <ctype.h>
int isprint({int c):

Description

The isprint function tests for any printing character including space (* 7).
4.3.1.8 The ispunct Function
Synopsis

#include <ctype.h>
int ispunct (int ¢);

Description

The ispunct function tests for any printing character that is neither space (©) nor a
character for which isalnum is truc.

43.1.3 AMERICAN NATIONAL STANDARD X3.159 198¢ 4.3.1.8

Library 105 Character Handling <ctype.h>

10

20

(Y]
A

30

35

40

4.3.1.9 The isspace Function
Synopsis

#include <ctype.h>
int isspace(int c¢);,

Description

The isspace function tests for any character that is a standard white-space character or is
onc of an implementation-defined set of characters for which isalnum is false. The standard
white-space characters are thc following: space (¢ ‘), form feed (*\£'). new-line ("\n"),
carriage return (’ \r‘), horizontal tab (*\t’}, and vertical tab (‘\v’). In the "C" locale,
isspace returns true only for the standard white-space characters.

4.3.1.10 The isupper Function
Synopsis

#include <ctype.h>
int isupper(int c):

Description

The isupper function tests for any character that is an uppercase letter or iv one of an
implementation-defined set of characters for which nonc of isentrl, isdigit. ispunct. or
isspace is true. In the "C" locale, isupper retumns true only for the characters defined as
uppercase letters (as defined in 2.2, 1),

4.3.1.11 The isxdigit Function
Synopsis

#include <ctype.h>
int isxdigit(int c):

Description
The isxdigit function tests for any hexadecimal-digit character (as defined in 3.1.3.2).
4.3.2 Character Case Mapping Functions
4.3.2.1 The tolower Function
Synopsis

#include <ctype.h>
int tolower (int c);

Description
The tolower function converts an uppercase letter to the corresponding lowercase letter.
Returns

If the argument is a character for which isupper is true and there is a corresponding
character for which islower is true, the tolower function returns the corresponding character;
otherwise, the argument is returned unchanged.

4.3.2,2 The toupper Function
Synopsis

#include <ctype.h>
int toupper(int c);

4.3.1.9 AMERICAN NATIONAL STANDARD X3.159-198Y 4322

Library 106 Character Handling <ctype.h>

Description
The toupper function converts a lowercase letler to the corresponding uppercase letter.
Returns

If the argument is a character for which islower is true and there is a corresponding
5 character tor which isupper is true, the toupper function returns the corresponding character:
otherwise, the argument is returned unchanged.

D
[o)

4.3.2.2 AMERICAN NATIONAL STANDARD X3.159- 1989 4.3,

Library 107 Localization <locale.h>

4.4 Localization <locale.h>
The header <locale.h> declares two functions, one type, and defines several macros.
The type i3
struct lconv

5 which contains members related 1o the formatting of numeric values. The structure shall contain
at least the following members, in any order. The semantics of the members and their normal
ranges is explained in 4.4.2.1. In the "C" locale, the members shall have the values specified in
the comments.

char *decimal_point; PA RN 7
10 char *thousands_sep; fronox/
char *grouping; FA AN ¥
char *int_ curr symbol; FA RN
char *currency_symbol; FA A ¥
char *mon_decimal point; VANV
15 char *mon_ thousands_sep; [x v ox/
char #*mon grouping; FA LY
char *positive_sign; /xonnoxy
char *negative sign; /x o ox/
char int frac digits; /* CHAR MAX */
20 char frac_digits; /* CHAR MAX */
char p_cs_precedes; /* CHAR MAX */
char p_sep_ by space; /* CHAR MAX */
char n cs precedes; /* CHAR MAX */
char n_sep by space; /* CHAR MAX */
25 char p_sign_posn; /* CHAR MAX */
char n_sign posn; /* CHAR MAX */

The macros defined are NULL (described in 4.1.5); and

LC_ALL
LC_COLLATE

30 LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

which expand to infegral constant expressions with distinct values, suitable for use as the first
35 argument to the setlocale function. Additional macro definitions, beginning with the
characters LC__ and an uppercase letter,'™ may also be specified by the implementation.

100. See *‘future library directions™ (4.13.3).

4.4 AMERICAN NATIONAL STANDARD X3.159-14989 4.4

Library 108 Localization <locale . h>

tn

10

t~
h

30

40

4.4.1 Locale Control
4.4.1.1 The setlocale Function
Synopsis

#include <locale.h>
char *setlocale{int category, const char *locale);

Description

The setlocale function selects the appropriate portion of the program’s locale as speciticd
by the category and locale argumenis. The setlocale function may be used to change
or query the program’s entire current locale or portions thereof. The value LC ALL for
category names the program’s entire locale: the other values for category name only a
portion of the program’s locale. LC_COLLATE alfects the behavior of the strecoll and
strxfrm functions. LC_CTYPE affects the behavior of the character handling functions'"" and
the multibyte functions. LC_MONETARY alfects the monetary {onmatiing information returned by
the localeconv function. LC_NUMERIC affects the decimal-point character for the formatied
input/oulput lunctions and the string conversion {unctivns, as well as the nonmonetary formatting
information returned by the localeconv function. LC TIME affects the behavior of the
strftime function.

A value of "C" for locale specifies the minimal environment for C translation: a value of
"n o for locale specifies the implementation-defined native environment. Other
implementation-defined strings may be passed as the second argument (0 setlocale.

At program startup. the equivalent of
setlocale (LC_ALL, "C"):;
is executed,
The implementation shall behave as it no library function calls the setlocale function.
Returns

It a pointer to a string is given for locale and the selection can be honored. the
setlocale function returns a pointer to the string associated with the specified category for
the new locale. If the selection cannot be honored. the setlocale function returns a null
pointer and the prograni’s locale is not changed.

A null pointer for locale causes the setlocale function to return a pointer to the string
associated with the category for the program’s current locale; the program’s locale is not
changed.'™

The pointer to string retumed by the setlocale function is such that a subsequent call with
that string value and its associated category will restore that part of the program’s locale. The
string pointed to shall not be modified by the program. but may be overwriten by a subsequent
call to the setlocale function.

Forward references: formatted input/output functions (4.9.6), the multibyte character functions
(4.10.7), the multibyte string functions (4.10.8). string conversion functions (4.10.1). the
strcoll function (4.11.4.3). the strftime function (4.12.3.5), the strxfrm function
(4.11.4.5).

101, The only functions in 4.3 whose behavior is not affected by the current locale are isdigit and isxdigit.

102, The implementation must arrange 10 cncode in a string the various categories due te a heterogencous locule
when category has the value LC ALL.

4.4.1

AMERICAN NATIONAL STANDARD X3.155-1989 4.4.1.1

Library

wn

10

]
h

35

40

45

4.4.2

109 Localization <locale.h>

Numeric Formatting Convention Inquiry

4.4.2.1 The localeconv Function

Synopsis

#include <locale.h>
struct lconv *localeconv(void);

Description

The localeconv [unction scts the components of an object with type struct lconv with
values appropriate for the formatting of numeric quantities (monetary and otherwise) according to
the rules of the current Tocale.

The members of the structure with type char * are pointers to strings, any of which (except
decimal_point) can point to "", to indicate that the value is not available in the current
locale or is of zero length. The members with type char are nonnegative numbers. any of
which can be CHAR MAX 1o indicate that the value is not available in the current locale. The
members include the following:

char

char

char

char

char

char

char

char

char

char

char

4.4.1.1

*decimal point
The decimat-point character used (o format nonmonetary quantities.

*thousands_sep
The character used to separate groups of digits before the decimal-point character in
formatted nonmonetary guantities.

*grouping
A string whose elements indicate the size of each proup of digits in formated
ronmonelary quantities.

*int curr symbol
The international currency symbol applicable to the current locale. The first three
characters contain the alphabetic international currency symbol in accordance with
those specified in 1SQ 4217:1987. The fourth character (immediately preceding the
null character) 15 the character used to separate the international currency symbol
from the monetary quantity.

*currency_symbol
The local currency symbol applicable o the curtent locale.

*mon_decimal_ point
The decimal-point used 1o format monetary quantities.

*mon_thousands_sep
The scparator for groups of digits before the decimal-point in formatted monetary
quantifics.

*mon_grouping
A string whose elements indicate the size of each group of digits in formatted
monetary quantities,

*positive sign
The string used o indicate a nonncgative-valued formaticd monctary quantity.

*negative sign
The string used to indicate a negative-valued formaited monetary quantity.
int_frac digits
The number of fractional digits {thase after the decimal-point) to be displayed in a
internationally formatted monetary quantity.

AMERICAN NATIONAL STANDARD X3.159-1984 44.2.1

Library 110 Localizaion <locale . h>

10

]
h

30

frd
o

40

char frac_digits
The number of fractional digits {these after the decimal-point} 1o be disptayed in a
formatted monetary quantity.

char p_cs_precedes
Sct 1o 1 or O if the currency_symbol respectively precedes or succeeds the
value for a nonnegative formatted monclary guantity.

char p sep by space
Set 1o 1 or 0 if the currency_ symbol respectively is or is not separated by a
space from the value for a nonnegative formatted monetary quantity.

char n_¢s_precedes
Set to 1 or 0 if the currency symbol respectively precedes or succeeds the
value for a negative formatted monetary quantity.

char n_sep by_space
Set 1o | or 0 it the currency symbol respectively 1s or is notl separated by a
space from the value for a negative formatted monetary quantity.

char p sign posn
Set to a value indicating the positioning of the positive_ sign for 3 nonnegative
formatted monetary quantity.

char n_sign posn
Set 1o a value indicating the positioning of (he negative_sign for a negalive
formatted monetary quantity.

The elements of grouping and mon_grouping are interpreled according to the following:

CHAR MAX No further grouping is 1o be performed.

0 The previous clement is to be repeatedly used for the remainder of the digits.
other The integer value is the number of digits that comprise the current group. The

next element is examined to determine the size of the next group of digits before
the current group,

The value of p_sign_posn and n_sign_pesna is interpreted according to the following:
Parcntheses surround the quantity and currency_symbol.

The sign string preeedes the quantity and currency symbol.

The sign string succeeds the quanitty and currency symbol.

The sign string immediately precedes the currency_ symbol.

& W N =P O

The sign string immediately succeeds the currency symbol.
The implementation shall behave as if no library function calls the 2ocaleconv tunction.
Returns

The localeconv tunction returns a pointer to the filled-in object. The structure pointed to
by the return value shall not be modified by the program, but may be overwritten by a subsequent
call to the localeconv function. In addition, calls lo the setlocale function with
categories LC_ALL, LC_MONETARY. or LC_NUMERIC may overwrile the conlents of the
structure.

Examples

The following table illustrates the rules which may well be used by four countries to format
monelary quantities.

4421 AMTRICAN NATIONAL STANDARD X3.159- 1989 4421

Library 111 Localization <locale.h>

Country Positive format Negative format Internaticnal format
Ttaly L.1.234 -L.1.234 ITL.1.234
Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56
Norway krl.234,56 krl 234,56~ NOK 1.234,56

5 Switzerland SFrs.1,234.56 8Frs.l1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the structure
returned by localecony are:

Italy Netherlands Norway Switzerland
int_curr_ symbol "ITL." "NLG " "NOK " "CHF "
10 currency_symbol "L." "FY "kr" "SFrs."
mon_decimal point " " P "
mon_thousands_sep v "o "o "
mon_grouping "\3" "\3" "\3" "\3"
positive_sign " " " "n
15 negative sign " n_n nen ncH
int_frac_digits 0 2 2 2
frac digits 0 2 2 2
P_cs_precedes 1 1 1 1
P_sep_by space 0 1 0 0
20 n_cs_precedes 1 1 1 1
n_sep_ by space o 1 0 0
P_sign_posn 1 1 1 1
1 4 2 2

n_sign_posn

4.4.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.4.2.1

Library 112 Mathematics <math.h>

20

[
N

30

4.5 Mathematics <math.h>

The header <math . h> declares several mathematical functions and defines one macro. The
functions take double arguments and refurn double values.!™ Integer arithmetic functions
and conversion functions are discussed later.

The macro defined is
HUGE_VAL
which expands to a positive double expression, not necessarily representable us a float.'™

Forward references: integer arithmetic functions (4.10.6). thc atef function (4.10.1.1). the
strtod function (4.10.1.4).

4.5.1 Treatment of Error Conditions

The behavior of each of these functions is defined for all representable values of its input
arguments. Each function shall execute as it it were a single operation, without generating any
externally visible exceptions.

For all functions. a domain error occurs if an input argument is outside the domain over
which the mathematical funcrion is defined. The description of each function sty any required
domain errors; an implementation may definc additional domain errors, provided that such errors
are consistent with the mathematical definition of the function.™ On a domain error. the
function returns an implementation-detined value; the value ot the macro EDOM is stored in
errno.

Similarly. a range crror occurs if the resuit of the function cannot be represented as a
double value. If the result overflows (the magnitude of the result is so farge that it cannot be
represented in an object of the specified type). the function returns the value of the macro
HUGE_VAL, with the same sign (except for the tan function) as the correet value of the
function: the vajue of the muacro ERANGE is stored in errno. If the result underflows (the
magnirude of the result is so small that it cannot be represented in an object of the specificd
type), the function returns zero; whether the integer expression errno acquires the value of the
macro ERANGE is implementation-defined.

4.5.2 Trigonometric Functions
4,5.2,1 The acos Function
Sy¥nopsis

ffinclude <math.h>
double acos (double x);

Description

The acos function computes the principal value ol the are cosine of x. A domain error
occurs for arguments not in the range {—1. +11].

103. See “future library directions”™ (4.13.4).

104, HUGE_VAL can be positive infinity in an mplementation that supports infinities.

105, In an implementation that supports infinities. this allows infinity as an argument to be a domain ervor 1 the
mathematical domain of the function does not include intinity.

AMERICAN NATIONAL STANDARD X3.159- 1989 4.5.2.1

Library 113 Mathematics <math.h>

15

20

25

30

35

Returns

The acos function returns the arc cosine in the range [0, n] radians.
4.5.2,2 The asin Function
Synopsis

#irclude <math.h>
double asin(double x);

Description

The asin function computes the principal value of the arc sine of x. A domain error occurs
for arguments not in the range [-1, +1].

Returns

The asin function returns the arc sine in the range |—m/2, +n/2] radians,
4.5.2.3 The atan Function
Synopsis

#include <math.h>
double atan{double x);

Description

The atan function computes the principal value of the arc tangent of x.
Returns

The atan function returns the arc tangent in the range [—n/2, +1/2] radians.
4.5.2.4 The atan2 Function
Synopsis

#include <math.h>
double atan2(double y, double x);

Description

The atan2 function computes the principal value of the arc tangent of y/x, using the signs
of both arguments to determine the quadrant of the return value. A domain error may occur if
both argumenits are zero.

Returns

The atan2 function returns the arc tangent of y/x. in the range [—m, +n] radians.
4.5.2.5 The cos Function
Synopsis

#include <math.h>
double cos (double x);

Description
The cos function computes the cosine of x (measured in radians).
Returns

The cos function rcturns the cosine value.

e8]
i

4.5.2.1 AMERICAN NATIONAL STANDARD X3.159-1980 4.5.2.;

Library 114 Mathematics <math.h>

10

20

30

4.3.2.6 AMERICAN NATIONAL STANDARD X3 159-1989 4.5.35.

4.5.2.6 The sin Function
Synopsis

#include <math.h>
double sin(double x):;

Description
The sin function computes the sine of x (measured in radians).
Returns
The sin function returns the sine value.
4.5.2.7 The tan Function
Synopsis

#include <math.h>
double tan (double x);

Description
The tan function returns the tangent of x (measured in radians).
Returns
The tan tunction returns the tangent value.
4.5.3 Hyperbolic Functions
4.5.3.1 The cosh Function
Synopsis

#include <math.h>
double cosh (double x);

Description

The ecosh function computes the hyperbolic cosine of x. A range error occurs if the
magnitude of x is too large.

Returns

The cosh function returns the hyperbolic cosine value.
4.5.3.2 The sinh Function
Synopsis

#include <math.h>
double sinh{double x);

Description

The sinh function computes the hyperbolic sine of x. A range error occurs if the magnitude
of x is too large.

Returns

The sinh function returns the hyperbolic sine value.

-2

Library 115 Mathematics <math ., h>

15

20

25

30

35

45.3.

4.5.3.3 The tanh Function
Synopsis

#include <math.h>
double tanh (double x);

Description

The tanh function computes the hyperbolic tangent of x.
Returns

The tanh function returns the hyperholic tangent value.
4.5.4 Exponential and Logarithmic Functions
4.5.4.1 The exp Function
Synopsis

#include <math.h>
dcuble exp(double x);

Description

The exp function computes the exponential function of x. A range error occurs if the
magnitude of x is too large.

Returns

The exp function returns the expenential value.
4.54.2 The frexp Function
Synopsis

#include <math.h>
double frexp(double value, int *exp);

Description

The frexp function breaks a floating-point number into a normalized fraction and an integral
power of 2. It stores the integer in the int object pointed to by exp.

Returns

The frexp function returns the value x, such that x is a double with magnitude in the
interval [1/2, 1) or zero, and value equals x times 2 raised fo the power *exp. If value is
zero, both parts of the result are zero,

4.54.3 The ldexp Function
Synopsis

#include <math.h>
double ldexp(double x, int exp),

Description

The ldexp function multiplies a floating-point number by an integral power of 2. A range
€ITOT may occur,

Returns

The 1dexp function returns the value of x times 2 raised to the power exp.

AMERICAN NATIONAL STANDARD X3.159-1989 4543

[9¥]

Library 116 Mathematics <math . h>

20

|5
n

30

*ad
L

4.5.4.4 The log Function
Synopsis

#include <math.h>
double log(double x);

Description

The log function computes the natural logarithm of x. A domain error occurs if the
argument is negative. A range error may occur if the argument is zero.

Returns

The log function returns the natural logarithm.
4.5.4.5 The 1ogl0 Function
Synopsis

#include <math.h>
double logll (double x);

Description

The logl0 function computes the base-ten logarithm of x. A domain error occurs it the
argument is negative. A range error may oeccur it the argument is zero.

Returns

The 1og10 function returns the base-ten logarithm.
4.5.4.6 The modf Function
Synopsis

#include <math.h>
double modf (double value, double *iptr):

Description

The modf function breaks the argument value into integral and fractional parts, each of
which has the same sign as the argument. [t stores the integral part as a double in the object
pointed to by iptr.

Returns
The modf function returns the signed fractional part of value.
4.5.5 Power Functions
4,5.5.1 The pow Function
Svnopsis

#include <math.h>
double pow{double x, double y);

Description

The pow function computes x raised to the power y. A domain error occurs if x is negative
and y is not an integral value. A domain error occurs if the result cannot be represented when x
is zero and y is Iess than or equal to zero. A range error may occur.

Returns

The pow function returns the value of x raised to the power y.

4544 AMERICAN NATIONAL STANDARD X3.159- 1489 4.5.5.1

Library 117 Mathematics <math.h>

4.5.5.2 The sqrt Function
Synopsis

#include <math.h>
double sqgrt (double x);

5 Description

The sqrt function computes the nonnegative square root of x. A domain error occurs if the
argument is negative.

Returns
The sgrt function returns the value of the square root.
10 4.5.6 Nearest Integer, Absolute Value, and Remainder Functions
4.5.6.1 The ceil Function
Synopsis

#include <math.h>
double ceil (double x);

15 Description
The ceil function computes the smallest integral value not less than x.
Returns
The ceil function returns the smallest integral value not less than x, expressed as a double.
4.5.6.2 The fabs Function
20 Synopsis

#include <math.h>
double fabs (dcouble x);

Description
The fabs function computes the absolute value of a floating-point number x.
25 Returns
The fabs function returns the absolute value of x.
4.5.6.3 The floor Function
Synopsis

#include <math.h>
30 double floor (double x);

Description
The f£loox function computes the largest integral value not greater than x.
Returns

The £loex function returns the largest integral value not greater than x, expressed as a
35 double.

(>
o
[

4.5.5.2 AMERICAN NATIONAL STANDARD X3.159-19%9 4,

Library 118 Mathematics <math.h>

4,5.6.4 The fmod Function
Synopsis

#include <math.h>
double fmod(double x, double y);

5 Description
The fmod function computes the floating-point remainder of x/y.
Returns

The fmed function returns the value x — i * y, for some integer / such that, if y is nonzero,
the result has the same sign as x and magnitude less than the magnitude of y. If y is zero,
10 whether a domain error occurs or the fmod function returns zero is implementation-defined.

4564 AMERICAN NATIONAL STANDARD X3.159-1989 4.5.64

Library 119 Nonlocal Jumps <set jmp . h>

4.6 Nonlocal Jumps <setjmp.h>

The header <setjmp.h> defines the macro setjmp, and declares one function and one
type, for bypassing the normal function call and return discipline.'®

The typc declared 1s
5 jmp buf

which is an array type suitable for holding the information needed to restore a calling
environment,

It is unspecified whether set jmp is a macro or an identifier declared with external linkage.
If a macro definition is suppressed in order to access an actual function, or a program defines an
10 external identifier with the name setjmp. the behavior iy undetined.

4.6.1 Save Calling Environment
4.6.1.1 The setjmp Macro
Synopsis

#include <setjmp.h>
15 int setjmp (jmp_buf env);

Description
The setjmp macro saves its calling environment in its jmp_buf argument for later use by
the longjmp function.

Returns

20 If the return is from a direct invocation, the setjmp macro returns the value zero. If the
return is from a call to the longjmp function, the setjmp macro returns a nonzero value,

Environmental Constraint
An invocation of the set jmp macro shall appear only in one of the following contexts:

+ the entire controlling expression of a selection or iteration statement;

b
“n
»

one operand of a relational or equality operator with the other operand an integral constant
expression, with the resulting expression being the entire controlling cxpression of a selection
or iteration statement;

* the operand of a unary ! operator with the resulting expression being the entire controlling
expression of a selection or iteration statement; or

30 = the entire expression of an expression statement (possibly cast to void).

106. These functions are useful for dealing with unusual conditions encountered in a low-level function of a
program.

4.6 AMERICAN NATIONAL STANDARD X3.159-1989 46.1.1

Library 120 Nonlocal Jumps <setjmp.h>

10

20

4.6.2 Restore Calling Environment
4.6.2.1 The longjmp Function
Synopsis

finclude <setijmp.h>
void longjmp (jmp_buf env, int val);

Description

The longjmp function restores the environment saved by the most recent invocation of the
setjmp macro in the same invocation of the program. with the corresponding imp_buf
argument. If there has been no such invocation, or if the function containing the invocation of

the set jmp macro has terminated execution'™” in the interim, the behavior is undefined.

All accessible objects have values as of the time longjmp was called, except that the values
of abjects of automatic storage duration that are local to the function containing the invocation of
the corresponding set jmp macro that do not have volatile-qualified type and have been changed
between the set jmp invocation and longjmp call are indeterminate.

As it bypasses the usual function cail and return mechanisms, the longjmp function shall
execute correctly in contexts of interrupts, signals and any of their associated functions,
However. if the longjmp function is invoked from a nested signal handler (that is, from a
function invoked as a result of a signal raised during the handling of another signal), the behavior
is undefined.

Returns

After longjmp is completed, program execution continues as if the corresponding invocation
of the set jmp macro had just returned the value specified by wval. The longjmp function
cannot cause the setjmp macro to return the value 00 if val is 0. the setjmp macro returny
the value 1.

107, For example. by executing a return statement or because another longimp call has caused a transfer to a
setjmp invocation in a function earlier in the set of nested calls.

4.6.2

AMERICAN NATIONAL STANDARD X3.159-1989 4.6.2.1

Library 121 Signal Handling <signal.h>

25

35

4.7 Signal Handling <signal.h>

The header <signal .h> declarcs a type and two functions and defines several macros, for
handling various signals (conditions that may be reported during program execution).

The type dehned is
sig_atomic_t
which is the integral type of an object that can be accessed as an atomic entity, even in the
presence of asynchr(m()us interrupr.s.

The macros defined are

SIG_DFL

SIG_ERR

SIG_IGN
which expand to constant expressions with distinct values that have type compatible with the
second argument to and the return value of the signal function, and whose value compares
unequal to the address of any declarable function: and the following. each of which expands to a
positive integral constant expression that is the signal number corresponding to the specified
condition:

SIGABRT abnormal termination, such as is initiated by the abort function

SIGFPE an crroncous arithmetic operation, such as zero divide or an operation resulting in
overflow

SIGILL detection of an invalid function image, such as an illegal instruction
SIGINT reccipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a (ermination requeslt sent to the program

An implementation need not generate any of these signals, except as a result of explicit calls
to the raise function. Additional signals and pointers to undeclarable functions, with macro
definitions beginning, respectively, with the letters SIG and an uppercase letter or with SIG_ and
an uppercase letter,"" may also be specified by the implementation. The complete set of signals,
their semantics, and their default handling i1s implementation-defined: all signal numbers shall be

positive.

4.7.1 Specify Signal Handling
4.7.1.1 The signal Function
Synopsis

#include <signal.h>
void (*signal(int sig, void (*func) (int))) (int);

Description

The signal function chooses one of three ways in which receipt of the signal number sig
is to be subsequently handled. If the value of func is SIG_DFL. default handling for thal
signal will occur. If the value of func is SIG_IGN. the signal will be ignored. Otherwise.

108. See ““future library directions™ (4.13.5). The names of the signal numbers reflect the following terms
{respectively): abort, floating-point exception, illegal instruction. interrupt. segmentation violation, and
termination,

4.7

AMERICAN NATIONAIL STANDARD X3.159-1989 4.7.1.1

Library 122 Signal Handling <signal . h>

10

15

25

30

35

func shall point to a function to be called when that signal occurs. Such a function is called a
signal handler.

When a signal occurs, if fune points to a function, first the equivalent of signal (sigq,
SIG_DFL); is executed or an implementuation-defined blocking of the signal is performed. (It
the value of sig is SIGILL, whether the resel to SIG_DFL occurs is implementation-defined.)
Next the equivalent of (*func) (sig); is executed. The function func may terminate by
executing a return statement or by calling the abort, exit, or longjmp function. If func
executes a return statement and the value of sig was SIGFPE or any other implementation-
defined value corresponding to a computational exception, the behavior is undefined. Otherwise,
the program will resume execution at the point it was interrupted.

If the signal occurs other than as the result of calling the abort or raise function. the
behavior is undefined if the signal handler calls any function in the standard library other than the
signal function itself (with a first argument of the signal number corresponding to the signal
that caused the invocation of the handler) or refers to any object with static srorage duration other
than by assigning a value to a static storage duration variable of type wolatile
sig_atomic_t. Furthermore, if such a call to the signal function results in a SIG_ERR
return, the value of errno is indeterminate.'"

At program startup, the equivalent of
signal (sig, SIG_IGN);

may be exccuted for some signals sclected in an implementation-defined manner; the equivalent

of
signal {sig, SIG DFL):
is executed for all other signals defined by the implementation.
The implementation shall behave as if no library function calls the signal function.
Returns

If the request can be honored, the signal function returns the value of func for the most
recent call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned
and a positive value is stored in errno.

Forward references: the abort function (4.10.4.1), the exit function (4.10.4.3).
4.7.2 Send Signal

4.7.2.1 The raise Function

Synopsis

#include <signal.h>
int raise(int sig):

Description
The raise function sends the signal sig to the executing program.
Returns

The raise function returns zero if successful, nonzero if unsuccessful.

109. If any signal is generated by an asynchronous signal handler, the hehavior is undefined.

4.7.1.1 AMERICAN NATIONAL STANDARD X3.159-1989 4721

Library 1

(38
wn

40

4.8

| O]
W

Variable Arguments <stdarg.h>

4.8 Variable Arguments <stdarg.h>

The header <stdarg.h> declares a type and defines three macros, for advancing through a
list of arguments whose number and types are not known to the called function when it is
translated.

A function may be called with a variable number of arguments of varying types. As
described in 3.7.1, its paramcter list contains one or more paramelers. The rightmost parameter
plays a special role in the access mechanism. and will be destgnated parmN in this deseription.

The type declared is
va_list

which is a type suitable for holding information needed by the macros va_start. va_arg. ard
va_end. If access to the varying arguments is desired, the called function shall declare an
object (referred to as ap in this scction) having (ype va_list. The object ap may be passed as
an argument to another function; if that function invokes the va_arg macro with parameter ap,
the value of ap in the calling functton is indeterminate and shall be passed 1o the va_end macro
prior to any further reference 1o ap.

4.8.1 Variable Argument List Access Macros

The va_start and va_arg macros described in this section shall be implemented as
macros, not as actual functions. It is unspecified whether va_end is a macro or an identifier
declared with cxternal linkage. If a macro definition is suppressed in order to access an actual
function, or & program defines an external identifier with the name va_end, the behavior is
undefined. The va start and va_end macros shall be inveked in the function accepting a
varying number of arguments. if access to the varying arguments is desired.

4.8.1.1 The va_start Macro
Synopsis

#include <stdarg.h>
void va_start(va_list ap, parmV);

Description
The va_start macro shall be invoked before any access to the unnamed arguments.
The va start macro initializes ap for subsequent use by va_arqg and va_ end.

The parameter parmN is the identifier of the rightmost parameter in the variabie paramerer list
in the function definition (the one just before the , ...). If the parameter parmN is declared
with the register storage class, with a function or array type. or with a type that is not
compatible with the type that results after application of the default argument promotions, the
behavior is undefined.

Returns

The va_start macro returns no value.
4.8.1.2 The va_arg Macro
Synopsis

#include <stdarg.h>
Hpe va_arg(va list ap, npe}:

Description

The va_arg macro expands to an expression that has the type and value of the next
argument in the call. The parameter ap shall be the same as the va_list ap initialized by
va_start. Cach invocation of va_arg modifies ap so that the vaiues of successive arguments

AMERICAN NATIONAL STANDARD X3.159-19&Y 48,12

Library 124 Variabie Arguments <stdarg.h>

N

15

2
o))

30

40

4.8.1.2 AMERICAN NATIONAL STANDARD X2, 159- 198y RN

are returned in turn. The parameter Ape 1s a type name specificd such that the type of a poimer
to an object that has the specified type can be obtaned simply by posifixing a * 10 rvpe. It there
is no actual next argument. or if fype is not compatible with the 1ype of the wtual next argument
{as promoted according 10 the default argument promotions). the behavior is undefined.

Returns

The fiyst invocation of the va arg macro after that of the va start macro returns the
value of the argument after that specified by parmA. Saccessive nvocations return the values of
the remaining arguments in succession.

4.8.1.3 The va_end Macro
Synopsis

#include <stdarg.h>
void va end(va_list ap);

Description

The va_end macro facilitates a normal return from the function whose variable argument lisi
was referred to by the expansion of va_start that initalived the va list ap. The va end
macro may modify ap so that it is no longer usable twithout an mtervening imvocation of
va_start). If there is no corresponding invocation of the va start macro. or i the
va_end macro is not invoked beiore the return, the behavior is undefined.

Returns
The va_end macro returns no value,

Example

The function £1 gathers into an array a list of arguments that dare pointers w strings (bul not
more than MAXARGS arguments). then passes the array as a single argument to function £2. The
number of pointers is specified by the first argument 1o £1.

#include <stdarg.h>
#define MAXARGS 31

void fl{int n_ptrs, ...)

{
va_list ap;
char *array[MAXARGS];
int ptr no = 0Oy

if (n ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start{ap, n_ptrs};
while (ptr no < n _ptrs)
array(ptr not+] = vamarg(ap, char *):;
va_end{ap);
£2(n_ptrs, array):
}

Each call to £1 shall have visible the delinition of the function or a declaration such as

void £1l({(int, ...);

"

Library 125 Input/Output <stdio.h>

20

(o5
wn

4.9 Input/Output <stdio.h>
4.9.1 Introduction

The header <stdio.h> declares three types. several macros, and many functions for
performing input and output.

The types declared ure size_t (described in 4.1.50
FILE

which is an abject type capable of recording all the information needed to control a stream.
including its file position indicator, a pointer to its associated buffer (if any), an error indicator
that records whether a read/write error has occurred, and an end-of-file indicaror that records
whether the end of the file has been reached: and

fpos_t
which is an object type capable of recording all the informatior. needed to specify uniquely every
position within a file.
The macros are NULL (described in 4.1.5);

_IOFBF
_IOLBF
_IONBF

which expand to integral constant expressions with distinct values, suitable for use as the third
argument (o the setvbuf function;

BUFSIZ

which expands to an integral constant expression, which is the size of the buffer used by the
setbuf function;

EOF

which expands to a negative integral constant expression that is returned by several functions to
indicale end-of-file, that is, no more input from a stream;

FOPEN_MAX

which expands to an integral constant expression that is the minimum number of files that the
implementation guarantees can be open simultaneously:

FILEMAME MAX

which expands to an integral constant expression that is the size needed for an array of char
large enough to hold the longest file name string that the implementation guarantees can be
opened;' '

L_tmpnam

which expands to an intcgral constant expression that is the size needed for an array of char
large enough to hold a temporary file name string generated by the tmpnam function:

110, If the implementation inposes no practical iimit on the length of file name sirings. the value of
FILENAME MAX should instead be the recommended size of an array intended to hotd a file name string. Of
course. file name string contents are subject to other system-specific constraints: therefore o/ possihle strings of
length FILENAME MAX cannot be expected to be opened successtully.

4.9

AMERICAN NATIONAL STANDARD X3,1359-19%9 4.9.1

Library 126 Input/Output <stdio.h>

10

o
h

30

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integral constant expressions with distinct values. suitable for use as the third
argument to the £seek function;

TMP_MAX

which expands to an integral constant expression that is the minimum number of unique file
names that shall be generated by the tmpnam function;

stderr
stdin
stdout

which arc expressions of type ‘‘pointer to FILE"' that point to the FILE objects associated,
respectively, with the standard error, input, and output streams.

Forward references: files (4.9.3), the fseek function {4.9.9.2), streams (4.9.2), the tmpnam
function (4.9.4.4),

4.9.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drives, or
whether to or from files supported on structured storage devices, are mapped into logical data
stireams, whose properties are more uniform than their various inputs and outputs. Two forms of
mapping arc supported, for rext streams and for binarv streams."!

A text stream is an ordered sequence of characters composed into /ines. each line consisting
of zero or more characters plus a terminating new-line character. Whether the last line requires a
terminating new-line character is implementation-defined. Characters may have to be added.
altered, or deleted on input and output to conform to differing conventions for representing text in
the host environment. Thus, there need not be a one-to-one correspondence between the
characters in a stream and those in the external representation. Data read in from 4 text stream
will necessarily compare equal to the data that were earlier written out to that stream only ift the
data consist only of printable characters and the control characters horizontal tab and new-line: no
new-line character is immediately preceded by space characters; and the last character is a new-
line character. Whether space characters that are written out immediately before a new-line
character appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record internal
data. Data read in from a binary stream shall compare equal o the data that were earlier writlen
out 1o that stream, under the same implementation. Such a stream may. however, have an
implementation-defined number of null characters appended to the end of the stream.

Environmental Limits

An implementation shall support text files with lines containing at least 254 characters,
including the terminating new-line character, The value of the macro BUFSIZ shall be ar least
256.

1. An implementation need not distingnish between text streams and binary streams. In such an implementation,
there need be no new-line characters in @ text stream nor any limit to the length of 4 line.

4.9

AMERICAN NATIONAL STANDARD X3.139-1989 492

Library 127 Input/Output <stdio.h>

20

25

30

40

4.9.3 Files

A stream is associated with an external file {which may ke a physical device) by apening a
file, which may involve creating a new file. Creating an existing file causes its former contents
to be discarded. if necessary. If a file can support positioning requests (such as a disk file, as
opposed 1o a terminal), then a file position indicator'? associaled with the stream is positioned at
the start (character number zero) of the file, unless the file is opened with append mode in which
case it is implementation-defined whether the file position indicator is initially positioned ar the
beginning or the end of the file. The file position indicator is maintained by subsequent reads,
writes, and positioning requests, to facilitate an orderly progression through the file. All input
takes place as if characters were read by successive calls 1o the £getce function; all ourput takes
place as if characters were written by successive calls to the £pute function,

Binary files are not truncated, except as defined in 4.9.5.3. Whether a write on a text stream
causes the associated file to be truncated beyond that point is implementation-defined.

When a stream is unbuffered, characters are intended to appear from the source or at the
destination as soon as possible. Otherwise characters may bhe accumulated and transmitted to or
from the host environment as a block. When a stream is fully huffered . characters are intended to
be transmitted to or from the host environment as a black when o bufter is filled. When a stream
is line buffered, characters are intended to be transmitted to or from the host environment as a
block when a new-line character is encountered. Furthermore, characters are intended to be
transmitted as a block to the host environment when a buffer is filled, when input is requested on
an unbuffered stream, or when input is requested on a line buffered stream that requires the
transmission of characters from the host environment. Support for these characteristics is
implementation-defined, and may be affected via the setbuf and setvbuf functions.

A file may be disassociated from a controlling stream by ¢losing the file. Output streams are
flushed (any unwritten buffer contents are fransmitted to the host environment) before the stream
is disassociated from the file. The value of a pointer to a FILE object i1s indeterminate after the
associated file is closed (including the standard text streams). Whether a file of zero length {on
which no characters have been written by an output stream) actually exists is implementation-
defined.

The file may be subsequently reopened, by the same or another program execution, and irs
contents reclaimed or modified (if it can be repositioned at iis start). If the main function
returns to its original caller, or if the exit function is called. alt open files are closed (hence all
output streams are flushed) before program termination. Other paths to program termination,
such as calling the abort function. necd not close all files properly.

The address of the FILE object used 1o control a stream may be significant: a copy of a
FILE object may not necessarily serve in place of the original.

At program startup, three text streams are predefined and nesed not be opened explicitly ——
standard inpw (for reading conventional input), standard owipur (for writing conventional
output), and siandard error (for wriling diagnostic output). When opened, the standard crror
stream is not fully buffered; the standard input and standard cutput streams are fully buffered if
and only if the stream can be determined not to refer to an interactive device,

Functions that open additional (nontemporary) files require a file name, which is a string.
The rules for composing valid file names are implementation-defined. Whether the same file can
be simultaneously open multiple times is also implementation-defined.

112. This is described in the Base Document as a file pofnter. That term is not used in this standard 1o avoid
confusion with a pointer to an object that has type FILE.

493

AMERICAN NATIONAL STANDARD X3.159-19%9 493

Library 128 Input/Output <stdio.h>

10

20

30

Environmental Limits
The value of FOPEN_MAX shall be at least eight, including the three standard text streams.

Forward references: the exit function {4.10.4.3). the fgetc function (4.9.7.1), the fopen
function (4.9.5.3). the fpute function (4.9.7.3). the setbuf function (4.9.5.5), the setvbuf
function (4.9.5.6).

4.9.4 Operations on Files
4.9.4.1 The remove Function
Svnopsis

#include <stdio.h>
int remove {(const char *filename):
Description

The remove function causcs the file whose name is the string pointed to by £ilename o
be no longer accessible by that name. A subsequent attempt to open that file using that name
will tail. unless it 1s created anew. II the file 1v open, the behavior of the remove function is
implementation-detfined.

Returns

The remove function returns zero if the operation succeeds. nonzero if it fails.
4.9.4.2 The rename Function
Svnopsis

#include <stdio.h>
int rename (const char *old, const char *new):;

Description

The rename function causes the file whose name is the string pointed to by old to be
henceforth known by the name given by the string pointed 1o by new. The file named old is no
longer accessible by that name. I a file named by the string pointed to by new exists prior to
the call to the rename funcrion, the behavior is implementation-defined.

Returns

3

The rename function returns zero if the operation succeeds. nonzero it it fails,!'¥ in which

case if the file existed previously it is still known by its original name.
4.9.4.3 The tmpfile Function
Synopsis

#include <stdio. h>
FILE *tmpfile (void);

Description

The tmpfile function creates a temporary binary file that will automatically be removed
when i1 is closed or at program termination. If the program terminatcs abnormally. whether an
open temporary file is removed is implementation-defined. The file is opened for update with
"wb+" mode.

113, Among the reasons the implementation may cause the rename function to fail are that the file is open or that
I 1% necessary to copy its contents to effectuate its renaming.

493

AMERICAN NATIONAL STANDARD X3.139-19%9 4943

Library 129 Input/Output <stdio.h>

10

15

20

25

Returns

The tmpfile [unction returns a pointer to the stream of the file that it created. If the file
cannot be created, the tmp£ile function returns a null pointer.

Forward references: the fopen function (4.9.5.3).
4.9.4.4 The tmpnam Function
Synopsis

#include <stdio.h>
char *tmpnam(char *s);

Description

The tmpnam function generates a string that is a valid file name and that is not the same as

the name of an existing file.'"*

The tmpnam function generates a different string each time it is called, up to TMP_MAX
times. If it is called more than TMP_MAX times. the behiavior is implementation-defined.

The implementation shall behave as it no library function calls the tmpnam function.

Returns

If the argument 1s a null pointer, the tmpnam function leaves its result in an internal static
object and returns a pointer to that object. Subsequent calls to the tmpnam function may modify
the same object. If the argument is not a null pointer, it is assumed to point to an array of at
least L_tmpnam chars: the tmpnam function writes its result in that array and returns the

argument as its value.
Environmental Limits
The value of the macro TMP_MAX shall be at least 25.
4.9.5 File Access Functions
4.9.5.1 The fclose Function
Synopsis

#include <stdio.h>
int fclose(FILE *stream);

Description

The felose function causes the stream pointed to by stream to be flushed and the
associated file to be closed. Any unwritten buffered data for the stream are delivered to the host
environment to be written to the file; any unread buffered data are discarded. The stream is
disassociated from the file. If the associated buffer was automatically allocated, it is deallocated.

114. Files created using sirings generated by the tmpnam function are temporary only in the sense that their names
should not collide with those generated by cenventional naming rules for the implementation. It is still
necessary to use the remove function to remove such files when their use is ended. and before program
termination.

49473 AMERICAN NATIONAL STANDARD X3.159-1989 4.95.1

Library 130 Input/Output <stdio.h>

15

3
h

40

Returns

The £clese function returns zero if the stream was successfully closed, or EOF if any crrors
were detected.

4.9.5.2 The ££1lush Function
Synopsis

#include <stdio.h>
int f£flush(FILE *stream):;

Description

If stream points to an output sircam or an update stream in which the most recent operation
was not input, the ££lush function causes any unwritten data for that stream to be delivered to
the host environment to be written to the file: otherwise, the behavior is undefined.

If stream is a null pointer, the ££lush function performs this flushing action on all
streams tor which the behavior is defined above.

Returns

The ££1ush lunction returns EOF if a write error occurs, otherwise zcro.
Forward references: the fopen function (4.9.5.3), the ungetec function (4.9.7.11).
4.9.5.3 The fopen Function
Synopsis

#include <stdio.h>
FILE *fopen (const char *filename, const char *mode);

Description

The fopen function opens the file whose name is the string pointed to by filename, and
associates a strcam with it.

The argument mode points to a string beginning with onc of the following sequences:' '

r open text file for reading

w truncate to zero length or create text file for writing

a append; open or create text file for writing at end-of-file

rb open biaary file for reading

wh truncate to zero length or create binary file for writing

ab append; opcn or crcate binary file for writing at end-of-file

r+ open text file for update (reading and writing)

wt truncate to zero length or create text file for update

a+ append: open or create text file for update, writing at end-of-file

r+b or rb+ open binary lile for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for update
a+b or ab+ append; open or create binary file for update, writing at end-of-file

Opening a file with read mode (" r’ as the first character in the mode argument) fails if the
file does not exist or cannot be read.

Opening a file with append mode (” a’ as the first character in the mode argument) causes all
subsequent writes to the file 10 be forced to the then current end-of-file, regardiess of intervening

115, Additional characters may follow these sequences.

4951 AMERICAN NATIONAL STANDARD X3.159-1989 4953

Library 131 Input/Output <stdio.h>

20

25

35

calls to the £seek function. In some implementations, opening a binary file with append mode
(b’ as the second or third character in the above list of made argument values) may initially
position the file position indicatar for the stream beyond the last data written, because of null
character padding.

When a file is opened with update mode {*+’ as the second or third character in the above
list of mode argument values). both input and output may be performed on the associated stream.
However., output may not be directly followed by input without an intervening call o the
fflush function or to a file positioning function (fseek, fsetpos, or rewind). and input
may not be directly followed by output without an intervening call to a file positioning function,
unless the input operation encounters end-of-file. Opening (cr creating) a text file with update
mode may instzad open (or create) a binary stream in some implementations,

When opened. a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the strean are cleared.

Returns

The fopen function returns a pointer to the object controlling the stream. If the open
operation fails, fopen returns a null pointer.

Forward references: file positioning functions (4.9.9).
4.9.5.4 The freopen Function
Synopsis

#include <stdio.h>
FILE *freopen(const char *filename, const char *mode,
FILE *stream);

Description

The £freopen function opens the file whose name is the siring pointed to by filename and
associates the stream pointed to by stream with it. The mode argument is used just as in the
fopen function.''®

The freopen function first attempts to close any file that is associated with the specified
stream. Failure to ¢lose the file successfully is ignored. The crror and end-of-file indicators for
the stream are cleared.

Returns

The freopen function returns z null pointer if the open operation fails. Otherwisc,
freopen returns the value of stream.

4.9.5.5 The setbuf Function
Synopsis

#include <stdio.h>
void setbuf (FILE *stream, char *buf);

116, The primary use of the freopen function is to change the file associated with a standard text stream
(stderr. stdin, or stdout). as those identifiers need not be modifiable Ivalues to which the value returned
by the fopen function may be assigned.

4.9.5.3 AMERICAN NATIONAL STANDARD X3.159-1980 4955

Library [32 Input/Output <stdio.h>

LA

30

Description

Except that it returns no value. the setbuf function is equivalent 10 the setvbuf function
invoked with the values _IOFBF tor mode and BUFSIZ lor size. or (il buf is a null pointer).
with the value _IONBF fur mode.

Returns
The setbuf function returns no value.
Forward references: the setvbuf function (5.9.5.6).
4.9.5.6 The setvbuf Function
Synopsis

#include <stdio.h>
int setvbuf (FILE *stream, char *buf, int mode, size t size).,

Description

The setvbuf function may be used only after the stream pointed 10 by stream has been
associated with an open file and before any other cperation is performed on the stream. The
argument mode determines how stream will be builered. as follows: IOFBF causes
inputfoutput to be fully butfered. _TOLBF causes inputfoutpul to be line buffered: _TONBF
causes input/output to be unbuffered. If buf is not a null pointer. the array 1t points to may be
used instead of a buffer allocated by the setvbuf luncrion. !’
the size of the array. The contents of the arvay A0 any time are indeterminate.

I'he argument size specifies

Returns

The setvbuf function returns zere on success. or nonzero if an invalid value is given tor
mode or if the request cannot be honored.

4.9.6 Formatted Input/Qutput Functions
4.9.6.1 The fprintf Function
Svnopsis

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...}

Description

The fprint £ functiun writes output to the stream pointed (o by stream. under control of
the string pointed to by format that specifies how subsequent arguments are converted for
output. [there are imsufficient arguments for the format. the behavior 1 undetined. I the
format is exhausted while arguments remain, the excess arguments are evaluated (as always) but
are otherwise ignored. The fprintf function retwrns when the end of the format string is
encountered.

The format shall be a muitibyte character sequence, begimning and ending in i1s initial shift
state. The format 1s composed of zero or more directives: ordinary multibyte characters (not %),
which are copied unchanged to the output stream: and conversion specifications, cach of which
results in fetching zero or more subsequent arguments. Lach converston specification is
introduced by the character %. After the %. the following appear in scquence:

117. The bufter must have a lifetime at least as great as the open stream. so the stream should be closed betore a
buffer that has automatic storage duration is deallocaled upon block exit.

+.9.5

) AMERICAN NATIONAL STANDARD N3 1S0-1usy 1961

Library

N

[N
=)

133 Input/Output <stdio.h>

s Zero or more flags (in any order) that modify the meaning of the conversion specihication.

» An optional minimum field width. It the converted value has tewer characters than the field
width, it will be padded with spaces (by default) on the left {or right. it the lefl adjustment
flag. described later. has been given) to the field width, The field width takes the form of an
asterisk * (described later) or a decimal integer,''*

* An optional precision that gives the minimum number of d'gits o appear for the d. i, o, u,
x. and X conversions, the number of digits to appear after the decimal-point characier for e,
E, and £ conversions, the maximum number of significant digits for the g and G conversions,
or the mugximum number of characters to be written from a string in s conversion. The
precision rakes the form of a period (.) tollowed either by an asterisk * (described later) or
by an optional dectmal integer: it only the period is specified, the precision is taken as zero.
If a precision appears with any other conversion specifier, the behavior is undefined.

* An optional h specitying that a following d. i. o, u, x, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will have been promoted
according to the integral promotions. and its value shall be converted o short int or
unsigned short int bhefore printing): an optional h specifying that a following n
conversion specifier applies to a pointer to a short int argument; an optional 1 {ell
specifying that a following d. i. a. u. %, or X conversion specifier applies to a long int or
unsigned long int argument: an optional 1 specifying that a following n conversion
specifier applics to a pointer to a long int argument; or an optional L specifying that a
following e, E, £, g. or G conversion specifier applics 10 a4 long double argument, If an
h. 1. or L appears with any other conversion specifier, the behavior 1s undefined.

¢ A character that specifics the type of conversion 10 be applied.

As noted above. a field width, or precision, or both, may be indicated by an asterisk. In this

case. an int argument supplies the field width or precision. The arguments specifying field

width, or precision. or both. shall appear (in that order) before the argument (it any) to be
converted. A negative field width argument 15 taken as a —~ flag followed by a positive field
width. A negalive precision argument is laken us if the precision were omitted.

The flag characters and their ineanings are
The resutt of the conversion will be left-justified within the field. (It will be right-justified
if this flag 1s not specitied.)
The result of a signed conversion will always begin with a plus or minus sign. (It will
begin with a sign only when a negative value is converted if this flag is not specified.)

space 1t the first character of a signed conversion is not a sign. or if a signed conversion resufts

fad
n

4)

in no characters. a space will he prefixed to the result. If the space and + flags both
appear, the space flag will be ignored.

s

The result is to be converted 1o an “ralternate form.™ For o conversion, it increases the
precision to force the first digit of the result to be a 7ero. For x (or X) conversion, a
nonzero result will have 0x (or 0X) prefixed to 1. For e, E. £, g, and G conversions, the
result will always contain a decimal-point character, cven if no digits follow it
{Normally. a decimal-point character appears in the result ot these conversions only it a
digit follows i) For g and G conversions, trailing zeros will nor be removed from the
result. For other conversions. the behavior is undefined.

118. Note that 0 is taken as a flag. not as the beginning of a held width.

4.9.6.1

AMERICAN NATIONAL STANDARD X3.15¢-1389 1.9.6.1

Library

134 Input/Output <stdioc.h>

0 For d. i, o, u. x. X, e. E, £. g. and G conversions, leading zeros (following any
indicatton of sign or base) are used to pad to the field width: no space padding is
performed. If the 0 and - flags both appear. the 0 flag will be ignored. For d. 1. o. u.

x, and X conversions. if a precision is specified. the 0 flag will be 1gnored. For other
5 conversions. the behavior is undefined.

The conversion speciliers and their meanings are

d, i

10

o,u,x,X

.
A
]
=

[V
h

40 ¢

4.9.6.1

The int argument is converted w signed decimal in the style [—jdddd . The
precision specifies the minimum number of digits to appear: if the value being
converted can be represented in fewer digits. it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with a precision of
zero s no characters.

The unsigned int argument is converted to unsigned octal (o), unsigned decimal
(u). or unsigned hexadecimal notation (x or X) in the style dddd: the letters abedef
arc uscd for x conversion and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits 1o appear: if the value being converted can he
represented in fewer digits, it will be expanded with teading zeres. The default
precision 1s 1. The result of converting a vero value with a precision of zero is no
characters.

The double argument is converted to decimal notation in the style [—/]ddd.ddd.
where the number of digits after the decimal-point character is equal to the precision
specification. I the precision is missing, it 1s taken as 6; if the precision is zero and
the # flag is not specified, no decimal-point character appears. [T a decimal-point
character appears, at least one digit appears before it. The value is rounded to the
appropriatc number of digits.

The double argument is converted in the style [—jd.dddexdd. where there is one
digit before the decimal-point character (which is nonzero if the argument is nonzero)
and the number of digits after it i3 equal to the precision: if the precision is missing.,
it is taken as O: if the precision is zero and the # flag is not specified, no decimal-
point character appears. The value is rounded to the appropriate number of digits.
The E conversion specifier will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. If the value is zero. the
exponent is zero.

The double argument is converted in style £ or e (or in style E in the case of a G
conversion specitier). with the precision specitying the number of significant digits.
It the precision is zero, it is taken as 1. The style used depends on the value
converted: styie e (or E) will be used only if the exponent resulting from such a
conversion is less than —4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result: a decimal-point character appears
only if it is followed by a digit.

The int argument is converted to an unsigned char, and the resulting character
is written.

The argument shall be a pointer to an array of character type.'"” Characters from the
array are written up to (but not including) a terminating null character: if the precision
is specified, no more than that many characters are written. If the precision is not
specified or is greater than the size of the array, the array shall contain a null
character.

AMERICAN NATIONAL STANDARD X3 159-19%4 4.9.6.1

Library 135 Input/Output <stdio.h>

20

25

35

40

P The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in an implementation-defined manner.

n The argument shall be a pointer to an integer into which is written the number of
characters written to the output stream so far by this call to fprint£. No argument
is converted.

% A % is written, No argument is converted. The complete conversion specification
shall be %%.

. . Lo . L 120
If a conversion specification is invalid, the behavior i1s undefined. (

If any argument is, or points to, & union or an aggregate (except for an array of character type
using %s conversion, or a pointer using %p conversion), the behavior is undefined.

In no case does a nonexistent or small field widih cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

Returns

The £print £ function returns the number of characters transmitted, or a negative value if an
output crror occurred.

Environmental Limit

The minimum value for the maximum number of characters produced by any single
conversion shall be 509.

Examples

To print a date and time in the form **Sunday, July 3, 10:02"" followed by & to five decimal
places:
#include <math.h>
#include <stdio.h>
VA ¥
char *weekday, *month; /* pointers to strings *f
int day, hour, min;
fprintf (stdout, "%s, %s %d, %.2d:%.2d\a",
weekday, month, day, hour, min);
fprintf (stdout, "pi = %.5f\n", 4 * atan(l1.0});

4.9.6.2 The fscanf Function
Synopsis

#include <stdio.h>
int fscanf (FILE *stream, const char *format, ...);

Description

The £scanf function reads input from the stream1 pointed to by stream, under control of
the string pointed to by format that specifies the admissible input sequences and how they are
to be converted for assignment, using subsequent arguments as pointers 1o the objects to receive
the converted input. 1If there are insufficient arguments for the format, the behavior is undefined.
If the format is exhausted while arguments remain, the excess arguments are evaluated (as
always) but are otherwise ignored.

120. Sec *'future library directions’” (4.13.6).

4.96.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.2

Library 136 Input/Output <stdio.h>

]
)]

35

40

121.

The format shall be a multibyte character sequence. beginning and ending in its inital shift
state. The format is composed of zerc or more directives: one or more white-space characters; an
ordinary multibyte character (neither % nor a white-space character): or a conversion specification.
Each conversion specification is mtroduced by the character $. After the %. the following appear
in sequence:

* An optional assignment-suppressing character *.
* An optional nonzero decimal integer that specifies the maximum feld width.

» An optional h, 1 (ell} or L indicating the size of the receiving object. The conversion
specifiers d, i. and n shall be preceded by h if the correspending argument is & pointer to
short int rather than a pointer to int. or by 1 if it is a pointer to long int., Similarly.
the conversion specifiers o, u. and x shall be preceded by h if the corresponding argument is
4 pouinter 10 unsigned short int rather than a poiater to unsigned int. or by 1 if it is
4 pointer o unsigned long int. Finally, the conversion specifiers e, £, and g shall be
preceded by 11 the corresponding argument 1s a pointer to double rather than a pointer o
float, or by L if it is a pointer to long double. If an h, 1. or L appears with any other
conversion specifier. the behavior is undefined.

« A character that specities the type of conversion to be applied. The vahd conversion
specifiers are described below.

The f£scanf function executes each directive of the format in turn. 11 a directive fails, as
detailed below. the £scanf function returns, Failures are described as input failures (due to the
unavailability of input characters), or matching failures (duc 1o inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first
non-white-space character (which remains unreadd. or until no more characters can be read.

A direcoive that is an ordinary multibyte character is executed by reading the next characters
of the stream. If one of the characters differs from one camprising the directive, the directive
[ails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are skipped. unless the
specification includes a [, e, or n specitier.'”’

An input item is read from the stream. unless the spectfication includes an n specifier. An
input item 15 defined as the longest matching sequence of input characters, unless that exceeds a
specified field width, in which case it is the initial subsequence of that length in the sequence.
The first character. if any. after the input itemn remains unrcad. H the length of the input item is
cero, the execution of the directive fails: this condition is a matching failure. unless an error
prevented input from the stream. in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count
of input characters) is converted to a type appropriate to the conversion specifier. If the input
item is not a matching sequence, the execution of the directive fails: this condition is @ matching
failurc. Unless assignment suppression was indicaied by a *, the result of the conversion is
placed in the object pointed to by the first argument following the format argument that has not
already received a conversion result. It this object does not have an appropriaic type. or if the
result of the conversion cannot be represented in the space provided. the behavior is undefined.

These white-space characters are not counted against a specitied ficld width.

4906.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.2

137 Input/Output <stdio.h>

The following conversion specifiers are valid:

Library
d
5 i
o]
10
u
x
15
e f,g
20 s
{
25
30
35
c
40 p
45

Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the streel tunction with the valuc 10 for the base argument.
The corresponding argument shall be a pointer to integer.

Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol funcrion with the value 0 for the base argument, The
corresponding argument shall be a pointer to integer.

Matches an optivnally signed octal integer, whose format is the same as expectled for the
subject scquence of the strtoul function with the value 8 for the bage argument.
The corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed decimal integer, whose format 1s the same as expected for
the subject sequence of the strtoul function with the value 10 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the strtoul function with the value 16 for the base
argument. The corresponding argument shall be a pointer to unsigned integer,

Matches an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod function. The corresponding argument
shall be a pointer to floating.

122

Maiches a sequence of non-white-space characters. The correspending argument shal
be a pointer to the initiat character ot an array large eaough to accept the sequence and a
terminating null character, which will be added automatically.

ARl

Matches a nonempty sequence of characters'” from a set of expected characters (the
scanset). The corresponding argument shall be a pointer to the initiat character of an
array large enough to aceept the sequence and a terrninating null character. which will be
add:d automatically. The conversion specifier includes all subsequent characters in the
format string. up to and including the matching right bracket (]). The characters
between the brackets (the scanlist) comprise the scanset, unless the character after the
left bracket is a circumflex (*). in which case the scanset contains all characters that do
not appear in the scanlist between the circumflex and the right bracket. 1If the conversion
specifier begins with [] or [~]. the right bracker character is in the scanlist and the
next right bracket character is the matching right bracket that ends the specification:
otherwise the first right bracket character is the one that ends the specification. If a —
character 15 in the scanlist and is not the first. nor the second where the first character is
a . nor the last character. the behavior 1s implemertation-defined.

Matches a sequence of characters'> of the number specified by the field width (1 i no
field width is present in the directive). The corresponding argument shall be a pointer to
the inttial character of an array large enough to accent the sequence. No null character
is added.

Marches an implementation-defined set of sequences. which should be the same as the
set of sequences that may be produced by the $p conversion of the £print £ function.
The corresponding argument shall be a pointer to a pointer to void. The interpretation
of the wput item is implementation-defined, 1f the input ilem is a value converted
earlier during the same program cxccution, the pointer that results shall compare equal 10
that value; otherwise the behavior of the %p conversion is undefined.

122. No special provisions are made for mullibyte characters,

496.2

AMERICAN NATIONAL STANDARD X23.153%-1989 4.9.6.2

Library 138 Input/Output <stdio.h>

10

20

30

i
N

40

n No input 15 consumed. The corresponding argument shall be a pointer to integer into
which is to be written the number of characters read from the input stream so far by this
call to the £scanf function. Execution of a %n directive does not increment the
assignment count returned al the completion of execution of the £scanf tfunction.

% Matches @ single %: no conversion or assignnieat occurs, The complete conversion
specification shall be %%.

. . ‘o - n R
It a conversion specification is invalid, the behavior is undefined,'™

The conversion specifiers E. G, and X are also valid and hehave the same as. respectively, e,
g. and x.

If end-of-file is encountered during Input. conversion 1s terminated. If end-of-file occurs
betore any characters matching the current directive have been read (other than leading white
spuce. where permitted). execution of the current directive terminates with an input failure;
otherwise. unless exeeution of the current directive is terminalcd with a matching failure,
execution of the following directive (if any) 1s rerminated with an input failure,

If conversion terminales on a conflicting input character, the offending inpur character is left
unread in the input stream. Trailing white space (including new-line characters) is left unread
untess matched by a directive. The success of literal matches and suppressed assigniments 15 not
directly determinable other than via the %n directive.

Returns

The £scanf function returns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise, the £scanf function returns the number of input items assigned.
which can be fewer than provided for. or even zero. in the event of an early malching [ailure.

Examples
The calt:

#include <stdio.h>

/*...*%/

int n, i; flocat x; char name[50];

n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:
25 54 .32E-1 thompson
will assign to a the value 3, to ¢ the valuc 23, to v the value 5432, and aame will contain
thompson\0. Or:
#include <stdio.h>
/x . x/f
int i; float x:; char name[50];
fscanf (stdin, "%2d4d%f%*d %[0123456789]", &i, &x, name);
with input:
56789 0123 56a72

will assign to 7 the value 56 and to v the value 789.0, will skip 0123, and name will contain
56\0. The next character read from the input stream will be a.

123, See “tuture library directions™ {4.13.6).

4962 AMERICAN NATIONAL STANDARD X3.159-1989 4.96.2

Library 139 Input/Output <stdio.h>

10

30

40

To accept repeatedly from stdin a quantity, a unit of measurc and an item namec:

#include <stdio.h>
VAU ¥4
int count; float quant; char units[21], item[21];
while (!'feof(stdin) && !ferror({stdin)) ({
count = fscanf (stdin, "%£%20s of %20s",
&quant, units, item);
fecanf {(stdin, "$*[*\n]");
}

If the stdin stream contains the following lines:

2 quarts of oil
-12.8degrees Celsius
lots of luck

10.0LBS of
fertilizer

100ergs of energy

the execution of the above example will be analogous to the following assignments:

quant = 2; strcpy(units, "quarts"); stropy(item, "oil");

count = 3;

quant = —-12.8; strcpy(units, "degrees");

count = 2; /* "C" fuils to march "o" */

count = 0; /* "1" fuils to match "%£" */

quant = 10.0; strcpy(units, "LBS"); strcpy(item, "fertilizer"):
count = 3;

count = 0; /* "100e"™ fuils to match "%£" */

count = EOF;

Forward references: the strtod function (4.10.14), the strtol function (4.10.1.5), the
strtoul function (4.10.1.0).

4.9.6.3 The printf Function
Synopsis

#include <stdio.h>
int printf (const char *format, ...);

Description

The printf function is equivalent to fprintf with the argument stdout interposed
before the arguments to printf.

Returns

The print£ function returns the number of characters transmitted, or a negative value if an
output error occurred.

4.9.6.4 The scanf Function
Synopsis

#include <stdioc.h>
int scanf(const char *format, ...);

Description

The scanf function is equivalent to £scanf with the urgument stdin interposed before
the arguments to scanf.

4.9.6.2 AMERICAN NATIONAL STANDARD X3.150-1989 4964

Library 140 Input/Output <stdio.h>

10

20

~J
Lh

30

fad
h

Returns

The scanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the scanf tunction returns the number of input items assigned, which
can be fewer than provided for. or even zero. in the event of an carly matching failure,

4.9.6.5 The sprintf Function
Synopsis

#include <stdio.h>
int sprintf(char *s, const char *format, ...)};

Description

The sprintf functon is equivalent to fprint£, except thar the argument s specities an
array into which the generated output is t¢ be written, rather than to a stream. A null character 15
written at the end of the characters written: it is not counted as part of the retwrned sum. If
copying takes place between objects that overlap. the behavior is undefined.

Returns

The sprint£ function returns the number of characters written in the array. not counting the
terminating null character.

4.9.0.6 The sscanf Function
Synopsis

#include <stdio.h>

int sscanf (const char *s, const char *format, ...):
Description

The sscan£ functhion is cquivalent o £scang. excepl that the argument s specifies a string
from which the input is to be obtained, rather than from a stream. Reaching the end ol the string
is equivalent o encountering cnd-of-file for the f£scanf function. If copying takes place
between objects that overlap. the behavior is undefined.

Returns

The sscanf function returns the value of the macro EQF if an input failure occurs before
any conversion, Otherwise, the sscanf function returns the number of input items assigned.
which can be fewer than provided for. or even scro. in the event of an early matching failure.

4.9.6,7 The vEprintf Function
Synopsis

#include <stdarg.h>
#include <stdic.h>
int vfprintf(FILE *stream, const char *format, va list arqg):

Description

The vEprintf function is equivalent to fprintf, with the variable argument list replaced
by arg. which shall have been initiulized by the va_start macro (and possibly subsequent
va arg calls). The vEprintf function dees not invoke the va_end macro.' ™

124, Ay the functions vEprint£. vsprintf, and vprintf invoke the va_arg macro. the value of arg atter
the return s indeterminaje.

4964 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.7

[.ibrary 141 Input/Output <stdio.h>

10

30

40

Returns

The vEprintf function returns the number of characters transmitted, or a negative value if
an output errar occurred.

Exampie
The following shows the use of the vEprint£ function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

void error (char *function name, char *format, ...)

{
va_list args;
va_start (args, format),
/% print oui namie of foiction causing error % f
fprintf (stderr, "ERROR in %s: ", function_name);
/> print out vemainder of message */
vfprintf (stderr, format, args):
va end(args);

}
4.9.6.8 The vprintf Function
Synopsis

#include <stdarg.h>
#include <stdio.h>
int vprintf(const char *format, va_ list arg);

Description

The vprintf function s equivalent (0 print £, with the variable argument list replaced by
arg. which shall have been initialized by the va_start macro (and possibly subsequent
va_arg calls). The vprint£ function does not invoke the va_end macro.”’!

Returns

The vprint £ function returns the number of characters transmitted, or a negative value if an
output error accurred.

4.9.6.9 The vsprintf Function
Synopsis

#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *s, const char *format, wva_list arg):

Description

The vsprint £ [unction is equivalent to sprint £, with the variable argument list replaced
by arg. which shall have been initialized by the va_start macro (and possibly subsequent
va_arg calls). The vsprintf function does not invoke th: va_end macro.'** It copying
takes place between objects that overlap, the behavior is undefinad.

Returns

The vsprintf function returns the number of characters written in the array, not counting
the terminating null character.

4.96.7 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.69

Library 142 leput/Output <stdio.h>

N

20

4.9.7 Character Input/Output Functions
4.9.7.1 The f£getc Function
Synopsis

#include <stdio.h>

int fgetc(FILE *stream);
Description

The £getc function obtains the next character (if present) as an unsigned char converted
to an int, from the input stream pointed to by stream, and advances the associated file
position indicator for the stream (if defined).

Returns

The £gete function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is sel and f£gete returns
EOF. If a read error occurs, the error indicator for the stream is set and £gete returns EOF.'**

4.9.7.2 The f£gets Function
Synopsis

#include <stdio.h>

char *fgets (char *s, int n, FILE #*stream);
Description

The £gets function reads at most one less than the number of characters specified by n from
the stream pointed to by stream into the arrav pointed to by s. No additional characters are
read after a new-line character (which is retained) or after end-of-file. A null character 15 written
immediately after the jast character read into the array.

Returns

The fgets function returns s if successful, It end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and & null pointer is
returned. If a read error occurs during the operation. the array contents are indeterminate and a
null pointer is returned,

4.9.7.3 The £pute Function
Synopsis
#include <stdio.h>
int fputc(int ¢, FILE *stream);
Description
The fpute function writes the character specified by e (converted to an unsigned char)
to the output stream pointed to by stream, at thc position indicated by the associated file
position indicator for the stream (if defined), and advances the indicator appropriately. It the file

cannot support positioning requests, or if the stream was opened with append mode. the character
15 appended to the output stream.

125. An end-of-file und a read error can be distinguished by use of the feof and ferror lunctions.

4.9.7

AMERICAN NATIONAL STANDARD X3.159-1939 4.9.7.3

Library 143 Input/Qutput <stdio.h>

20

30

35

40

Returns

The £putc function returns the character written. If a write error occurs, the error indicator
for the stream is set and £putc returns EOF.

49.74 The £puts Function
Synopsis

#include <stdio.h>
int fputs{const char *s, FILE *stream);

Description

The f£puts function writes the string pointed to by s to the stream pointed to by stream.
The terminating null character is not writien.

Returns

The fputs function returns EOF if a write error occurs; otherwise it returns a nonnegative
value.

4.9.7.5 The getc Function
Synopsis

#include <stdio.h>
int getc(FILE *stream):;

Description

The gete function is equivalent 10 fgete, except that it it 1s implemented as a macro, it
may evaluate stream more than once, so the argument should never be an expression with side
effects.

Returns

The gete function returns the next character from the input strcamn pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns
EQF. If a read error occurs, the error indicator for the stream is set and gete returns EQF,

4.9.7.6 The getchar Function
Synopsis

#include <stdio.h>
int getchar (void);

Description
The getchazx function is cquivalent to gete with the argurment stdin.
Returns

The getchar function returns the next character from the input stream pointed to by
stdin. If the stream is at end-of-file, the end-of-file indicator for the stream is set and
getchar returns EQOF. If a read error occurs, the error indicator for the stream is set and
getchar returns EOF.

4.9.7.7 The gets Function
Synopsis

#include <stdio.h>
char *gets (char *s):

4.9.7.3 AMERICAN NATIONAL STANDARD X3.159-1089 4977

Librury 144 Input/Outpul <stdieo.h>

10

20

o
U

30

[]
[

40

Description

The gets function reads characters from the input stream pointed 10 by stdin. into the
array pointed to by s, until end-of-tile is encountered or a new-line character is read. Any new-
line character is discarded. and a null character is written immediately after the last character read
into the array.

Returns

The gets function returns s if successful. If end-of-file is encountered and no characters
have been read into the array. the contents of the array remain unchanged and a null pointer is
returned. If a read error occurs during the operation. the array contents are indeterminate and a
null pointer s returned.

4.9.7.8 The putc Function
Synopsis

#include <stdio.h>
int putc(int ¢, FILE *stream)}:

Description

The pute function ts equivalent to fpute. except that il it is implemented as a macro. it
may evaluate stream more than once, so the argument should never be an expression with side
effects.
Returns

The pute function returns the character written. If a write error occurs. the error indicator
for the stream is set and putc returmns EOF.

4.9.7.9 The putchar Function
Synopsis

#include <stdiec.h>
int putchar(int c);

Description
The putchar function is equivalent to putc with the second argument stdout.
Returns

The putchar [(unction returns the character written, [f a wrile ciror occurs. the crror
indicator for the stream is set and putchar returns EOF.

4.9.7.10 The puts Function
Synopsis

#include <stdio.h>
int puts(const char *s);

Description

The puts function writes the string pointed to by s to the stream pointed o hy stdout.
and appends a new-line character to the output, The erminating null character 15 not writien.

Returns

The puts function returns EOF 1f a write error occurs: otherwise it refurns a nonnegative
value.

14.9.7.7 AMERICAN NATIONAL STANDARD X3.139-1989 4.9.7.10

Library 145 Input/Output <stdio . h>

20

35

40

4.9.7.11 The ungetc Function
Synopsis

#include <stdioc.h>
int ungetc(int c, FILE *stream):

Bescription

The ungete function pushes the character specified by e (converted to an unsigned
char) back onto the input stream pointed to by stream. The pushed-back characters will be
returned by subsequent reads on that stream in the reverse order of their pushing. A successful
intervening call (with the stream pointed to by stream) to a file positioning function (fseak,
fsetpos, or rewind) discards any pushed-back characters for the stream. The external storage
corresponding to the stream 1s unchanged.

One character of pushback is guaranteed. If the ungete function is called too many times
on the same stream without an intervening read or file positioning operation on that stream. the
operation may fail.

If the vaiue of ¢ equals that of the macre EOF, the operation fails and the input stream is
unchanged.

A successful call to the ungete function clears the end-of-filc indicator for the stream. The
value of the file position indicator for the stream after read:ng or discarding all pushed-back
characters shall be the same as it was before the characters were pushed back. For a text stream,
the value of its file position indicator after a successful call to the ungetc functien is
unspecified until all pushed-back characters are read or discarded. For a binary stream, its file
position indicator is decremented by each successtul call 1o the ungetc function: if its value

was zero before a call, it is indeterminate after the call.
Returns
The ungete function returns the character pushed back after conversion. or EOF if the
operation fails.
Forward references: file positioning functions (4.9.9).
49.8 Direct Input/Output Functions
4.9.8.1 The £read Function
Synopsis

#include <stdio.h>
size t fread(void *ptr, size_t size, size t nmemb,
FILE *stream);

Description

The fread function reads. into the array pointed to by pt:r. up to nmemb elements whose
size is specified by size, from the stream pointed to by stream. The file position indicator for
the stream (if defined) is advanced by the number of characters successfully read. If an error
occurs. the resulting value of the file position indicator for the stream is indeterminate. If a
partial element is read, its value is indeterminate.

Returns

The £read function returns the number of clements successfully read. which may be fass
than nmemb if a read error or end-of-file is encountered. If size or nmemb is vero, fread
returns zero and the contents of the array and the state of the stream remain unchanged.

49.7.11 AMERICAN NATIONAL STANDARD X3.150-1989 4928.1

Library 146 Input/Output <stdio.h>

I
th

o
wn

40

4.9.8.2 The £write Function
Svnopsis

#include <stdio.h>
size t fwrite(const void *ptr, size t size, size t nmemb,
FILE *stream);

Description

The f£write function wriles, from the array pointed o by ptr. up (© nmemb elements
whose size is specified by size. (0 the stream pointed to by stream The file position
indicator for the stream (i defined) is advanced by the number of characters successfully writien.
If an error occurs. the resulting value of the file position indicator for the stream is indeterminate.

Returns

The fwrite function returns the number of elements successfully written. which will be less
than nmemb only if a write error is encountered.

4.9.9 File Positioning [Functions
4.9.9.1 The £getpos Function
Synopsis

finclude <stdio.h>
int fgetpos{(FILE *stream, fpos t *pos);

Description

The fgetpos function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains unspecified
information usable by the £setpos function for repositioning the stream to its position at the
time of the call to the £getpos function.

Returns

It successful, the fgetpos tunction returns zero: on failure, the fgetpes function returns
nonzero and stores an implementation-defined positive value in erzno.

Forward references: the £setpos {unction (4.9.9.3).
4.9.9.2 The £seek Function
Synopsis

#include <stdio.h>
int fseek (FILE *stream, long int offset, int whence);

Description
The £seek function sets the file position indicator for the stream peinted 1o by stream

For a binary stream. the new position. measured in characters from the beginning of the tile.
is obtained by adding offset to the position specificd by whence. The specified position is
the beginning of the file if whence is SEEK_SET. the currenl value of the file position indicator
if SEEK_CUR. or cnd-of-file if SEEK_END. A binary stream nced not meaninglully suppor
fseek calls with a whence value of SEEK_END.

For a text stream. either offset shall be vero. or offset shall be a value retwrned by an
carlier call to the ££ell function on the same stream and whence shall be SEEK_SET.

A successtul call to the £seek function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stremn. After an fseek cull. the next
operation on an update strearn may be either mput or oulput,

49872 AMERICAN NATIONAL STANDARID N3.154- 199 1992

Library i47 Input/Outpur <stdio.h>

h

10

20

25

30

35

40

Returns
The £seek function returns nonzero only for a request that cannot be satisfied.
Forward references: the £tell function {(4.9.9.4),
4.9.9.3 The £setpos Function
Synopsis

#include <stdio.h>
int fsetpos (FILE *stream, const fpos t *pos);

Description

The f£setpos function sets the file position indicator for the stream pointed to by stream
according to the value of the ohject pointed to by pos, which shall be a value obtained from an
earlier call to the £getpos function on the same stream.

A successful call to the £setpes function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same swream. Afier an fsetpos call, the
next operation on an update stream may be either input or output.

Returns

If successful, the £setpos function rewrns zero; on failure, the £setpos function returns
nonzero and stores an implementation-defined positive value in errno.

4.99.4 The ftell Function
Synopsis

#include <stdio.h>
long int ftell (FILE *stream);

Description

The ftell function obrains the current value of the file position indicator for the siream
pointed to by stream. For a binary stream, the value is the number of characters from the
beginning of the file. For a text stream, its file position indicator contains unspecified
information, usable by the £seek function for returning the file position indicator for the stream
to its position at the time of the ftell call; the difference between two such return values is naot
necessarily a meaningful measure of the number of characters written or read.

Returns

If successful, the £tell function returns the current valuz of the file position indicator for
the stream. On failure, the £tell function returns — L and stores an implementation-defined
positive value in errno.

4.9.9.5 The rewind Function
Synopsis

#include <stdio.h>
void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for the stream pointed to by stream (o
the beginning of the file. It is equivalent to

(void) fseek (stream, OL, SEEK SET)

except that the error indicator for the stream is also cleared.

49972 AMERICAN NATIONAL STANDARD X3.159. 1939 4995

Library 148 Input/Output <stdie.h>

0

[
N

30

Returns

The rewind function returns no value.
4.9.10 Error-Handling Functions
4.9.10.1 The clearerr Function
Synopsis

#finclude <stdio.h>
void clearerx (FILE *stream);

Description

The clearerr function clears the end-of-lile and error indicators for the stream pointed to
by stream.

Returns

The clearerr function returns no value.
4.9.10.2 The feof Function
Synopsis

#include <stdio.h>
int feof (FILE *stream);

Description

The faof function tesis the end-of-file indicator for the stream pointed 10 hy stream.
Returns

The feof function returns nonzero if and only if the end-of-file indicator is set for stream.
4.9.10.3 The ferror Function
Synopsis

#include <stdio.h>
int ferror (FILE *stream);

Description
The ferror function tests the error indicator for the stream pointed to by stream.
Returns

The ferror function returns nonzero if and only it the error indicator is set for stream.
4.9.10.4 The perror Function
Synopsis
ffinclude <stdio.h>
void perror(const char *sg);
Description
The perror function maps the error number in the integer expression errno to an emror
message. It wriles a sequence of characters to the standard crror stream thus: first (if s is not a
null pointer and the character pointed to by s is not the null character), the string pointed 1o hy s
tollowed by a colon (:) and a space: then an appropriate error message string followed by a

new-line character. The contents of the error message strings are the same as those returned by
the strerror function with argument errno. which are implementation-defined.

4995 AMERICAN NATIONAL STANDARD X3,159-19Y89 4.6.10.4

Library 149 [nput/Output <stdio h>

Returns
The perror function returns no value.

Forward references: the strerror function (4.11.6.2).

49104 AMERICAN NATIONAL STANDARD X3.159-1989 4.6.10.4

Library 150 General Uiilities <stdlib. h>

4.10 General Utilities <stdlib.h>

The header <stdlib.h> declares four types and several functions of general utility, and
defines several macros.'*®

The types declared are size t and wehar _t (both described in 4.1.5),
5 div_t
which is a structure type that is the type of the value returned by the div function. and
ldiv_t
which is a structure tvpe that is the type of the value returned by the 1div function.
The macros defined are NULL (described in 4.1.5);
10 EXIT FAILURE
and
EXIT_SUCCESS

which expand to integral expressions that may be used as the argument to the exit function to
return unsuccessful or successful termination status, respectively, to the host environment;

15 RAND MAX

which expands to an integral constant expression, the value of which is the maximum value
returnied by the rand function; and

MB_CUR_MAX

which expands to a positive integer expression whose value is the maximum number of bytes in a
20 multibyte character tor the extcnded character set specified by the current focale (category
LC _CTYPE). and whose value is never greater than MB_LEN MAX.

4.10.1 String Conversion Functions

The functions atof, atoi, and atol need not affect the value of the integer expression
errno on an error. If the value of the result cannot be represented, the behavior ts undefined.

25 4.10.1.1 The atof Function
Synopsis

#include <stdlib.h>
double atof (const char *nptr);

Description

30 The ato£ function converts the initial portion of the string pointed 10 by nptr (o double
representation. Except for the behavior on error, it is equivalent to

strtod(nptr, {(char **)NULL)
Returns
The atef function rcturns the converted value.

35 Forward references: the strtod function (4.10.1.4).

126. See ““future library directions™ (4.13.7).

410 AMERICAN NATIONAL STANDARD X3.159. 1989 410011

Library 151 General Utllities <stdlib.h>

N

o
wn

30

40

4.10.1.2 The atoi Function
Synopsis

#include <stdlib.h>
int atei{const char *nptr);

Description

The atodi function converts the initial portion of the string pointed to by nptr to int
representation. Except for the behavior on error, it is equivalent to

(int) strtol (nptr, (char **)NULL, 10)
Rcturns
The atoi [unction returns the converted value.
Forward references: the strtol function (4.10.1.5).
4.10.1.3 The atol Function
Synopsis

#include <stdlib.h>
long int atol (const char *nptr};

Description

The atol function converts the initial portion of the string pointed {0 by nptr to long
int representation. Except for the behavior on error. it is cquivalent o

strtol(nptr, (char »*)NULL, 10)
Returns
The atol function returns the converted value.
Forward references: the strtol tunction (4.10.1.5).
4.10.1.4 The strtod Function
Svnopsis

#include <stdlib . h>
double strtod(const char *nptr, char **endptr);

Description

The strtod function converts the initial portion of the string pointed to by nptr to
double representation. First. 1t decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by the isspace function). a subject
sequence resernbling a floating-point constant; and a final string of one or more unrecognized
characters. including the terminating null character of the input string. Then. it attempts to
convert the subject sequence to a floating-point number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then a nonempty
sequence of digits optionally containing a dccimal-point character, then an optional exponent part
as defined in 3.1.3.f, but no floating suffix. The subject sequence is defined as the longest initial
subsequence or the input string, starting with the first non-whire-space character, that is of the
expected form. ‘The subject sequence contains no characters if the input string is empty or
consists entirely of white space. or if the first non-white-space character is other than a sign, a
digit, or a decimal-point character.

If the subject sequence has the expected form, the sequence of characters starting with the
first digit or the decimal-point character (whichever occurs first) iy interpreted as a floating
constant accorcing to the rules of 3.1.3.1, except that the decimal-point character is used in place

3.10.1.2 AMERICAN NATIONAL STANDARD X3.159- 1989 4.10.1.4

Library 152 General Utilities <stdlib.h>

10

15

[0
wh

[
wn

40

45

of a pertod, and that i neither an exponent part nor a decimal-point character appears, a decimal
point is assumed to follow the last digit in the string. I the subject sequence beging with a
minus sign. the value resulting from the conversion is negated. A pointer to the final string is
stored in the object pointed to by endptr. provided that endptr is not a null pointer.

In other than the "C™ locule. additional implementation-defined subject sequence forms may
be accepted.

If the suhject sequence 1s empty or docs not have the expected form, no conversion is
performed: the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns

The strtod function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range ol represcnlable values, plus
or minus BUGE_VAL is returned (according (o the sign of the value), and the value of the macro
ERANGE is stored in errno. If the correct value would cause underflow. zero is returned and
the vatue of the macro ERANGE 1s stored in errno.

4.10.1.5 The strtol Function
Synopsis

#include <stdlib.h>
long int strtol{const char *nptr, char **endptr, int base):

Description

The strtel function converts the nitial portion of the siring pointed to by nptr to leng
int representation. First. it decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by the isspace function). a subject
sequence resembling an integer represented in some radix determined by the value of base. and
a final string of one or more unrecognized characters. ncluding the terminating null character of
the input string. Then. it attenipts 10 convert the subject sequence 1o an integer. and returns the
result

It the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in 3.1.3.2, optionally preceded by a plus or minus sign. but not including an
integer suffix. If the value of base is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base. optionally preceded by a plus or minus sign, but not including an integer suffix. The
letters from a (or A) through z (or Z) are ascribed the values 10 to 35: only letters whose
ascribed values are less than that of base are permitted. [f the value of base is 16, the
characters 0x or 0X may optionally precede the sequence of letters and digits. following the sign
if present.

The subject sequence is defined as the longest initial subsequence of the inpul siring, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters 1l the mput string i emply or consists entirely of white space. or if the
first non-white-space character is other than a sign or a permissible letter or digit.

It the subject sequence has the expected form and the value of base is 7ero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to the rules of
3.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and
36, it is used as the base [or conversion, ascribing to each letier its value as given above. I the
subject sequence begins with a minus sign. the value resulting from the conversion i1s negated. A
pointer ta the final string is stored in the ohject pointed 10 by endptr. provided that endptr is
not a null pointer.

4.10.1.4 AMERICAN NATIONAL STANDARD X3.154- 1989 4.10.1.5

Library 153 General Utilities <stdlib.h>

160

25

30

Lad
%))

40

In other than the "C" locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed: the value of nptr is stored in the object pointed to by endptr. provided that
endptr is not a null pointer,

Returns

The strtol function retums the converted value, if anv. If no conversion could be
performed, zero is returned. [f the correct value is outside the range of representable values,
LONG MAX or LONG MIN is returned taccording to the sign cf the valuc), and the value of the
macro ERANGE is stored in errno.

4.10.1.6 The strtoul Function
Svnopsis

#include <stdlib.h>
unsigned long int strtoul (const char *nptr, char **endptr,
int base}:;

Description

The strtoul function converts the initial portion of the string pointed to by nptr tc
unsigned long int representation. First, it decomposes the input string into three parts: an
initial. possibly empty, sequence of white-space characters (as specified by the isspace
function). a subject sequence resembling an unsigned integer represented in some radix
determined by the value of base. and a final string of one or more unrecognized characters.
including the terminating null character of the input string. Then, it attempts to convert the
subject sequence to an unsigned integer, and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in 3.1.3.2, optionally preceded by a plus or minus sign, but not including an
integer suffix. If the value of base is between 2 and 36. the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base. opticnally preceded by a plus or minus sign, but not including an integer suffix, The
letters from a (or &) through z (or 2) are ascribed the values 10 to 35; only letters whose
ascribed values are less than that of base are permitted. If the value of base is 16, the
characters Ox or OX may optionally precede the sequence of leniers and digits, following the sign
if present.

The subject scquence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is empty or consists entirely of white space, or if the
first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero. the sequence of
characters starting with the first digit is inlerpreted as an integer constant according to the rufes of
3.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and
36, it is used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is negated. A
pointer to the final string is stored in the object pointed 1o by endptr, provided that endptr is
not a null pointer.

In other than the "C" locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed: the value of nptr is stored in the object pointed 10 by endptr. provided that
endptr is not a null pointer.

4.10.1.5 AMERICAN NATIONAL STANDARD X3.159-1¢89 4,10.1.6

Library 154 General Utilities <stdlib.h>

20

25

30

Returns

The strtoul function returns the converted value, if any. If no conversion could be
performed, zero is retumed. If the correct value is outside the range of representable values,
ULONG_MAX is returned, and the value of the macro ERANGE is stored in errno.

4.10.2 Pseudo-Random Sequence Generation Functions
4,10.2.1 The rand Function
Synopsis

#include <stdlib.h>
int rand(void);

Description

The rand function computes a sequence of pseudo-random integers in the range 0 to
RAND MAX.

The implementation shall behave as if no library function calls the rand function.
Returns
The rand function returns a pseudo-random integer.
Environmental Limit
The value of the RAND_MAX macro shall be at least 32767.
4.10.2.2 The srand Function
Synopsis

#include <stdlib.h>
void srand(unsigned int saed)

Description

The srand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand. It srand is then called with the same
seed value, the sequence of pseudo-random numbers shall be repeated. If rand is called before
any calls to srand have been made, the same sequence shall be generated as when srand is
first called with a seed value of 1.

The implementation shall behave as if no library function calls the srand function.
Returns
The srand function returns no value.

Example

The following functions define a portable implementation of rand and srand.

4.10.1.6 AMERICAN NATIONAL STANDARD X3.159-1989 4,10.2.2

Library 155 General Utilities <stdlib.h>

10

20

25

static unsigned long int next = 1;

int rand(void) /* RAND MAX assumed to be 32767 */

{
next = next * 1103515245 + 12345;
return (unsigned int) (next/65536) % 32768;
}
void srand(unsigned int seed)
{
next = seed;
}

4.10.3 Memory Management Functions

The order and contiguity of storage allocated by successive calls to the calloc, malloc,
and realloc functions is unspecified. The pointer returned if the allocation succeeds is suitably
aligned so that it may be assigned to a pointer to any type of object and then used to access such
an object or an array of such objects in the space allocated (until the space is explicitly freed or
reallocated). Lach such allocation shall yield a pointer to an object disjoint from any other
object. The pointer returned points to the start (lowest byte address) of the allocated space. If
the space cannot be allocated, a null pointer is returned. If the size of the space requested is
zero, the behavior is implementation-defined; the value returned shall be either a null pointer or a
unigue pointer. The value of a pointer that refers to freed space 1s indeterminate.

4.10.3.1 The calloc Function
Synopsis

#include <stdlib.h>
void *calloc{size t nmemb, size t size);

Description

The eallece function allocates space for an array of nmemb objects, cach of whose size is
size. The space is initialized to all bits zero. '

Returns

The calloc function returns either a null pointer or a pointer to the allocated space.
4.10.3.2 The free Function
Synopsis

#include <stdlib.h>
void free{void *ptr):;

Description

The free funcrion causes the space pointed to by ptr to be deallocated, that is, made
available for further allocation. If ptr is a null pointer, no action occurs. Otherwise, it the
argument does not maich a pointer earlier returned by the ¢alloe, malloc, or realloc
function, or if the space has been deallocated by a call to free or realloc, the behavior is
undefined.

127, Note that this need not be the same as the representation of flouting-point zero or a null pointer constant.

9
to

AMERICAN NATIONAL STANDARD X3.159-1989 4.10.3.2

Library 156 General Utitinies <stdlib . h>

10

30

LPS]
N

40

Returns
The £ree function returns no value.
4.10.3.3 The malloc Function
Svnopsis
#include <stdlib.h>
void *malloc(size t size);
Description
The malloc function allocates space for an object whose size is speciticd by size and
whose value is indeterminatce.
Returns
The malloc function returns either a nuil pointer or a pointer to the allocated space.
4.10.3.4 The realloc Functicn
Synopsis
#include <stdlib.h>
void *realloc(void *ptr, size t size);
Description

The realloc function changes the size of the object pointed to by ptx o the sive specified
by size. The contents of the object shail be unchanged up 10 the lesser of the new and old
sizes. 1f the new size is larger, the value of the newly allocated portion ot the object is
indeterminate. If ptr is a null pointer, the realloc tunction bchaves like the malloc
function for the specified size. Otherwise, if ptx does not match a pointer carlier returned by
the calloc, malloc. or realloc function. or if the spuce has been deallocated by a cull to
the £ree or realloc functon. the behavior v undefined. If the space cannot be allocated. the
object pointed to by ptr is unchanged. [If size is zero and ptr is not a null pointer. the object
it points to 18 freed.

Returns

The realloc function returns either a null pointer or a pointer to the possibly moved
allocated space.

4.10.4 Communication with the Environment
4.10.4.1 The abort Function
Synopsis

#include <stdlib.h>

void abort (veoid):;

Description

The abort function causes abnormal program termination to occur. unless the signal
SIGABRT iy being caught and the signal handler does not return. Whether open output streams
are flushed or open streams closed or temporary files removed is implementation-defined. An
implementation-detined form of the status imsuceessfil rerminarion is returmed 10 the host
environment by means of the function call raise (SIGABRT).

Returns

The abort function cannot return to its caller.

4.10.3.2 AMERICAN NATIONAL STANDARIY N3.159- 198y 10401

Library 157 General Utilities <stdlib.h>

10

15

25

30

35

4.10.4.2 The atexit Function
Synopsis

#include <stdlib.h>
int atexit (void (*func) (void));

Description

The atexit function registers the function pointed to by funec, to be called without
arguments at normal program fermination.

Implementation Limits

The implementation shall support the registration of at least 32 functions.
Returns

The atexit function returns zero if the registration succeeds, nonzero if it fails.
Forward references: the exit function (4.10.4.3).
4.10.4.3 The exit Function
Synopsis

#include <stdlib.h>
void exit {(int status);

Description

The exit function causes normal program termination to occur. If more than one call to the
exit function is executed by a program, the behavior is undefined.

First, all functions registered by the atexit function are called, in the reverse order of their
registration.'>®

Next, all open streams with unwritten buffered data are flushed, all open streams are closed.
and all files created by the tmpfile function are removed,

Finally, control is returned to the host environment. If the value of status is zcro or
EXIT SUCCESS5, an implementation-defined form of the <taws successful termination is
returned. If the value of status is EXIT_FAILURE. an implementation-defined form of the
status wunsuccessiul termination is retumed. Otherwise the status returned is implementation-
defined.

Returns

The exit function cannot return to its caller.
4.10.4.4 The getenv Function
Synopsis

#include <stdlib.h>
char *getenv(const char *name);

Description

The getenv function searches an environment list. provided by the host environment, for a
string that matches the string pointed to by name. The set of environment names and the
method for altering the environment list are implementation-definad.

128 Each function is called as many times as it was registered.

4.10.4.2 AMERICAN NATIONAL STANDARD X3.159-198% 4.104.4

Library 158 General Urtilities <stdlib.h>

30

The implementation shall behave as if no library function calls the getenv function,
Returns

The getenwv function returns 4 pointer to a string associated with the matched list member.
The string pointed to shall not be modificd by the program, but may be overwritten by a
subsequent call to the getenv funcrion. If the specified name cannot be tound. a null pointer 1s
returned.

4.10.4.5 The system Function
Synopsis

#include <stdlib.h>
int system(const char *string);

Description

The system function passes the string pointed to by string to the host environment to be
executed by a command processor in an implementation-defined manner. A null pointer may be
used for string to inquire whether a command processor exists,

Returns

It the argument is a null pointer, the system function returns nonzero only if a command
processor is available. If the argument is not a null pointer, the system function returns an
implementation-defined value.

4,10.5 Searching and Sorting Ultilities
4.10.5.1 The bsearch Function
Synopsis

#include <stdlib.h>

void *bsearch{const wvoid *key, const void *base,
size t nmemb, size t size,
int (*compar) (const wvoid *, const void *));

Description

The bsearch function searches an array of nmemb objects, the initial element of which is
pointed to by base, for an element that matches the object pointed to by key. The size of each
element of the array is specified by size.

The comparison function pointed to by compar is called with two arguments that point 10
the key object and to an array element, mn that order. The function shall return an integer less
than, equal to, or greater than zero if the key object is considered. respectively, 10 be less than.
to match, or to be greater than the array element. The array shall consist of: all the elements that
compare less than, all the clements that compare equal to, and all the elements that compare
greater than the key object, in that order.'*’

Returns

The bsearch function returns a pointer to a matching element of the array, or a null pointer
if no match is found. If two elements compare as equal, which element 1s matched is
unspecified.

129, In practice, the entire array is sorted according to the comparison function.

4.10.4.4 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.5.1

Library 159 General Utilities <stdlib.h>

10

20

25

30

35

4.10.5.2 The gsort Function
Synopsis

#include <stdlib.h>
void gsort (void *base, size t nmemb, size_t size,
int (*compar) (const void *, const void *});

Description

The gsort function sorts an array of nmemb objects, the initial element of which is pointed
to by base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function
pointed to by compar, which is called with two arguments that point to the objects being
compared. The function shall return an integer less than, equal to, or greater than zero if the first
argument is considered to be respectively less than, equal ro, or greater than the second.

If two elements compare as equal, their order in the sorted array is unspecified.
Returns
The gsort function returns no value.
4.10.6 Integer Arithmetic Functions
4.10.6.1 The abs Function
Synopsis

#include <stdlib.h>
int abs(int j):

Description

The abs function computes the absolute value of an integer j. If the result cannot be
represented, the behavior is undefined. '™

Returns
The abs function returns the absolute value,
4.10.6.2 The div Function
Synopsis
#include <stdlib.h>
div_t div{int numer, int denom):
Description

The div function computes the quotient and remainder of the division of the numerater
numer by the denominator denom. If the division is inexact, the resulting quotient is the
integer of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behavior is undefined; otherwise, quot * denom + rem shall equal numer.

Returns

The div function returns a structure of type div_t, comprising both the quotient and the
remainder. The structure shall contain the following members, in either order:

130. In a two's complement representation, the absolute value of the most negative number cannot be represented.

4.10.5.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.6.2

Library 160 General Utilities <stdlib.h>

20

int quot; /* guotient */
int rem; /* remainder */

4.10.6.3 The labs Function
Synopsis

##include <stdlib.h>
long int labs(long int j};

Drescription

The labs function is similar to the abs function, except that the argument and the returned
value each have lype long int.

4.10.6.4 The 1div Function
Svnopsis
#include <stdlib.h>
ldiv_t 1div(long int numer, long int denom);

Description

The 1diwv function is similar to the diwv function, except that the arguments and the
members of the returned structure (which has type 1div_t) all have type long int.

4.10.7 Multibyte Character Functions

The behavior of the multibyte character functions is affected by the L.C_CTYPE category of
the current lecale. For a state-dependent encoding, each function is placed into its initial state by
a call for which its character pointer argument, s. is a null pointer. Subsequent calls with s as
other than a null pointer cause the internal state of the function to be altered as necessary. A call
with s as a null pointer causes these functions to return a nonzero value if encodings have state
dependency. and zero otherwise.'*! Changing the LC_CTYPE category causes the shifll state of
these functions to be indeterminate.
4.10.7.1 The mblen Function
Synopsis

#include <stdlib.h>
int mblen(const char *s, size_t n);

Description

If s is not a null peinter, the mblen function determines the number of bytes contained in
the multibyte character pointed to by s. Except that the shift state of the mbtowe function is not
affected, it is equivalent to

mbtowc ((wchar t *)0, s, n);
The implementation shall behave as if no library function calls the mblen function.
Returns

If & is a null pointer, the mblen function returns a nonzero or zero value, it muitibyte
character encodings. respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the mblen function either returns 0 (if s points 1o the null character), or returns the

131 1f the implementation employs special bytes to change the shift state. these bytes do not produce separate wide
character codes. but are grouped with an adjacent multibyte characler.

4.10.6.2 AMERICAN NATIONAL STANDARD X3.139-1989 4.10.7.1

Library 161 CGeneral Utilities <stdlib.h>

15

20

25

30

35

40

number of bytes that are contained in the multibyte character (if the next n or fewer bytes form a
valid muitibyte character), or returns — 1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (4.10.7.2).
4.10.7.2 The mbtowc Function
Synopsis

#include <stdlib.h>

int mbtowc(wchar t *pwc, const char *s, size t n);

Description

If s is not a null pointer, the mbtowe function determines the number of bytes that are
contained in the mulribyte character pointed to by s. It then determines the code for the vaiue of
type wchar_t that corresponds to that multibyte character. (The value of the code
corresponding to the null character is zero.) If the multibyte character is valid and pwe is not a
null pointer, the mbtowc function stores the code in the object pointed to by pwe. At most n
bytes of the array pointed 10 by s will be examined.

The implementation shall behave as if no library function calls the mbtowe function.

Returns

If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the mbt.owe function either returns 0 (if s points to the null character), or returns the
number of bytes that are contained in the converted multibyte character (if the next n or fewer
bytes form a valid multibyte character}, or returns —1 (if they do not form a valid multibyte
character).

In no case will the value returncd be greater than n or the value of the MB_CUR_MAX macro.
4.10.7.3 The wctomb Function
Synopsis

#include <stdlib.h>
int wctomb(char *s, wchar t wchar);

Description

The wectomb {unction determines the number of bytes needed to represent the multibyte
character corresponding to the code whose value is wehar (including any change in shift state).
It stores the multibyte character representation in the array object peinted to by s (if s is not a
null pointer). At most MB_CUR_MAX characters are stored. If the value of wehar is zero, the
wctomb function is left in the initial shift state.

The implementation shatl behave as if no library function calls the wetomb function.

Returns

If s is a null pointer, the wetomb function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the wetomb function returns —1 if the value of wechar does not correspond to a valid
multibyte character, or returns the nrumber of bytes that are contained in the multibyte character
corresponding to the valuc of wehar.

In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

4.10.7.1 AMERICAN NATIONAL STANDARD X3.159-1989 4,10.7.3

Library 162 General Utlities <stdlib.h>

10

20

25

30

35

4.10.8

4.10.8 Multibyte String Functions

The behavior of the multibyte string functions is affected by the LC_CTYPE category of the
current locale.

4,10.8.1 The mbstowcs Function
Synopsis

#include <stdlib.h>
size_t mbstowcs (wchar t *pwcs, const char *s, size_t n);

Description

The mbstowcs function converts a sequence of multibyte characters that begins in the initial
shift state from the array pointed to by s inte a sequence of corresponding codes and stores not
more than n codes into the asray pointed to by pwes. No multibyte characters that follow a null
character (which is converted into a code with value zero) will be examined or converted. Each
multibyte character is converted as if by a call to the mbtowe function, except that the shift state
of the mbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwes. If copying takes
place between objects that overlap. the behavior is urdefined.

Returns

If an invalid multibyte character is encountered, the mbstowes function returns
{size t)-1. Otherwise, the mbstowes function returns the number of array ¢lements
modified, not including a terminating zero code, if any.'"’

4.10.8.2 The wcstombs Function
Synopsis

#include <stdlib.h>
size_t wecstombs (char *s, const wchar t *pwes, size t n);

Description

The westombs function converts a sequence of codes that correspond to multibyte characters
from the array pointed to by pwes into a segquence of multibyte characters that begins in the
initial shift statc and stores these multibyte characters into the array pointed to by s, stopping if' a
multibyte character would exceed the limit of n total bytes or if 4 null character is stored. Each
code 1s converted as if by a call to the wetomb function, except that the shift state of the
wctomb function is not affected.

No more than n bytes will be modified in the array pointed to by s. If copying takes place
between objects that overlap, the behavior is undefined.

Returns

If a code is encountered that does not correspond to a valid multibyte character, the
westombs function returns (size_t)-1. Otherwise, the westombs function returns the
number of bytes modified, not including a terminating null character, if any.™~

132. The array will not be null- or zero-terminated if the value returned is n.

AMERICAN NATIONAL STANDARD X3.159-1989 41082

Library 163 String Hundling <string.h>

20

4.11 String Handling <string.h>
4.11.1 String Function Conventions

The header <string.h> declures one type and several functions, and defines one macro
useful for manipulating arrays of character type and other objects treated as arrays of character
type.'** The type is size_t and the macro is NULL (both described in 4.1.5). Various methods
are used for determining the lengths of the arrays, but in all cases a char * or void *
argument points 1o the initial (Jlowest addressed) character of the array. If an array is accessed
beyond the end of an object, the behavior 1s undefined.

4.11.2 Copying Functions
4.11.2.1 The memecpy Function
Synopsis

#include <string. h>
void *memcpy(void *sl, const veid *s2, size t n);

Description

The memepy function copies n characters from the object pointed to by s2 into the object
pointed to by s1. If copying takes place between objects that overlap, the behavior is undefined.

Returns

The memcpy function returns the value of s1.
4.11.2.2 The memmove Function
Synopsis

#include <string.h>
void *memmove (void *sl, const void *s2, size_t n);

Description

The memmovwve function copies n characters from the object pointed to by s2 into the object
pointed o by s1. Copying takes place as if the n characters from the object pointed 10 by s2
are {irst copied into a temporary array ol n characters that does not overlap the objects pointed to
by sl and s2. and then the n characters from the temporary array are copied into the object
pointed to by s1.

Returns

The memmove tunction returns the value of s1.
4.11.2.3 The strepy Function
Synopsis

#include <string.h>
char *strcpy({char *sl, const char *s2);

Description

The strepy function copies the string pointed to by s2 (including the terminating null
character) into the array pointed 10 by s1. If copying takes place between objects that overlap.
the behavior is undefined.

133. See “‘future library directions™ (4.13.8).

AMERICAN NATIONAL STANDARD X3.159-1989 4.11.2.3

Library 164 String Haudling <string.h>

Returns
The strepy function returns the valuc of s1.

4.11.2.4 The strncpy Function

Synopsis
5 #include <string.h>
char *strncpy{char *sl, const char *s2, size_t n);
Description
The strnepy function copies not more than n characters (characters that follow a null

character are not copied) from the array pointed to by s2 to the array pointed 1o by s1.'™ If
10 copying takes place between objects that overlap, the behavior is undefined.

If the array pointed to by s2 is a string that is shorter than n characters. null characters are
appended to the copy in the array pointed to by s1. until n characters in all have been written.

Returns
The strncpy function returns the value of s1.
15 4.11.3 Concatenation Functions
4.11.3.1 The strcat Function
Synopsis

#include <string.h>
char *strcat (char *sl, const char *s2);

20 Description

The strecat function appends a copy of the string pointed to by s2 (including the
rerminating null character) to the end of the string pointed ro by s1. The initial character of s2
overwrites the nuil character at the end of s1. If copying takes place between objects that
overlap, the behavior is undefined.

25 Returns
The strcat function returns the value of s1.

4.11.3.2 The strncat Function

Synopsis
#include <string.h>
30 char *strncat (char *sl, const char *s2, size t n);
Description
The strnecat function appends not more than n characters (a null characier and characiers

that follow it are not appended)} from the array pointed to by s2 to the end of the string pointed
to by sl. The initial character of s2 overwrites the null character at the end of s1. A

35 terminating null character is always appended to the result.'™ If copying takes place between
objects that overlap, the behavior is undefined.

134, Thus, if there is no null character in the first n characters of the array pointed to by s2. the resull will not be
null-terminaled.

135. Thus, the maximum number of characters that can end up in the aray pointed to by sl s
strlen{sl)+n+1l.

4.11.2. AMERICAN NATIONAL STANDARD X3.159-1989 41132

2
(%)

Library 165 String Handling <string.h>

10

30

Returns

The strncat function returns the value of sl.
Forward references: the strlen function (4.11.6.3).
4.11.4 Comparison Functions

The sign of a nonzero value returned by the comparison functions memcmp, stremp, and
strnemp is determined by the sign of the difference between the values of the first pair of
characters (both interpreted as unsigned char) that differ in the objects being compared.

4.11.4.1 The memcmp Function
Synopsis

#include <string.h>
int memecmp (const void *sl, const void *s2, size t n);

Description

The mememp function compares the first n characters of the object pointed o by s1 10 the
first nn characters of the object pointed 1o by s2.'%

Returns

The memcmp function returns an integer greater than, equal to, or less than zero, accordingly
as the object pointed to by sl is greater than. equal to, or less than the object pointed to by s2.

4.11.4.2 The stremp Function
Synopsis

#include <string.h>
int strcmp (const char *sl, const char *s2);

Description
The stremp function compares the string pointed to by s1 to the string pointed to by s2.
Returns

The stremp function returns an integer greater than, equal to, or less than zero, accordingly
as the string pointed to by s1 is greater than, equal 1o, or less than the string pointed to by s2.

4.11.4.3 The strecoll Function
Synopsis

#include <string.h>
int strcoll (const char *sl, const char *s2);

Description

The strcoll function compares the string pointed to by sl to the string pointed to by s2,
both interpreted as appropriate to the LC_COLLATE category of the current locale.

1236. The contents of ““holes’ used as padding for purposes of alignment within structure objects are indeterminate.

Strings shorter than their allocated space and unions may also cause problems in comparison.

4.11.3.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.11.4.3

Library 166 String Hundlimg <string.h>

20

12
wn

30

40

Returns

The strecoll function returns an integer greater than. equal to. or less than zero. accordingly
as the string pointed to by s1 is greater than, equal to, or less than the string pointed 10 by s2
when both are interpreted as appropriate (o the current locale.

4.11.4.4 The strncmp Function
Synopsis

#include <string.h>
int strnemp{const char *sl, const char *s2, size t n);

Description

The strnemp function compares not more than n characters (characters thar follow a null
character are not compared) from the array pointed 1o by s1 10 the array pointed to by s2.

Returns

The strnemp function returns an integer greater than, equal to. or less than zero. accordingly
as the possibly null-terminated array pointed 10 by s1 is greater than, equal to. or less than the
possibly null-terminated array pointed to by s2,

4.11.4.3 The strxfrm Function
Synopsis

#include <string.h>
size t strxfrm(char *sl, const char *s2, size t n);

Description

The strxfrm function transforms the string pointed to by s2 and places the resulting string
into the array pointed 10 by s1. The trunsformation is such that it the stremp function is
applied to two transformed strings. il returns a value greater than, equal Lo, or less than zero.
carresponding to the result of the streell function applied to the same 1wo original strings.
Na more than n characters are placed into the resulting array pointed to by s, including the
terminating nuli character. 1If n 13 zero. sl is permitted to be a null pointer. If copying takes
place between objects that overlap. the behavior is undetined.

Returns

The strxfrm function returns the length of the transformed string (not including the
terminating null character). 1f the value returned is n or more. the contents of the array pointed
to by s1 are indeterminate,

Example

The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by s.

1 + strxfrm(NULL, s, 0)
4.11.5 Search Functions
4,11.5.1 The memchr Function
Svnopsis

#include <string.h>
void *memchr (const wvoid *s, int ¢, size t n);

4.11.43 AMECRICAN NATIONAL STANDARD X2.159-1989 4.11.5.1

Library 167 String Handling <string.h>

15

20

™
h

30

35

Description

The memchr function locates the first occurrence of ¢ (converted to an unsigned char) in
the initial n characters (each interpreted as unsigned «char) of rhe object pointed to by s.

Returns

The memchr function rcturns a pointer to the located character, or a null pointer if the
character does not occur in the object.

4.11.5.2 The strchr Function
Synopsis

#include <string.h>
char *strchr(const char *s, int c):

Description

The strehr function locates the first occurrence of ¢ (converted t0 a char) in the string
pointed to by 8. The terminating null character is considered to be part of the string.

Returns

The strchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the string.

4.11.5.3 The strespn Function
Synopsis

#include <string.h>
size_t strcspn(const char *sl, const char *s2}):

Description

The strespn function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters nor from the string pointed to by s2.

Returns

The strespn function returns the length of the segment.
4.11.5.4 The strpbrk Function
Synopsis

#include <string.h>
char *strpbrk(const char *sl, const char *s2);

Description

The strpbrk function locates the first occurrence in the string pointed to by s1 of any
character from the string pointed to by s2.

Returns

The strpbrk function returns a pointer to the character, or a null pointer if no character
from s2 occurs in s1.

4.11.5.5 The strrchr Function
Synopsis

#include <string.h>
char *strrchr(const char *s, int c¢);

4,11.5.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.11.5.5

Library 168 String Handling <string.h>

10

20

30

40

Description

The strrchr funclion locates the last occurrence of e {converted o a char) in the siring
pointed to by s. The terminating null character is considered to be part of the string.

Returns

The strrchr function returns a pointer to the character. or a null pointer it ¢ does not occur
in the string.

4.11.5.6 The strspn Function
Synopsis

#include <string.h>
size_t strspn{const char *sl, const char *s2);

Description

The strspn function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters from the string pointed to by s2.

Returns

The strspn function returns the length of the scgment.
4.11.5.7 The strstr Function
Synopsis

#include <string.h>
char *strstr(const char *sl, const char *s2):

Description

The strstr function locates the first occurrence in the string pointed to by s1 of the
sequence of characters (excluding the terminating null character) in the string pointed to by s2
Returns

The strstr function returns a pointer to the located string, or a null pointer if the string is
not found. If 82 points to a string with zero length, the function returns s1.

4.11.5.8 The strtok Function
Synopsis

#include <string.h>
char *strtok(char *sl, const char *s2);

Description

A sequence of calls to the strtok function breaks the string pointed to by sl into a
sequence of tokens, each of which is delimited by a character from the string pointed to by s2.
The first call in the sequence has s as its first argument, and is followed by calls with a null
pointer as their first argument. The separator string pointed to by s2 may be different from call
to call.

The first cali in the sequence searches the string pointed to by s1 for the [irst character that is
nor contained in the current geparator string pointed to by s2. I no such character is found, then
there are no tokens in the srring pointed 1o by s1 and the strtok function returns a null
pointer. If such a character is found, it is the start of the first token.

The strtok function then searches from there for a character that /s contained in the current
separator string, I no such character is tound, the current token extends to the end of the string
pointed to by sl. and subsequent searches for u token will return a null pointer. If such a
character 18 found, it is overwritten by a null character. which terminates the current token. The

4.11.5.5 AMERICAN NATIONAL STANDARD X3.139-1989 4.11.5.8

Library 169 String Handling <string.h>

20

35

strtok function saves a pointer to the following character, from which the next search for a
token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described above,

The implementation shall behave as if no library function calls the strtok function.
Returns

The strtok function returns a pointer to the first character of a token, or a null pointer if
there is no token.

Example

#include <string.h>

static char str[] = "?a???b,,, #c";

char *t;

t = strtok(str, "?"); /* t points to the token "a" */
t = strtok (NULL, ","); /* t points to the token "??b" */
t = strtok (NULL, "#,"); /* t points (o the token "¢ */

ot

= strtok (NULL, "?"); /* t isa null pointer */
4.11.6 Miscellaneous Functions

4.11.6.1 The memset Function

Synopsis

#include <string.h>
void *memset (void *s, int ¢, size_t n);

Description

The memset function copies the value of e (converted to an unsigned char) into cach of
the first n characters of the object pointed to by s.

Returns

The memset function returns the value of s.
4.11.6.2 The strerror Function
Synopsis

#include <string.h>
char *strerror(int errnum);

Description
The strerrer function maps the error number in exrrnum to an error message string.
The implementation shall behave as if no library function calls the strerror function.
Returns

The strerror function returns a pointer to the string. the contents of which are
implementation-defined. The array pointed to shall not be modified by the program. but may be
overwritien by a subsequent call 10 the strerror function.

4.11.5.8 AMERICAN NATIONAL STANDARD X3.159-1989 4.11.6.2

Library t70 String Handling <string.h>

4.11.6.3 The strlen Function
Synopsis

#include <string.h>
size t strlen(const char *s);

5 Description
The strlen function computes the length of the string pointed to by s.
Returns

The strlen function returns the number of characters that precede the terminating null
character.

4,11.6.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.11.6.3

Library 171 Date and Time <time.h>

wh

20

25

30

35

4.12 Date and Time <time.h>
4.12.1 Components of Time

The header <time . h> defines two macros, and declares four types and several functions for
manipulating lime. Many functions deal with a calendar time that represents the current date
(according to the Gregorian calendar) and time. Somc functions deal with local time. which is
the calendar time expressed for some specific time zone, and with Daviight Saving Time, which
is a temporary change in the algorithm for determining local time. The local time zone and
Daylight Saving Time are implementation-defined.

The macros defined are NULL (described m 4.1.5); and
CLOCKS PER_SEC
which is the number per second of the value returned by the clock function.
The types declared are size t (described in 4.1.5);
clock_t
and
time t
which are arithmetic types capable of representing times; and
struct tm

which holds the components of a calendar time, called the broken-down time. The structure shall
contain at least the following members, in any order. The semantics of the members and their

normal ranges are expressed in the comments,'?’
int tm_sec; /* seconds after the minute — [0, 61] */
int tm_min; /* minutes after the howr — {0, 5] */

int tm hour; /* hours since midnight — [0, 23] */
int tm_mday, /* duayof the month—[1, 31] */

int tm_mon; /* months since January — [0, 1] */
int tm_yeax; /* veurssince 1900 */

int tm_wday; /* davs since Sunday — [0, 6] */

int tm_yday; /* days since January 1 — [0, 365] */
int tm_isdst; /* Daylight Saving Time flag */

The value of tm_isdst is positive if Daylight Saving Time is in cffect, zero it Daylight Saving
Time is not in effect, and ncgative if the information ts not available.

4.12.2 Time Manipulation Functions
4.12.2.1 The clock Function
Synopsis

#include <time.h>
clock t clock(void);

Description

The elock function determincs the processor time used.

137. The range [0, 61] for tm_sec allows for as many as two leap seconds.

AMERICAN NATIONAL STANDARL X3.159-1959 4,12.2.1

Library 172 Date and Time <time.h>

Returns

The clock function returns the implementation’s best approximation to the processor time
used by the program since the beginning of an implementation-defined era related only o the
program invocation. To deternnne the ome in seconds, the value returned by the clock

5 function should be divided by the value of the macro CLOCKS_PER_SEC. If the processor time
uscd 15 not available or its value cannot be represented. the function returns the value
(clock_t)—l.m
4.12.2.2 The difftime Function
Synopsis

10 #include <time.h>

double difftime(time t timel, time_t timel};
Description

The difftime function computes the difference between two calendar times: timel -
time0,

15 Returns

r2
A

The difftime function returns the differcnce expressed in seconds as 4 double.
4.12.2.3 The mktime Function
Svnopsis

#include <time.h>

0 time t mktime (struct tm *timeptr);

Description

The mktime function converts the broken-down time, expressed as local time, in the
structure pointed 10 by timeptr into a calendar time value with the same encoding as that of
the values returned by the time function. The original valucs of the tm_wday and tm_yday
components of the structure are ignored, and the original values of the other components are not
restricted to the ranges indicated above.'™ On successful completion, the values of the
tm wday and tm_yday components of the structure are sct appropriately, and the other
components are set to represent the specified calendar time. but with their values forced to the
ranges indicated above; the tinal value of tm_mday is not set until £tm_mon and tm_year are

30 determined.

Returns

The mktime function returns the specified calendar time encoded as a value of type
time t. If the calendar time cannot be represented, the function returns the value
(time_t)-1.

35 Example

What day of the week is July 4. 20017

138 In order to measure the time spent in a program, the elock functuon should be catled at the start of the

program and its return valuc subtracted from the value returned by subsequent calls.

139, Thus. a positive or zero value for tm_isdst causes the mktime function to presume initially that Daylight

4,12.2.1 AMFRICAN NATIONAL STANDARD X3.159-1989 4.1

Saving Time, respectively. is or is not n effect for the specified time. A negative value for tm_isdst cuuses
the mktime function to attempt 1o determine whether Davlight Saving Time is in effect for the specitied time.

I~
(%]
td

Lihrary 173 Date and Time <time.h>

10

20

35

40

#include <stdio.h>
#include <time.h>

static const char *const wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"
}:
struct tm time str;
fx. .. %/
time_str.tm year = 2001 - 1900;
time_str.tm mon =7 -1;
time_str.tm mday = 4;
time str.tm hour = 0;
time str.tm min = 0;
time_str.tm_sec = 1;
time_ str.tm_isdst = -1;
if (mktime (&time str) == -1)
time_str.tm wday = 7;

printf ("%s\n", wday[time_str.tm wday]):
4.12.2.4 The time Function
Synopsis

#include <time.h>
time t time(time_t *timer) ;

Description

The time function determines the current calendar time. The encoding of the value is
unspecified.

Returns

The time function returns the implementation’s best approximation to the current calendar
time. The value {time t) -1 is returned if the calendar time is not available. 1f timer is not
a null pointer, the return value is also assigned to the object it points to.

4.12.3 Time Conversion Functions

Except for the strftime (unclion, these functions return values in one of two static objects;
a brokcen-down time structure and an array of chaxr. Exccution of any of the functions may
overwrite the information returned in either of these objects by any of the other functions. The
implementation shall behave as if no other library functions call these functions.

4,12.3.1 The asctime Function
Synopsis

#include <time . h>
char *asctime (const struct tm *timeptr);

Description

The asctime function converts the broken-down time in the structure pointed to by
timeptr into a string in the form

Sun Sep 16 01:03:52 1873\n\0

using the equivalent of the following algorithm.

41223 AMERICAN NATIONAL STANDARD X3.159-1989 4.12.3.1

Library 174 Date and Time <time . h>

10

o

20

(2]
pol}

30

d
h

40

char *asctime (const struct tm *timeptr)

{
static const char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"”
};
static const char mon_name([12] [3] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec¢"
};
static char result[26];
sprintf{result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday name[timeptr->tm wday],
mon_name [timeptr->tm _mon],
timeptr->tm mday, timeptr->tm hour,
timeptr->tm min, timeptr->tm sec,
1900 + timeptr->tm year);
return result;
}
Returns

The asetime function returns a pointer to the string,
4.12.3.2 The ctime Function
Synopsis

#include <time.h>
char *ctime(const time t *timer);

Description

The ctime function converts the calendar time pointed to by timer to local time in the
form of a string. It is equivalent to

asctime (localtime (timer))
Returns

The ctime function returns the peinter returned by the asctime function with that broken-
down time as argument.

Forward references: the localtime function (4.12.3.4).
4.12.3.3 The gmtime Function
Synopsis

#include <time.h>
struct tm *gmtime (const time t *timer);

Description

The gmtime function converts the calendar time pointed to by timer into a broken-down
time, expressed as Coordinated Universal Time (UTC).

Returns

The gmtime funcrion retumns a pointer to that object, or a null pointer if UTC is not
available.

4.12.3.1 AMERICAN NATIONAL STANDARD X3.159-198¢ 3.12.33

Library 175 Date and Time <time.h>

20

25

35

40

45

i

4.12.3.4 The localtime Function
Synopsis

#include <time.h>
struct tm *localtime (const time t *timer);

Description

The localtime function converts the calendar time pointed to by timer into a broken-
down time, expressed as local time.

Returns

The localtime function returns a pointer to that object.
4.12.3.5 The strftime Function
Synopsis

#include <time.h>
size_t strftime(char *s, size_t maxsize,
const char *format, const struct tm *timeptr);

Description

The strftime function places characters into the array pointed to by s as controlled by the
string pointed to by format. The format shall be a multibyte character sequence, beginning and
ending in its initial shift state. The format string consists of zero or more conversion specifiers
and ordinary multibyte characters. A conversion specifier consists of a % character followed by a
character that determines the behavior of the converston specifier. All ordinary multibyte
characters (including the terminating null character) are copied unchanged into the array. If
copying 1akes place between objects that overlap, the behavior is undefined. No more than
maxsize characters are placed into the array. Each conversion specifier is replaced by
appropriate characters as described in the following list. The appropriate characters are
determined by the LC_TIME category of the current locale and by the values contained in the
structure pointed to by timeptr.

%a is replaced by the locale’s abbreviated weekday name.

$B s replaced by the locale’s full weekday name.

b is replaced by the locale’s abbreviated month name.

%B is replaced by the locale’s full month name.

%c is replaced by the locale’s appropriate date and time representation.

%d is replaced by the day of the month as a decimal number (01-31).

$H 1s replaced by the hour (24-hour clock) as a decimal number (00-23).

%I is replaced by the hour (12-hour clock) as a decimal number (01-12).

%j is replaced by the day of the year as a decimal number (001-366).

$m s replaced by the month as a decimal number (01-12).

%M s replaced by the minute as a decimal number (00-58).

%p is replaced by the locale’s equivalent of the AM/PM designations associated with a 12-
hour clock.

%S is replaced by the second as a decimal number (00-61).

U is replaced by the week number of the year (the first Sunday as the first day of week 1)
as a decimal number (00-53).

%w is replaced by the weekday as a decimal numbet (0-6), where Sunday is O.

%W is replaced by the week number of the year (the first Monday as the first day of week 1)
as a decimal number (00-53).

$x is repluced by the locale’s appropriate date representation.

%X is replaced by the locale’s appropriate time representation,

gy is replaced by the vear without century as a decimal number (00-99).

%Y is replaced by the year with century as a decimal number.

4 AMERICAN NATIONAL STANDARD X3.159-1989 4,12.3.5

Library 176 Date and Time <time .h>

%2 is replaced by the time zone name or abbreviation, or by no characters 1if no time zone i~
determinable.
%% s replaced by %.
If a conversion specifier is not onc of the above, the behavior is undefined.
5 Returns
If the total number of resulting characters including the terminating null character is not more
than maxsize, the strftime function returns the number of characters placed into the array

pointed to by s not including the terminating null character. Otherwise. zero is returned and the
contents of the array are indeterminate.

4.12.3.5 AMERICAN NATIONAL STANDARD X1*.159-1989 4.12.3.5

Library 177 Future Library Directions

20

30

4.13 Future Library Directions

The following names are grouped under individual headers for convenience. All external
narnes described below are reserved no matter what headers are included by the program.

4.13.1 Errors <errno.h>

Macros that begin with E and a digit or E and an uppercase letter (followed by any
combination of digits, letters, and underscore) may be added to the declarations in the
<errno.h> header.

4.13.2 Character Handling <ctype .h>

Function names that begin with either is or to, and a towercase letter (followed by any
combination of digits, letters, and underscore} may be added to the declarations in the
<ctype . h> header.

4.13.3 Localization <locale.h>

Macros that begin with LC_ and an uppercase letter (followed by any combination of digits.
letters, and underscore) may be added to the definitions in the <locale.h> header.

4.13.4 Mathematics <math.h>

The names of all existing functions declared in the <math.h> header, suffixed with £ or 1.
are reserved respectively for corresponding functions with £loat and long double arguments
and return values.

4.13.5 Signal Handling <signal.h>

Macros that begin with either SIG and an uppercase letier or SIG_ and an uppercase letter
(followed by any combination of digits, letters, and underscore) may be added to the definitions
in the <signal.h> header.

4.13.6 Input/Output <stdio.h>

Lowercase letters may be added to the conversion specifiers in fprintf and fscanf.
Other characters may be used in extensions.

4.13.7 General Utilities <stdlib.h>

Function names that begin with str and a lowercase letter (followed by any combination of
digits, letters, and underscore) may be added to the declarations in the <stdlib.h> header.

4.13.8 String Handling <string.h>

Function names that begin with str, mem, or wes and a lowercase letter (followed by any
combination of digits, letters, and underscore) may be added to the declarations in the
<string.h> header.

AMERICAN NATIONAL STANDARD X3.159-1989 4.13.%

Appendixes 178 [anguage Svnlax Summarny

Appe ndixes (These Appendixes are not part of American Nutional Standard X3.139-1980. but are included

for informarion only.)

These appendixes collect information that appears in the standard. and are not necessarily complete.

A. Language Syntax Summary

The notation is described in the introduction to Section 3 (Language).
A.1 Lexical Grammar
A.1.1 Tokens

(3.1) token:
kevwaord
identifier
constant
string-literal
operator
punctuater

3.1) preprocessing-token:
header-nume
identifier
pp-number
[‘ll[]}'(l('f(’l'-('()”j'f(”]f
string-lireral
aperator
puictator
each non-white-space character that cannot be one of the above

A.1.2 Keywords
(3.1.1) keyword: one of

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default gotoe sizeof volatile
do if static while

A.1.3 Identifiers

(3.1.2) identifier:
nondigit
identifier nondigit
identifier digit

(3.1.2) nondigit: one of
_a b cde £ g h i jJ k 1 m
n o p g r s t u v w x y z
A B C D E F G H I J K L M
N 0 P Q R 8§ T U V W X Y Z
(3.1.2) digit: one of
0 1 2 3 4 5 6 7 8 39

A, AMERICAN NATIONAL STANDARD X3.159-1989 Al

Appendixes 179

A.1.4 Constants

(3.1.3) constant:

foating-constant

[nte ger-constant
enumeration-constant
character-constant

(3.1.3.1) floating-constant:

[fractional-constunt exponent-part Jloating-suffix

.) opt
digit-sequence exponent-part floa mg-s:g{cﬁ_\'um

(3.1.3.1) fractional-constant:

3.1.3.1)

(3.1.3.1)

(3.1.3.1)

(3.1.3.1)

(3.1.3.2)

(3.1.3.2)

(3.1.3.2)

(3.1.3.2)

(3.1.3.2)

(3.1.3.2)

(3.1.3.2)

Ald

a’igir-seqnenwopf . digit-sequence
digit-sequence

exponent-part:
e s[,wro " digit-sequence
E sign digit-sequence
8ty digit-sey

sign: onc of
+ -

digit-sequence.
digit
digit-sequence digit

fAoating-suffix: one of
£ 1 F L

inreger-constant:
decinal-constant integer-suffix
octal-constani imeger-.wy‘ﬁ,\'” .
hexadecimal-constant integer-suffiv

opt

opt
decimal-constant:

nonzero-digit

decimal-constant digit

octal-constant:
0
octal-constant octal-digit
hexadecimal-constant:
Ox hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of

1 2 3 4 5 6 7 8 8

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of

g 1 2 3 4 5 6 7 8 9
a b ¢ d e £
A B C D E F

AMERICAN NATIONAL STANDAED X3.159-1989

Language Syntax Summary

Appendixes 180

(3.1.3.2) inreger-suffiv:
unsigned-supfic tong-suffiv .
i L-syy

e . .] /
long-suffry mr.wgnm-‘\'u]ﬁ_\-(}“‘
£l

(3 V32 ansigned-suffix: one of
u U

{3132y Jong-suffiv: one of
1 L

(3.1.3.3) eaumeration-constant:
identifier

(3.1.3.4) character-consrant.
te-char-segnence’
L’ c-char-segreice!
(3.1.3.4) c-clhur-sequcice:

c-char
c-char-sequence c-char

(3134 c-char:
any member of the source character set except

Language Syntax Summary

the single-quote . backslash \. or new-line character

cscape-sequaence

(3.1.3.4, escape-sequcence.!
simple-escape-seguence
octal-ese Ape-seguence
hexadecimal-escape-seqgitence

(L34 simple-escape-seqgitence: one of
NVOOAT AN\
Va \b \f A\n \r \t \v

(3134 octal-escape-sequenice.
N\ octal-divi
N\ octal-digit octal-digir
\ octal-divir octul-digit octal-digit

(3. 134} hexwdecimal-escape-seguence
\x hexadecind-digit
hexadecimal-cscape-seguence hexadecimal-cigin

A.1.5 String Literals

(3.1.4) srring-literal:
"s-char-sequence "
[
L"s-char-seguence
{

"

i
(3.1.4) s-chur-sequence:
s-char
s-Char-seqitence s-char
(3. 1.4y s-char:
any member of the source character set except

the double-quote ™. backslash \. or new-line character

Csedpe-sequenee

Ald AMERICAN NATIONAL STANDARI X3.159-1989

Appendixes 181
A.1.6 Operators
(3.1.5) eperater: one of
[1) ->
++ - & * + - ~ ! gizeof
/ % << >> < > <= = == 1= A
? :
= *= /: k= 4= —= <£L<L= = &= Ao
P A 1
A.1.7 Punctuators
(3.1.6) punctuator. one of
L1 ¢y {3y = ., = ; ... #
A.1.8 Header Names
(3.1.7) header-nanie:
<h-char-sequence>
"y-char-sequence”
(3.1.7) h-char-sequence:
h-char
h-char-sequence li-char
(3.1.7) h-char:
any member of the source character set except
the new-line character and >
(3.1.7) q-char-sequence:
g-char
g-char-sequence ¢-char
(3. 1.7) g-char:
any member of the source character set except
the new-line character and "
A.1.9 Preprocessing Numbers
(3.1.8) pp-number:

digit

digir
pp-itumber digit
pp-mmber nondigit
pp-iumber e sign
pp-rimber B sign
pp-niimber

AMERICAN NATIONAL STANDARD X3.1549-14989

Language Syntax Summary

ALY

Appendixes 182 Language Syntax Summary

A.2 Phrase Structure Grammar
A.2.1 Expressions

(3.3.1) primary-expression:
identifier
constant
string-literal
(expression)

(3.3.2) postfix-expression:
DEIRAFY-eXpression
postfiv-expression [expression]
postfic-expression (urgumcur»({\pr('.sx\‘iw1—[1]&rw
postfix-expression . identifier
postfix-expression => identifier
postiiv-expression ++
postfiv-expression ——

)

W

(3.3.2) argument-cxpression-fisi:
USSIQRINENT-CApression
argumernit-expression-list , assignment-expression

(3.3.3) unarv-expression.
POSAN-cXpression
++ wnary-expression
—— HRGAFY-epression
HNArV-operalor casi-expression
sizeof wnaiv-expression
sizeof { npe-name)

(3.3.3) gaury-opergior: one of
& * + - ~ !

(3.3.4) cast-expression:
HRATY-CXPressioi
(rvpe-nanie) cast-expression

{3.3.5) multiplicative-expression:
CUSL-CXPYeSSIoNt
multiplicative-expression * cast-expression
mudtiplicative-expression [cast-expression
multiplicative-expressiont % casi-eapression

(3.3.6) wdditive-expression:
multiplicative-expression
wdditive-cxpression + mudtiplicative-expression
additive-expression — nultiplicative-expression
(3.3.7) shifl-cxpression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

A2 AMERICAN NATIONAL STANDARD X3.159. 1980 Al

Appendixes

183

(3.3.8) relational-expression:

shift-expression
relational-expression <
relational-expression >

(3.3.9) equality-expression.

(3.3.10)

(3.3.13)

(3.3.14)

{3.3.15)

(3.3.16)

(3.3.16)

(3.3.17)

relational-expression

shift-expression
shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Language Syntax Summary

equalityv-expression == relational-expression
equality-expression Y= relational-cxpression

AND-expression:
equality-expression
AND-expression & eguality-expression

exclusive-OR-expiession:
AND-expression

exclusive-QR-expression ~ AND-expression

inclusive-OR-expression:
exclusive-OR-expression

inclusive-OR-expression | exclusive-OR-expression

logical-AND-expression:
inclusive-OR-expression

logical-AND-expression && inclusive-OR-expression

logical-OR-expression:
logical-AND-expression

logical-OR -expression |} logical-AND-expression

conditional-expression:
logical-OR-expression
Ingtcal-OR-expression ? expression

assignmens-expression:
conditional-expression

¢ conditional-expression

HAATY-€Xpression assignment-operator assignment-expiression

assigameni-operator: one of
/= =

= *= += - L=

expression:
assicnmeni-expression
CAPression , ussignmeni-expression

(3.4) constanr-expression:

conditional-expression

A.2.2 Declarations

(3.5) declaration:
dectaration-specifiers 1'm'f~dm'laramivliwﬁlr ;

(3.5) declaration-specifiers.

storage-class-specifier d(}(’Im'afi(m-.s'pe('r_ﬁers”

npe-specifier d(}(‘/amticm-spp('r_'ﬁers”
rype-qualifier declaration-specifier s

AMERICAN NATIONAL STANDARD X3.159-1985

1
'

= &= A= |=

[?f

Appendixes 184 Language Syntax Summmary

(3.5) inmi-declararor-fise:
init-declarator
mit-dectararor-list , init-declarator

(3.5Y init-declarator:
declarator
declarator = initializer

(3.5.1) storuge-class-specifier:
typedef
extern
static
auto
register

(3.5.2) nepe-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifrer
vpedef-name

(3.5.2.1) struct-or-union-specifier:
SIrUCt-aF-uiian idcfm{ﬁt)r“ . { souct-declaration-fist '}
struct-or-union identifier

(3.5.2.1) struct-or-union:
struct
union

(3.5.2.1) srruct-decltararion-list:
struct-dectaration
struct-declaration-list struct-declaration

(3.5.2.1y struct-declaration:
spectfier-gualifier-list struct-declarator-list ;

(3.5.2.1) specifier-gualifier-fist:
npﬂmaﬁm'mamm%mmmmﬁh%’
type-gualificr xpe(‘iﬁer—qualiﬁer-[isrnpr

(3.5.2.1) struct-declarator-list:
strict-declarator
sruct-declarator-list , struct-declarator

{3.5.2.1) struct-declarator:
declarator
de('[(u'urm'um Loconstani-expression
(3.5.2.2) enum-specifier:
enum idmmﬁm'm! { enumeraror-fist }
enum identifier

b
[

A22 AMERICAN NATIONAL STANDARD X3.159-1989 A

Appendixes 185 Language Syntax Summary

(3.5.2.2) enumerator-fise;
eRumerator
enumerator-list , enumerator

(3.5.2.2) enumerator:
envmeration-constant
entmeration-constant = constant-expression

(3.5.3) tpe-qualifier:
const
volatile

(3.5.4) declarator:

pointer ot direct-declarator
{

(3.5.4) direct-declarator.
ideatifier
(declarator)

direct-declarator [('onsran.r~(’.\‘13;'(’&?1'0)10[”]

direct-declarator (parameter-type-list)

direct-declarator idenfr‘ﬁcr-[i.\‘rjpr)
€

(3.5.4) painter:
* f_vpe-qna/iﬁer-lr’sf”}
* r_\’pe-quahﬁm’-/r’x{um pointer

(3.5.4) nype-qualifier-list:
rype-qualifier
tvpe-qualifier-list type-gualifier

(3.5.4) parameter-type-list.
paraneter-list
parameter-list ,

(3.5.4) perameter-list:
parameter-declaration
parameter-list , parameter-declaration

(3.54) parameter-deciaration.
declararion-specifiers declarator
declaration-specifiers absn‘ac‘!—dec’lm‘a{or”

(3.5.4) identifier-list:
identifier
identifier-list , identifier

N

(3.5.5) nype-name:
specifier-qualifier-list ah.ﬂ'rac‘r—dc)z‘lammr(w

(3.5.5) abstract-declarator:
pointer
I)Uimcrﬁpr direct-abstract-declaraior

(3.5.5) direct-abstract-declarator:
{ ahsrract-declararoir)
(ﬁl‘t’('I—(thfJ‘(l('T‘d(’(‘/(i?‘al()i‘” " [('0nsrant—e.\pressimo ;]

Froeto “ At 3 + 0x cy e A AU _1
direct-abstract-declar atu”m (parameter-type Ilsfnm)

(3.5.6) rvpedef-name:
identifier

N
W]

A2.2 AMERICAN NATIONAL STANDARD X3.159.1989 A.

Appendixes

186

(3.5.7) initializer:

assignmeni-expression
{ initializer-list '}
{ initializer-list , }

(3.5.7) ininalizer-list:

initializer

initializer-list , inftializer

A.2.3 Statements

(3.6) siatement:

(3.6.1)

(3.6.2)

(3.6.2)

(3.6.2)

(3.6.5)

(3.6.6)

A2.2

labeled-statemen!
compound-statement
expression-statement
selection-siatement
iteration-statement

Jump-statement

labeled-statement;

identifier Statementi
case consiant-expression
default Starement

statement

(‘0’71[)0)’0?(1 Statemeint:

{ declaration-list starement-lisr }
opr o

i

declaration-list:

declaration
declaration-list declaration

statement-list:

statement
statement-list starement

expression-statement.

expression ;
P opt

selection-statement:

if (expression) statement
if { expression) statement else
switch (expression) statement

statement

iteration-statenent:

while (expression) siatement
do statemen! while (expression) ;

for (e.x’pre’ssi(mn : a\‘presxfmr”

;expression
pt ! opt

el

jump-srammenr:

goto identifier ;
continue ;
break ;

return eypression ;
{JP"

AMERICAN NATIONAL STANDARD X3.159-198Y

Language Syatax Summary

Y statement

A23

Appendixes 187

A.2.4 External Definitions

(3.7) rranslation-unii.
external-declaration
wanslation-unir external-declaration

(3.7) external-declaration:
Junction-definition
declaration

(3.7.1) function-definition:

Language Syntax Summary

de(-!aranmr-.qm'('ﬁemnp’ declarator (1(’('[(1/'arf(m-/r’sf“[)f compound-statement

A.3 Preprocessing Directives

(3.8) preprocessing-file:
group
srom opI
(3.8) group.
aroup-part
group group-part
(3.8) group-part:
pp-f()/((’llSU . new-tine
if-section
coittrol-line
(3.8.1) iftsection:
if-eroup efz_ﬁgmumfw cisc;qmup”p, endif-line
(3.8.1) if-group:
if constani-expression new-line grr)up”p[
ifdef Jidewrifier new-line group
ifndef ideitifier new-line gmupj

opt
(3.8.1) elif-groups:
elif-group
elif-groups elif-group
(3.8.1) elif-group:
e2lif COnSIant-expression new-line gmup”p’

(3.8.1} else-group:
else new-fine group
O

(3.8.1) endif-line:
endif new-fine

control-line:

(3.8.2) # include pp-tokens new-line

(3.8.3) # define identifier replacement-list new-line

(3.8.3) # define ideniificrr Iparen fd(’nnﬁm'—/J'J.'I[W Y replacenient-list new-line
(3.8.3) # undef identifter new-line

(3.8.4) # line pp-iokens new-line

{3.8.5) # error pp—!()/\'em“ . new-line

(3.8.6) # pragma pp»rakm.s‘”m new-line

{3.8.7) # new-line

(3.8.3) Iparen:

the left-parenthesis character without preceding white space

A24 AMERICAN NATIONAL STANDARD X3.159-1989

Appendixes 188 Language Syntax Sumisary
(3.8.3) replucement-list:
p-tokens
pp-Toke }'0;){

(3.8) pp-rokens:
preprocessing -token
pp-tokens preprocessing-token
(3.8) new-line:
the new-line character

A3 AMERICAN NATIONAL STANDARD X3.139-1989 A3

Appendixes 189 Sequence Points

B. Sequence Points
The following are the sequence points described in 2.1.2.3.
* The call t¢ a function, after the arguments have been evaluated (3.3.2.2).

* The end of the first operand of the following operators: logical AND && (3.3.13); logical OR ||
(3.3.14); conditicnal ? (2.3.15); comma , (3.3.17).

* The end of a full expression: an initializer {3.5.7); the expression in an expression statement (3.6.3);
the controlling cxpression of a selection statement (if or switch) (3.6.4); the controlling
expression of a while or do statement (3.6.5); each of the threc expressions of a for stutcment
(3.6.5.3); the expression in a return statement (3.6.6.4).

B. AMERICAN NATIONAL STANDARD X3.159-1989 B.

Appendixes 190

C. Library Summary
C.1 Errors <errno.h>

EDOM
ERANGE
errno

C.2 Common Definitions <stddef .h>

NULL

cffsetof (hpe, member-designator)
ptrdiff t

size t

wchar_t

C.3 Diagnostics <assert . h>

NDEBUG
void assert (int expression);

C.4 Character Handling <ctype .h>

int isalnum{int ¢);
int isalpha{int c):
int isentrl{int g¢);
int isdigit{int c);
int isgraph{int c):
int islower{int c);
int isprint (int c);
int ispunct(int c);
int isspace(int c):
int isupper(int c);
int isxdigit{int c};
int tolower (int ¢}
int toupper(int c):

C.5 Localization <locale.h>

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

NULL

struct lconv

char *setlocale{int category, const char *locale):;

struct lconv *localeconv(void);

AMERICAN NATIONAL STANDARD X3.159-1989

Library Summary

Appendixes 191

C.6 Mathematics <math.h>

HUGE_VAL

double acos(double x);

double asin(double x);

double atan{double x) .

double atan2 {double y, double x);
double cos(double x);

double sin({double x);

double tan(double x);

double cosh(double x):

double sinh(double x);

double tanh(double x):

double exp(double x):;

double frexp(double value, int *exgp);
double ldexp{double x, int exp);
double log(double x):;

double logl0 (double x);

double modf (double value, double *iptr);
double pow(double x, double y):
double sqrt (double x):

double ceil (double x):

double fabs(double x):;

double floor (double x):

double fmod(docuble x, double y);

C.7 Nonlocal Jumps <set jmp.h>

jmp_buf
int set jmp (jmp_buf env);
void longjmp (jmp_buf env, int val);

C.8 Signal Handling <signal.h>

sig_atomic_t
SIG_DFL
SIG_ERR
SIG_IGN
SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM

void (*signal{int sig, wvoid (*func) (int))) (int):

int raise(int sig);

C.5 AMERICAN NATIONAL STANDARD X3.159- (989

Library Summary

C3

Appendixes 192

C.9 Variable Arguments <stdarg.h>

va list

void va_start (va_list ap, puimN);
type va_arg(va_list ap, fHpe);

void va_end(va_list ap);

C.10 Input/Output <stdio.h>

_IOFBF
_IOLBF

__IONBF

BUFSIZ

EOF

FILE

FILENAME MAX

FOPEN MAX

fpos_t

L tmpnam

NULL

SEEK_CUR

SEEK_END

SEEK SET

size:k

stderr

stdin

stdout

TMP_MAX

int remove(const char *filename) ;

int rename (const char *old, const char *new);

FILE *tmpfile{void);

char *tmpnam{char *s}:;
int fcleose{(FILE *stream);
int ££flush(FILE *stream);

Library Summary

FILE *fopen(const char *filename, const char *mode);
FILE *freopen(censt char *filename, const char *mode,

FILE *stream);
void setbuf (FILE *stream, char *buf);

int setvbuf (FILE *stream, char *buf, int mode, size t size);

int fprintf(FILE *stream, const char *format,
int fscanf(FILE *stream, const char *format,

int printf(const char *format, ...};
int scanf(const char *format, ...):

int sprintf(char *s, const char *format,
int sscanf({const char *s, const char #*format,
int vfprintf (FILE *stream, const char *format,
int vprintf (const char *format, wva_list arg):

b i

)i

R -

va_list arg);

int vsprintf(char *s, const char *format, va_list arq),

int fgetc(FILE *stream);

char *fgets(char *s, int n, FILE *stream);

int fpute(int ¢, FILE *stream);

int fputs(const char *s, FILE *stream),

int getc(FILE *stream);

int getchar (void);

char *gets(char ¥*s);

int putc(int ¢, FILE *stream);

Cc.o AMERICAN NATIONAL STANDARD X3.159-1989

C.10

Appendixes 193 Library Summary

int putchar(int c);

int puts {(const char *s};

int ungetc{int c, FILE #*stream);

size t fread(void *ptr, size t size, size t nmemb,
FILE *stream);

size_t fwrite(const void *ptr, size_t size, size t nmemb,
FILE *stream);

int fgetpos(FILE *stream, fpos_t *pos):

int fseek (FILE *stream, long int offset, int whence);

int fsetpos (FILE *stream, const fpos t *pos):

long int ftell (FILE *stream);

void rewind (FILE *stream);

void clearerr(FILE *stream);

int feof (FILE *stream);

int ferror(FILE *stream);

void perror (const char *s);

C.10 AMERICAN NATIONAL STANDARD X3.159-1989 C.10

Appendixes 194 Library Summary

C.11 General Utilities <stdlib.h>

EXIT_FAILURE

EXIT_ SUCCESS

MB_CUR_MAX

NULL

RAND MAX

div_t

ldiv_t

size t

wchar t

double atof (const char *nptr};

int ateoi(const char *nptr);

long int atol (const char *nptr);

double strtod(const char *nptr, char **endptr):

long int strtol (const char *nptr, char **endptr, int base);

unsigned long int strtoul (const char *nptr, char **endptr,
int base);

int rand(void);

void srand(unsigned int seed);

void *calloc(size t nmemb, size t size);

void free(void *ptr);

void *malloc{size_t size);

void *realloc(void *ptr, size t size);

void abort (void) .

int atexit (void (*func) {(void)):

void exit (int status):;

char *getenv(const char *name);

int system(const char *string):

void *bsearch{const void *key, const void *base,
size t nmemb, size t size,
int (*compar) (const void *, const void *));

void gsort (veid *base, size t nmemb , size t size,
int (*compar) (const void *, const wvoid *));

int abs{int 3j);

div_t div(int numer, int denom);

long int labs (long int j):

ldiv_t 1ldiv(long int numer, long int denom);

int mblen{const char *s, size t n);

int mbtowc(wchar_t *pwc, const char *s, size t n);

int wctomb(char *s, wchar_t wchar):

size t mbstowcs(wchar_ t *pwcs, const char *s, size t n);

size t wcstombs (char *s, const wchar t *pwcs, size t n);

C.i0 AMERICAN NATIONAL STANDARD X3.159-1989 C.H]

Appendixes 195 Library Summary

C.12 String Handling <string.h>

NULL

size_t

void *memcpy (veid *sl, const void *s2, size_t n);
void *memmove (void *sl, const void *s2, size t n):
char *strcpy(char *sl, const char #*s2);

char *strncpy(char *sl, const char *s2, size t n);
char *strcat {char *sl, const char *s2);

char *strncat(char *sl, const char *s2, size t n);
int memcmp {const void *sl, const void *s2, gize t n);
int stromp{const char *sl, const char *s2);

int strcoll (const char #*sl, const char *s2);

int strncmp{const char *sl, const char *s2, size t n};
size t strxefrm(char *sl, const char *s2, size t n);
void *memchr(const veid *s, int c, size_t n);

char *strchr{const char *s, int c¢);

size t strcspn(const char *sl, const char *s2);
char *strpbrk(const char *sl, const char *s2);

char *strrchr(const char *s, int c):

size t strspn (const char *sl, const char *s2);

char *strstr(const char *sl, const char *s2);

char *strtok{char *sl, const char *s2);

void *memset (void *s, int ¢, size_t nj);

char *strerror (int errnum);

size t strlen(const char *s);

C.13 Date and Time <time.h>

CLOCKS_PER_SEC

NULL

cleck t

time t

sizemt

struct tm

clock t clock(void):

double difftime(time_t timel, time_ i timeD);

timert mktime (struct tm *timeptr);

time_t time(time_t *timer):

char *asctime (const struct tm *timeptr);

char *ctime (const time t *timer);

struct tm *gmtime (const time_t *timer);

struct tm *localtime(const time_t *timer);

size t strftime (char *s, size t maxsize,
const char *format, const struct tm *timeptr);

C.l1 AMERICAN NATIONAL STANDARD X3.159-1989 C.13

Appendixes

D. Implementation Limits

The contents of a hcader <limits.h> are given below, in alphabetic order.

196

Implementation Limits

The minimum

magnitudes shown shall be replaced by implementation-defined magnitudes with the same sign. The
values shall all be constant expressions suitable for use in #if preprocessing directives. The

components are described further in 2.2.4.2.1.

ffdefine
#define
#define
f##define
f##define
#define
#define
#define
#define
#define
f#define
##define
#define
#define
#define
#idefine

CHAR BIT
CHAR MAX
CHAR_MIN
INT MAX
INT MIN
LONG_MAX
LONG_MIN
MB_LEN_MAX
SCHAR_MAX
SCHAR_MIN
SHRT_MAX
SHRT MIN
UCHAR_MAX
UINT_MAX
ULONG_MAX
USHRT _MAX

8

UCHAR MAX or SCHAR MAX

0 or SCHAR MIN

+32767
-32767
+2147483647
~-2147483647
1

+127

-127

+32767
-32767

255

65535
4294967295
65535

The contents of a header <float . h> are given below, The value of FLT RADIX shall be a
constant expression suitable for use in #if preprocessing directives. Values that need not be constant

expressions shall be supplied for all other components.

2.242.2.

#define

FLT_ROUNDS

The components are described further in

The values given in the following list shall be replaced by implementation-defined expressions that
shall be equal or greater in magnitude (absolute value) 1o those shown, with the same sign:

#define
#define
#define
#define
fidefine
#define
#define
#define
#define
#define
fidefine
#define
#define
#define
#define
#define
#fdefine
#define
#define

DBL_DIG
DBL_MANT DIG
DBL_MAX_10_EXP
DBL_MAX_EXP

DBL MIN 10_EXP
DBL_MIN EXP

FLT DIG

FLT MANT DIG
FLT _MAX 10_EXP
FLT_MAX_EXP

FLT _MIN 10_EXP
FLT MIN EXP
FLT_RADIX
LDBL_DIG
LDBL_MANT_DIG
LDBL_MAX_10_EXP
LDBL MAX EXP
LDBL_MIN 10 EXP
LDBL_MIN_EXP

10

+37

=37

+37

~-37

+37

-37

The values given in the following list shall be replaced by implementation-defined expressions that

shall be equal to or greater than those shown:

AMERICAN NATIONAL STANDARD X3.159-1989

Appendixes 197 Implementation Limits

#define DBL MAX 1E+37
#define FLT MAX 1E+37
#define LDBL_MAX 1E+437

The values given in the following list shall be replaced by implementation-defined expressions that
shall be equal to or less than those shown:

#define DBL EPSILON 1E--9
#define DBL_MIN 1E-37
#define FLT_EPSILON 1E-5
#define FLT MIN 1E-37
#define LDBL_EPSILON 1E-9
#define LDBL_MIN 1E-37

D. AMERICAN NATIONAL STANDARD X3.159-1989 D.

Appendixes 198 Common Warnings

E.

Common Warnings

An implementation may gencrate warnings in many situations, none of which is specitied as part of

the standard. The following are a few of the more commen situations,

A block with mitialization of an object that has automatic storige duration 15 jumped into (3.1.2.4).

An integer character constant includes more than one character or a wide character constant includes
maore than one multibyte character (3.1.3.4).

The characters /* are found in a comment (3.1.7).

An implicit narrowing conversion is encountered. such as the assignment of a long int or a
double (0 an int, or a pointer 1o void (o a pointer to any type other than a character type (3.2).

An “"unordered’ binary operator (not comma, && or | |) contains a side-effect 1o an Ivalue in one
operand, and a side-etfect to. or an access to the value of. the identical Ivalue in the other operand
(3.3).

A function is called but no prototype has been supplied (3.3.2.2).

The arguments in a function call do not agree in number and tvpe with those of the parameters in 2
function definition that 15 not a prototype (3.3.2.2).

An object is defined bur not used (3.5).

A value is given to an object of an enumeration type other than by assignment ot an enumeration
constant that 1s a member of that type. or an enumeration variable that has the same type. or the
vatue of a function that retumns the same enumeration type (3.5.2.2).

An aggregate has a partly bracketed initialization (3.5.7).

A statement cannot be reached (3.6).

A statement with no apparent effect is encountered (3.6),

A constant expression is used as the controlling expression of a selection statrement (3.6.4).
A function has return statements with and without expressions {3.6.6.4).

An incorrectly formed preprocessing group is encountered while skipping a preprocessing group

{3.8.1).

An unrecognized #pragma directive 15 encountered (3.8.6).

AMERICAN NATIONAL STANDARD X3.159-1989 k.

Appendixes 199 Portability Issues

F.

Portability Issues

This appendix collects some information about portability that appears in the standard.

F.1 Unspecified Behavior

The following are unspecified:
The manner and timing of static initialization (2.1.2).

The behavior if a printable character is written when the active position is at the final position of a
line (2.2.2).

The behavior if a backspace character is written when the active position is at the initial position of
a line (2.2.2).

The behavior if a horizontal tab character is written when the active position is at or past the last
defined horizontal tabulation position (2.2.2).

The behavior if a vertical tab character 18 writlen when the active position is at or past the last
defined vertical tabulation position (2.2.2).

The representations of floating types (3.1.2.5).

The order in which expressions are evaluated — in any order conforming to the precedence rules,
even in the presence of parentheses (3.3).

The order in which side effects take place (3.3).

The order in which the function designator and the arguments in a function call are evaluated
(3.3.2.2).

The alignment of the addressable storage unit allocated 1o hold a bit-field (3.5.2.1).

The layout of storage for parameters (3.7.1).

The order in which # and ## operations are evaluated during macro substitution (3.8.3.3),
Whether errno is a macro or an external identifier (4.1.3).

Whether set jmp is a macro or an external identifier (4.5.1.1).

Whether va_end is a macro or an external identifier (4.8.1.3).

The value of the file position indicator after a successful call to the ungete function for a text
stream, until all pushed-back characters are read or discarded (4.9.7.11).

The details of the value stored by the fgetpos function on success (4.9.9.1).
The details of the value returned by the ftell function for a text stream on success (4.9.9.4).

The order and contiguity of storage allocated by the calloe, malloce, and realloc functions
(4.10.3).

Which of two elements that compare as equal is returned by the bsearch function (4.10.5.1).

The order in an array sorted by the gsort function of two elements that compare as equal
(4.10.5.2).

The encoding of the calendar time returned by the time function (4.12.2.3),

AMERICAN NATIONAL STANDARD X3.159-1989 F.1

Appendixes 200 Portability Tssues

F.2 Undefined Behavior

The behavior in the following circumstances is undefined:

A nonempty source file does not end in a new-line character, ends in new-line character
immediately preceded by a backslash character, or ends n a partial preprocessing token or comment
(2.1.1.2).

A character not in the required character set is encountered in a source file, except i a
preprocessing token that is never converted to a token, a character constant, a string literal, a header
name, or a comment {(2.2.1).

A comment, string literal, character constant, or header name contains an invalid multibyte character
or does not begin and end in the initial shift state (2.2.1.2).

An unmatched * or " character is encountered on a logical source line during rokenization (3.1}
The same identifier is used more than once as a label in the same function (3.1.2.1).
An identifier is used that 1s not visible in the current scope (3.1.2.1).

{dentifiers that are intended to denote the same entity differ in a character beyond the minimal
significant characters (3.1.2).

The same identifier has both internal and external linkage in the same translation unir (3.1.2.2).

The value stored in a pointer that referred to an object with automatic storage duration is used
(3.1.2.4).

Two declarations of the same object or function specify types that are not compatible (3.1.2.6).
An unspecified escape sequence is encountered in a character constant or a string literal (3.1.3.4).
An attempt is made to modily a string literal of either form (3.1.4).

A character string literal token is adjacent to a wide string literal token (3.1.4).

The characters 7, \, ", or /* are encountered between the € and > delimiters or the characters ’,
\, or /* are encountered between the " delimiters in the two forms of a header name preprocessing

token (3.1.7).
An arithmetic conversion produces a result that cannot be represented in the space provided (3.2.1).

An tvalue with an incomplete type is used in a context that requires the value of the designated
object (3.2.2.1).

The value of a void expression is used or an implcit conversion (except to void) is applied 1o 4
void expression (3.2.2.2).

An object is modified more than once, or is modified and accessed other than to determine the new
value, between two sequence points (3.3).

An arithmetic operation is invalid (such as division or modulus by () or produces a result that
cannot be represented in the space provided (such as overflow or underflow) (3.3).

An object has its stored value accessed by an lvalue that does not have one of the following types:
the declared type of the object. a qualified version of the declared type of the object, the signed or
unsigned type coresponding to the declared type of the object. the signed or unsigned type
corresponding to a qualified version of the declared type of the object, an aggregate or union type
that (recursively) includes one of the atorementioned types among its members, or a character type
(3.3).

An argument to a function is a void expression (3.3.2.2).

For a function caill without a function prototype. the number of arguments does nol agree with the
number of parameters (3.3.2.2).

AMERICAN NATIONAL STANDARD X3.159-1989 F.2

Appendixes 201 Portability Issues

F.2

For a function call without a function prototype, if the function is defined without a function
prototype, and the types of the arguments after promotion do not agree with those of the parameters
after promotion (3.3.2.2).

If a function is called with a function prototype and the function is not defined with a compatible
type (3.3.2.2).

A function that accepts a variable number of arguments is called without a function prototype that
ends with an ellipsis (3.3.2.2).

An invalid array reference, null pointer reference, or reference to an object declared with automaric
storage duration in a terminated block occurs (3.3.3.2).

A pointer to a function is converted to peint to a function of a different type and used to call a
function of a type not compatible with the original type (3.3.4).

A pointer to a function is converted to a pointer to an object or a pointer to an object is converted
to a pointer 1o a function (3.3.4).

A pointer is converted to other than an integral or pointer type (3.3.4).

A pointer that does not behave like a pointer t0 an element of an array object i8 added to or
subtracted from (3.3.6).

Pointers that do not behave as if they point to the same array object are subtracted (3.3.6).

An expression is shifted by a negative number or by an amount greater than or equat to the width in
bits of the expression being shifted (3.3.7).

Pointers are compared using a relational operator that do not point to the same aggregate or umion

(3.3.8).
An object is assigned to an overlapping ebject (3.3.16.1).

An identifier for an object is declared with no linkage and the type of the object is incomplete after
its declarator, or afier its init-declarator if it has an initializer (3.5).

A function is declared at block scope with a storage-class specifier other than extern (3.5.1).
A structure or union is defined as containing only unnamed members (3.5.2.1).
A bit-field is daclared with a type other than int, signed int. or unsigned int (3.5.2.1).

An attempt is made to modify an object with const-qualified type by means of an Ivalue with non-
const-qualified type (3.5.3).

An attempt is made to refer to an object with volatile-qualified type by means of an Ivalue with
non-volatile-qualified type (3.5.3).

The value of an uninitialized object that has automatic storage duration is used before a value is
assigned (3.5.7).

An object with aggregate or union type with static storage duration has a non-brace-enclosed
initializer, or an object with aggregate or union type with automatic storage duration has either a
single expression initializer with a type other than that of the object or a non-brace-enclosed
initializer (3.5.7).

The value of a function i1s used, but no value was returned (3.6.6.4).

An identifier with external linkage is used but there does not exist exactly one external detinition in
the program for the identifier (3.7).

A function that accepts a variable number of arguments is defined without a parameter type list that
ends with the ellipsis notation (3.7.1).

AMERICAN NATIONAL STANDARD X3.159-19%9 [[.2

Appendixes 202 Portability Issues

-

F2

An identifier for an object with internal linkage and an incomplete type is declared with a tentative
definition (3.7.2).

The wken defined is generated during the expansion of a #i€ or #elif preprocessing directive
(3.8.1).

The #include preprocessing directive that results after expansion does not match one of the two
header name forms {3.8.2).

A macro argument consists of no preprocessing tokens (3.8.3).

There are sequences of preprocessing tokens within the list of macro arguments that would
otherwise act as preprocessing directive lings (3.8.3).

The result of the preprocessing operator # is not a valid character string literal (3.8.3.2).

The result of the preprocessing concatenation operator ## is not a valid preprocessing token
(3.8.3.3).

The #line preprocessing directive that results after expansion does not match one of the two
well-defined forms (3.8.4).

One of the following identifiers is the subject of a #define or #undef preprocessing directive:
defined, LINE , FILE _, DATE_ ., TIME__,or __STDC__ (3.3.8)

An attempt is made to copy an object to an overlapping object by use of a library function other
than memmove (section 4).

The effect if the program redefines a reserved external identifier (4.1.2).

The effect if a standard header is included within an external definition; is included for the first time
after the first reference to any of the functions or objects it declares, or to any of the types or
macros it defines; or is included while a macro is defined with a name the samec as a kcyword
(4.1.2).

A macro definition of exrrno is suppressed to obtain access to an acrual object (4.1.3).

The parameter member-designator of an of £setof macro is an invalid right operand of the
operator for the fype parameter or designates bit-field member of a structure (4.1.5).

A library function argument has an invalid value, unless the behavior is specified explicitly (4.1.6).
A library function that accepts a variable number of arguments is not declared (4.1.6).

The macro definition of assert is suppressed to obtain access to an actual function (4.2).

The argument to a character handling function is out of the domain (4.3).

A macro definition of setjmp is suppressed to obtain access to an actual function (4.6).

An invocation of the setjmp macro occurs in a context other than as the controlling expression in
a selection or iteration stalement, or in a comparison with an integral constant expression (possibly
as implied by the unary ! operator) as the controlling expression of a selection or iteration
statemenlt, or as an expression statement (possibly cast to void) (4.6.1.1).

An object of automatic storage class that does not have volatile-qualified type has been changed
between a setdmp invocation and a longjmp call and then has its value accessed (4.6.2.1).

The longjmp function is invoked from a nested signal routine (4.6.2.1).

A signal occurs other than as the result of calling the abort or raise function, and the signal
handler calls any function in the standard library other than the signal funcrion itself or refers to
any object with static storage duration other than by assigning a value to a static storage duration
variable of rype volatile sig_atomic_t (4.7.1.1).

AMERICAN NATIONAL STANDARD X3.159-198Y F.2

Appendixes 203 Portability Issues

F2

The value of errno is referred to after a signal occurs other than as the result of calling the
abort or raise function and the corresponding signal handler calls the signal function such
that it returns the value SIG_ERR (4.7.1.1).

The macro va_arg is invoked with the parameter ap that was passed to a function that invoked
the macro va_arg with the same parameter (4.8).

A macro definition of va_start, va_arg, or va_end or a combination thereof is suppressed to
obtain access to an actual function (4.8.1).

The paramcter parmN of a va_start macro is declared with the register storage class, or
with a function or array type, or with a type that is not compatible with the type that results after
application of the default argument promotions {4.8.1.1).

There is no actual next argument for a va_arg macro invocation (4.8.1.2).

The type of the actual next argument in a variable argument list disagrees with the type specified by
the va_arg macro (4.8.1.2).

The va_end macro is invoked without a corresponding invocation of the va_start macro
(4.8.1.3).

A rcwurn occurs from a function with a variable argument list initialized by the va_start macro
before the va_end macro is invoked (4.8.1.3).

The stream for the ££1ush function points to an input stream or to an update stream in which the
most recent operation was input {4.9.5.2).

An output operation on an update stream is followed by an input operation without an intervening
call to the ££flush function or a file positioning function, or an input operation on an update
stream is followed by an output operation without an intervening call to a file positioning function
(4.9.5.3).

The format for the £printf or £scanf function does not match the argument list (4.9.6).

An invalid conversion specification is found in the format for the fprintf or £scanf function
(4.9.6).

A %% conversion specification for the fprint £ or £scanf function contains characters between
the pair of % characters {4.9.6).

A conversion specification for the £print £ function contains an h or 1 with a conversion specifier
other than d, i, n, o, u, %, or X, or an L with a conversion specificr other than e, E, £, g, or G

(4.9.6.1).

A conversion specification for the £print£ function contains a # flag with a conversion specifier
other than o, x, X, e, E, £, g, or G (4.9.6.1).

A conversion specification for the £print£ function contains a 0 flag with a conversion specifier
otherthan d, i,0,u,x. X, e, E, £, g, or G (49.6.1).

An aggregate ot union, Or a pointer 10 an aggregate or union is an argument to the fprintf
tunction, except for the conversion specifiers $s (for an array of character type) or $p (for a pointer
to void) (4.9.6.1).

A single conversion by the fprintf function produces more than 509 characters of output
(4.9.6.1).

A conversion specification for the £scanf function contains an h or 1 with a conversion specifier
other than d, i, n, o, u, or x, or an L with a conversion specifier other than e, £, or g (4.9.6.2).

A pointer value printed by $p conversion by the fprintf function during a previous program
execution is the argument for $p conversion by the £scanf function (4.9.6.2).

AMERICAN NATIONAL STANDARD X3.159-1989 F.2

Appendixes 204 Portability [ssues
* “The result of a conversion by the £scanf function cannot be represented in the space provided. or
the receiving object does not have an appropriate type (4.9.6.2).

* The result of converting a string to a number by the atof, atoi, or atol function cannot be
represented (4.10.1).

» The value of a pointer that refers to space deallocated by a call to the £ree or realloc function
1s referred to (4.10.3),

» The pointer argument to the free or realloc function does not match a pointer earlier returned
by calleoc, malloc. or realloc, or the object pointed o has been deallocated by a call wo
free or realloc (4.10.3).

* A program executes more than one call to the exit function (4.10.4.3).

* The result of an integer arithmetic function (abs, diwv, labs, or 1div) cannot be represented

(4.10.6).

¢ The shift states for the mblen, mbtowe, and wetomb functions are not explicitly reset to the
initial state when the LC_CTYPE category of the current locale is changed (4.10.7).

« An array written to by a copying or concatenation function is too small (4.11.2, 4.11.3).
* An invalid conversion specification is found in the format for the strftime [unction (4.12.3.5).
F.3 Implementation-Defined Behavior

Each implementation shall document its behavior in each of the areas listed in this section. The
following arc implementation-defined:

F.3.1 Translation
* How a diagnostic is identified (2.1.1.3).
F.3.2 Environment
« The semantics of the arguments to main (2.1.2.2,1).
* What constitutes an interactive device (2.1.2.3).
F.3.3 Identifiers

* The number of significant initial characters (beyond 31) in an identifier without external linkage
(3.1.2).

* The number of significant initial characters (beyond 6) in an identifier with external linkage (3.1.2).
* Whether case distinctions are significant in an identifier with external linkage (3.1.2).
F.3.4 Characters

» The members of the source and execution character sets, except as explicitly specified in the
standard (2.2.1).

» The shift states used for the encoding of multibyte characters (2.2.1.2).
» The number of bits in a character in the execution character set (2.2.4.2.1).

« The mapping of members of the source character set (in character constants and string literals) to
members of the execution character set (3.1.3.4).

* The valug of an integer character constant that contains a character or escape sequence not
represented in the basic execution character set or the extended character set for a wide character
constant (3.1.3.4).

» The value of an integer character constant that contains more than one character or a wide character
constant that contains more than one multibyte character (3.1.3.4).

F.2 AMERICAN NATIONAL STANDARD X3.159-1989 F.34

Appendixes 205 Portability Issues

* The current locale used to convert multibyte characters into corresponding wide characters (codes)
for a wide character constant (3.1.3.4).

* Whether a “'plain”” char has the same range of values as signed char or unsigned char
(3.2.1.1).

F.3.5 Integers
* The representations and sets of values of the various types of integers (3.1.2.5).

+ The result of converting an integer to a shorter signed integer, or the result of converting an
unsigned integer to a signed integer of equal length, if the value cannot be represented (3.2.1.2).

« 'The results of bitwise operations on signed integers (3.3).
¢ The sign of the remainder on integer division (3.3.5).
* The result of a right shift of a negative-valued signed integral type (3.3.7).
¥.3.6 Floating Point
« The representations and scis of values of the various types of floating-point numbers (3.1.2.5).

* The direction of truncation when an integral number is convericd o a floating-point number that
cannot exactly represent the original value (3.2.1.3).

« The direction of truncation or rounding when a floating-point number is converted to a narrower
floating-point number (3.2.1.4).

F.3.7 Arrays and Pointers

« The type of integer required to hold the maximum size of an array — that is, the type of the
sizeof opcralor, size t (3.3.3.4, 4.1.1).

* The result of casting a pointer to an integer or vice versa (3.3.4).

* The type of integer required to hold the difference between two pointers to elements of the same
array, ptrdiff t (3.3.6,4.1.1)

F.3.8 Registers

* The extent to which objects can actually be placed in registers by use of the register storage-
class specifier (3.5.1).
F.3.9 Structures, Unions, Enumerations, and Bit-Fields

* A member of a4 union object is accessed using a member of a different type (3.3.2.3).

* The padding and alignment of members of structures (3.5.2.1). This should present no problem
unless binary data written by one implementation are read by another.

»

* Whether a *‘plain’
bit-field (3.5.2.1).

int bit-field 1s treated as a signed int bit-field or as an unsigned int

* The order of allocation of bit-fields within a unit (3.5.2.1).
* Whether a bit-field can straddle a storage-unit boundary (3.5.2.1).

* The integer type chosen to represent the values of an enumeration type (3.5.2.2).

F.3.4 AMERICAN NATIONAL STANDARD X3.15%-1980 F.3.9

Appendixes 206 Portability [ssues

F.3.10 Qualifiers

What constitutes an access to an object that has volatile-qualified type (3.5.5.3).

F.3.11 Declarators

The maximum number of declarators that may modify an arithmetic, structure, or union type (3.5.4).

F.3.12 Statements

The maximum number of case values in a switch stutement (3.6.4.2),

F.3.13 Preprocessing Directives

Whether the value of a single-character character constant in a constant expression that controls
conditional inclusion matches the value of the same character constant in the execution character
scl. Whether such a character constant may have a negative value (3.8.1).

The method for locating includable source files (3.8.2).

The support of quoted names for includable source files (3.8.2).
The mapping of source file character sequences (3.8.2).

The behavior on cach recognized #pragma dircctive (3.8.6).

The definitions for . DATE and _ TIME when respectively, the date and time of translation
arc not available (3.8.8).

F.3.14 Library Functions

The nuli pointer constant to which the macro NULL expands (4.1.5).
The diagnostic printed by and the termination behavior of the assert function (4.2).

The sets of characters tested for by the isalnum, isalpha, iscntrl. islower, isprint.
and isupper functions (4.3.1).

The values returned by the mathematics functions on domain errors (4.5.1).

Whether the mathematics functions sct the integer expression errno to the value of the macro
ERANGE on underflow range errors (4.5.1).

Whether a domain error occurs or zero is returned when the £mod function has a second argument
of zcro (4.5.6.4).

The set of signals for the signal function (4.7.1.1).
The semantics for each signal recognized by the signal function (4.7.1.1).

The default handling and the handling al program startup for cach signal rccognized by the signal
function (4.7.1.1).

If the equivalent of signal(sig, SIG_DFL); is not executed prior to the ¢all of a signal
handler, the blocking of the signal that is performed (4.7.1.1).

Whether the default handling is reset if the SIGILL signal is received by a handler specified 1o the
signal function (4.7.1.1).

Whether the last line of a text stream requires a terminating new-line character (4.9.2).

Whether space characters that are written out to a text stream immediately before a new-line
character appear when read in (4.9.2).

The number of null characters that may be appended (0 data writlen (o @ binary stream (4.9.2).

Whether the file position indicator of an append mode stream is initially positioned at the beginning
or end of the file (4.9.3).

310 AMERICAN NATIONAL STANDARD X3.139-1989 F.3 04

Appendixes 207 Portability Issues

»

Whether a write on a text stream causes the associated file to be truncated beyond that point (4.9.3).
The characteristics of file butfering (4.9.3).

Whether a zero-length file actually exists (4.9.3).

The rules for composing valid file names (4.9.3).

Whether the same file can be open multiple times (4.9 3).

The effect of the remove function on an open file (4.9.4.1).

The cffeet if 4 file with the new name exists prior to a call to the rename function (4.9.4.2).

The output for $p conversion in the £printf function (4.9.6.1).

The input for $p conversion in the fscanf function (4.9.6.2).

The interpretation of a — character that 1s neither the first nor the last character in the scanlist for
% [conversion in the £scanf function (4.9.6.2).

The wvalue to which the macro errzno is set by the fgetpos or ftell function on failure
(4.99.1, 4.5.9.4).

The messages gencrated by the perror function (4.9.10.4).
The behavior of the calloe, malloe, or realloe function if the size requested is zero (4.10.3).
The behavior of the abort function with regard to open and temporary files (4.10.4.1).

The status returned by the exit function if the value of the argument is other than zero,
EXIT SUCCESS. or EXIT FAILURE (4.104.3).

The set of environment names and the method for altering the environment list used by the
getenv function (4.10.4.4),

The contents and mode of execution of the string by the system function (4.10.4.5).
The contents of the error message strings returned by the strerror function (4.11.6.2).
The local time zone and Daylight Saving Time (4.12.1).

The era for the clock function (4.12.2.1).

F.4 Locale-Specific Behavior

The Tollowing characteristics of a hosted environment are locale-specific:

The content of the execution character set, in addition to the required members (2.2.1).
The direction of printing (2.2.2).

The decimal-point character (4.1.1).

The implementation-defined aspects of character testing and case mapping functions (4.3).
The collation sequence of the execution character set (4.11.4.4).

The formats for time and datc (4.12.3.5).

F.3.14 AMERICAN NATIONAL STANDARD X3.159- 1989 F.4

Appendixes 208 Portability Issues

F.5 Common Extensions

The following extensions are widely used in many systems. but are not portable to o all

implementations. The inclusion of any extension that may cause a strictly conforming program 1o
become invalid renders an implementation nonconforming, Examples of such extensions are new
keywords, or library functions declared in standard heuders or predeflined macres with names that do
not begin with an undcerscore.

F.5.1 Environment Arguments

In a hosted environment. the main tunction receives a third argument, char *envp[]. that points
to a null-terminated array of pointers to char. each of which points to a string that provides
information about the environment for this execution of the process (2.1.2.2.1).

F.5.2 Specialized Identifiers

Characters other than the underscore . letters. and digils. that are not defined in the required source
character set (such as the dollar sign $, or characters in national character sers) may appear in an
identifier (3.1.2).

F.5.3 Lengths and Cases of Identifiers

All characters in identifiers (with or without external linkage) are significant and case distinctions
are observed (3.1.2).

F.5.4 Scopes of Identifiers

A function identifier, or the identifier of an object the declaration of which contains the kevword
extern. has file scope (3.1.2.1).

F.5.5 Writable String Literals
String literals are modifiable. ldentical string literals shall be distinct (3.1.4).
F.5.6 Other Arithmetic Types

Other arithmetic types, such 4s long long int. and their appropriate conversions are defined
(3.2.2.1).

F.5.7 Function Pointer Casts

A pointer to an object or to void may be cast to a pointer to a function, allowing data to he
invoked as a function (3.3.4). A pointer to a function may be cast to a pointer to an abject or to void.
allowing a function to be inspected or modified (for example, by a debugger) (3.3.4).

F.5.8 Non-int Bit-Field Types
Types other than int, unsigned int. or signed int can be declared as bit-fields. with
appropriate maximum widths (3.5.2.1).

F.5.9 The fortran Keyword

The fortran declaration specifier may be used in a function declaration t¢ indicate that calls
suitable for FORTRAN should be generated, or that different representations for exiernal names are o be
generated (3.5.4.3).

E.5 AMERICAN NATIONAL STANDARD X3.159 1989 K59

Appendixes 209 Portability lssues

F.5.10 The asm Keyword

The asm keyword may be used to insert assembly language code directly into the trunslator ouput.
The most common implementation is via a statement of the form

asm (characier-string-lileral ') ;
(3.6).
F.5.11 Multiple External Definitions

There may be more than one external definition for the identifier of an object, with or without the
explicit use of the keyword extern, If the definitions disagree, or more than one iy initialized. the
behavior is undefined (3.7.2).

F.5.12 Empty Macro Arguments
A macro argument may consist of no preprocessing tokens (3.8.2).
F.5.13 Predefined Macro Names

Macro names that do not begin with an underscore, describing the translation and execution
environments, may be defined by the implementation before translation begins (3.8.8).

F.5.14 Extra Arguments for Signal Handlers

Handlers for specific signals may be called with extra arguments in addition to the signal number

(4.7.1.1).
F.5.15 Additional Stream Types and File-Opening Modes

Additional mappings from files to streams may be supported (4.9.2), and additional file-opening
modes may be specified by characters appended to the mode argument of the fopen function
(4.9.5.3).

F.5.16 Defined File Position Indicator

The file position indicator is decremented by each successful call 1o the ungete function for a text
stream, except if its value was zero before a call (4.9.7.11).

F.5.10 AMERICAN NATIONAL STANDARD X3.159-1989 F516

C Standard 210 inden

Index

Only magor references are listed.

! logical negation operator. 3.3.3.3 < less-than operator. 3.3.8
'= inequality operator, 3.3.9 << left-shift operator, 3.3.7

<<= left-shift assigniment operator, 3.3.16.2
operator. 3.1.5, 3.8.3.2 <= less-than-or-equal-to operator. 3 .3.8

punctuator, 3.1.6, 3.8
operator, 3.1.5. 3.8.3.3

equal-sign puncluator, 3.1.6. 3.3, 3.5.7
simple assignment operator. 3.3.16.1
% remaindcr operator, 3.3.5 == cqual-to opcrator, 3.3.9

%= remainder assignment operator, 3.3.16.2

> greater-than operator, 3.3.8

& address operator. 3.3.3.2 >= greater-than-or- equa} -to operator, 3.3.8
& bitwise AND operator, 3.3.10 >> right-shift operator, 3.3.7
&& logical AND operator, 3.3.13 >>= right-shift assignment operator. 3.3.16.2
&= bitwise AND assignment operator, 3.3.16.2
? ¢ condirtonal operator. 3.3.18
{) cast operator, 3.3 2?1 wigraph sequence, |, 2.2.1.1
() function-call operator 3322 2?72’ trigraph sequence, *, 2.2.1.1
{) parentheses punctuator. 3.1.6, 3.5.4.3 ?? (trigraph sequence, [, 2.2.1.1
27?) trigraph sequence. 1. 2.2.1.1
* indirection operator, 3.3.3.2 22— trigraph sequence, ~. 2.2.1.1
* multiplication operator. 3.3.5 272/ trigraph sequence, \, 2.2.1.1
* gsterisk punctuator, 3.1.6, 3.5.4.1 ?7< trigraph sequence, {, 2.2.1.1
*= multiplication assignment operator, 3.3,16.2 27?= trigruph sequence, #. 2.2.1.1
29> trigraph sequence, }. 2.2.1.1
+ addition operator, 3.3.6
+ unary plus operator, 3.3.3.3 [1 array subscript operator. 3.3.2.1
++ postfix increment operator, 3.3.2.4 [1 brackets punctoator. 3.1.6. 3.3.2.1. 3.54.2
++ prefix increment operator, 3.3.3.1
+= addition assignment operator, 3.3.16.2 \ backslash character. 2.2.1
\" double-guote-character escape sequence. 3.1.3.4
, comma operator., 3.3.17 \’ single-quote-character escape sequence. 3.1.3.4
;... cllipsis, unspecified parameters, 3.5.4.3 \ ? question-mark cscape sequence. 3.1.3.4
A\ backslash-character escape sequence. 3.1.3.4
- subtraction operator, 3.3.6 \O null character, 2.2.1, 3.1.3.4, 3.1 4
— unary minus operator, 3.3.3.3 \a alert escape sequence. 2.2.2. 3.1.3.4
—-— postfix decrement operator, 3.3.24 \b backspace escape sequence, 2.2.2, 3.1.3.4
—— prefix decrement operator, 3.3.3.1 \£ form-feed escape sequence. 2.2.2. 3.1.3.4
—-= gubtraction assignment operator, 3.3.16.2 \n new-line escape sequence. 2.2.2. 3.1.3.4
—-> structurefunion pointer operator, 3.342.3 Nocral digits octal-character escape sequence.
3.1.34
. structure/union member operator, 3.3.2.3 \r carriage-return escape sequence. 2.2.2, 3.1.3.4
. ellipsis punctuator, 3.1.6, 3.5.4.3 \t horizontal-tab escape sequence, 2,.2.2. 3.1 3.4
\v vertical-tab eseape sequence. 2.2.20 3.1.3.4
/ division operator, 3.3.5 \xhovadectmal digirs hexadecimal-character escape
/* */ comment delimiters, 3.1.7 sequence, 3.1.3.4
/= division assignment operator., 3.3.16.2
~ exclusive OR operator, 3.3.11
: colon punctuator. 3.1.6. 3.5.2.1 ~= exclusive OR assignment operator. 3.3.16.2
; semicolon punctuator, 3.1.6. 3.5, 3.6.3 { } braces punctuator, 3.1.6. 337, 3.6.2

AMERICAN NATIONAL STANDARD X3, 1591980

C Standard 211 index

| inclusive OR operator, 3.3.12 atan?2 function, 4.5.2.4
| = inclusive OR assignment operator, 3.3.16.2 atexit function, 4.10.4.2
| | logical QR operator, 3.3.14 atof function, 4.10.1.1

atoi function. 4.10.1.2
~ bitwise complemsnt operator, 3.3.3.3 atol function, 4.10.1.3

auto storage-class specifier, 3.5.1
__DATE__ macro, 3.8.8 automatic storage. reentrancy. 2.1,2.3, 2.2.3
__FILE__ macro.3.8.8.42]1 automatic storage duration, 3.1.2.4
__LINE__ macro, 3.8.8, 421
__STDC__ macro. 3.8.8 backslash character, \, 2.1.1.2, 2.2.1
__TIME__ macro, 3.8.8 backspace escape sequence, \b. 2.2.2, 3.1.3.4
_IOFBF macro, 4.9.1, 4.9.5.6 base documents, 1.5
__IOLBF macro, 4.9.1, 4.9.5.6 basic character set, 1.6, 2.2.1
_TIONBF macro, 4.9.1, 4.9.5.6 basic type, 3.1.2.5

binary stream, 4.9.2
abort function, 4.2.1.1, 4.10.4.1 bit. definition of, 1.6
abs function, 4.10.6.1 bit, high-order. 1.6
absolute-value functions. 4.5.6.2, 4.10.6.1, 4.10.6.3 bit, low-order, 1.6
abstract declarator, type name, 3.5.5 bit-field structure member. 3.5.2.1
abstract machine, 2.1.2.3 bitwise operators, 3.3, 3.3.7, 3.3.10, 3.3.11, 3.3.12
abstract semantics, 2.1.2.3 block. 3.6.2
acos function, 4.5.2.1 block identifier scope, 3.1.2.1
active position, 2.2.2 beld type convention, Section 3.
addition assignment operator, +=, 3.3.16.2 braces punctuator, { }. 3.1.6, 3.5.7, 3.6.2
addition operator, +, 3.3.6 brackets punctuator, [1. 3.1,6, 3.3.2.1. 3.5.4.2
additive expressions, 3.3.6 break statement, 3.0.6, 3.6.6.3
address operator, &. 3.3.3.2 broken-down-time type, 4.12.1
aggregate type, 3.1.2.5 bsearch function, 4.10.5.1
alert escupe sequence, \a, 2.2.2, 3.1.3.4 BUFSIZ macro, 4.9.1, 4.9.2, 4.9.5.5
alignment, definition of. 1.6 byte. definition of, 1.6
alignment of structure members, 3.5.2.1
AND operator, bitwise, &, 3.3.10 C program, 2.1.1.1
AND operator, logical, &&, 3.3.13 C Standard, definition of terms. 1.6
argc parameter, main function, 2.1.2.2,1 C Standard, organization of document, 1.4
argument, function, 3.3.2.2 C Standard, purpose of. 1.1
argument, 1.6 C Standard, references, 1.3
argument promotion, default, 3.3.2.2 C Standard, scope. restrictions and limits, 1.2
argv parameter, main function, 2.1.2.2.1 calloc function. 4.10.3.1
arithmetic conversions, usual, 3.2.1.5 carriage-return escape sequence, \r. 2.2.2, 3.1.3.4
arithmetic operators, unary. 3.3.3.3 case label, 3.6.1, 3.6.4.2
arithmelic type, 3.1.2.5 case mapping functions, 4.3.2
array declarator, 3.5.4.2 cast axpressions, 3.3.4
array parameter, 3.7.1 cast operator, (}. 334
array subscript operator, [1, 3.3.2.1 ceil function, 4.5.6.1
array type, 3.1.2.5 char type, 3.1.2.5, 3.2.1.1, 3.5.2
array type conversion, 3.2.2.1 CHAR_BIT macro, 2.2.4.2.1
arrow operator, —>, 3.3.2.3 CHAR_MAX mucro, 2.2.4.2.1
ASCII character set. 2.2.1.1 CHAR MIN mucro, 2.2.4.2.1
asctime function, 4.12.3.1 character, 1.6
asin function, 4.5.2.2 character case mapping functions, 4.3.2
assert macro, 4..LL1 character constant, 2.1.1.2, 2.2.1, 3.1.3.4
assert . h header, 4.2 character display semantics, 2.2.2
assignment operators, 3.3.16 character handiing header, 4.3
aslerisk punctuator, *, 3.1.6, 3.5.4.1 character input/output functions. 4.9.7
atan funcrion, 4.5.2.3 character sets, 2,2.1

AMERICAN NATIONAL STANDARD X3.159-1989

L ()
(2%}

C Standard

character string hiteral. 2.1.1.2, 3.1.4
character testing functions. 4.3.1

character type. 3.1.2.5,3.2.2.1. 3.5.7
character type conversion, 3.2.1.1
clearerr function, 4.9.10.1

clock function. 4.12.2.1

CLOCKS _PER SEC mucro, 4.12.1, 4.12.2.1
clock ttype. 412,71 4.122]

collating sequence. character set, 2.2.1
colon punctuator, :. 3.1.6. 3.5.2.1

comma operator. , , 3.3.17

command processor, 4.10.4.5

comment delimiters. /* */. 3.1.9
comments. 2.1.1.2. 3.1, 3.1.9

common cxlensions. F.5

common initial sequence. 3.3.2.3

common warnings. Appendix E.
comparison functions. 4.11.4

compatible type. 3.1.2.6. 3.5.2. 3.5.3. 354
complement operator, ~. 3.3.3.3
compliance, 1.7

composite type. 3.1.2.6

compound assignment operators, 3.3.16.2
compound statcment, 3.6.2

concatenation {unctions, 4.11.3

conceptuat modeis. 2,1

conditional inclusion, 3.8.1

conditional operator, ? :. 3.3.15
conforming freestanding implementation, 1.7
conforming hosted implementation. 1.7
conforming implementation, 1.7
conforming program, 1.7
const-qualified type. 3.1.2.5, 3.2.2.1,
const type qualifier, 3.5.3
constant, character, 3.1.3.4
constant, enumeration, 3.1.2, 3,1.3.3
constant. floating, 3.1.3.1

constant, integer, 3.1.3.2

constant, primary expression. 3.3.1
constant expressions. 3.4
constants. 3,1.3

constraints, definition of, 1.6
content, structure/unionfenumeration, 3.5.2.3
contiguity, memory allocation, 4.10.3
continue statement, 3.6.6, 3.6.6.2

control characters, 2.2.1. 4.3. 4.3.1.3
conversion. arithmetic operands, 3.2.1
conversion. array. 3.2.2.1

conversion, characters and integers, 3.2.1.1
conversion, explicit, 3.2

conversion, floating and integral. 3.2.1.3
conversion. floating types. 3.2.1.4. 3.2.1.5
conversion, function, 3.2.2,1

conversion. tunction arguments, 3.3.2.2. 3.7.1
conversion. implicit, 3.2

3453

Index

conversion, peinter, 3.2.2.1. 3.2.2.3

conversion, signed and unsigned integers. 3.2.1.2
conversion. void type. 3.2.2.2

conversions, 3.2

conversions. usugl arithmetic. 3.2.1.5

copying functions. 4.11.2

cos funcrion. 4,5.2.5

cosh function, 4.5.3.1

ctime function. 4.12.3.2

ctype.h header, 4.3

data streams, 4.9.2

date and time header. 4.12

DBL _ mucros, 2,2.4.2.2

decimal constant, 3.1.3.2

decimal digits, 2.2.1

decimal-point character, 4.1.1
declaration specifiers. 3.5

declarations. 3.5

declarators. 3.5.4

declarator type derivation. 3.1.2.5. 3.5.4
decrement operator, postfix, —, 3.3.2.4
decrement operator, prefix. ——, 3.3.3.1
default arsument promations, 3.3.2.2
default labhcl. 3.6.1, 3.6.4.2
#define preprocessing directive, 3.8.3
defined preprocessing operator, 3.8.1
definition. 3.5

derived declarator types. 3.1.2.5
derived types. 3.1.2.5

device input/output. 2.1.2.3

diagnostics. 2.1.1.3

diagnostics. assert . h. 4.2
difftime function, 4.12,2.2

direct input/output tunctions, 4.9.8
display device, 2.2.2

div function. 4.10.6.2

div_t wype, 4.10

division assignment operator. /=. 3.3.16.2
division operator, /., 3.3.5

do statement, 3.0.5, 3.6.5.2
documentation of implementation. 1.7
domain error. 4.5.1

dot operator, ., 3.3.2.3

double typc. 3.1.2.5, 3.1.3.1. 3.5.2
double type conversion. 3.2.1.4. 3.2.1.5
double-precision arithmetic, 2.1.2,3

element type. 3.1.2.5

EDOM macro. 4.1.3, 4.5, 4.5.1
#elif preprocessing directive. 3.8.1
ellipsis. unspecified parameters, ,
#else preprocessing directive, 3.8.1
else stalcment. 3.6.4. 3.6.4.1
end-of-file macro, EOF, 4.3, 4.9.1

L3543

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard 213

end-of-file indicator, 4.9.1, 4.9.7.1
end-of-line indicator, 2.2.1
#endif preprocessing directive, 3.8.1
enum type, 3.1.2.5, 352, 3.5.2.2
enumerated types, 3.1.2.5
enumeration constant, 3.1.2, 3.1.3.3
enumeration content, 3.5.2.3
enumeration members, 3.5.2.2
enumeration specifiers, 3.5.2,2
cnumeration tag, 3.5.2.3
enumeraror, 3.5.2.2

environment, Section 2,
environment functions, 4.10.4
environment list, 4.10.4.4
environmental considerations, 2.2
environmental limits, 2.2.4

EOF mucro, 4.3. 4.9.1
cqual-sign punctuator. =, 3.1.6, 3.5, 3.5.7
cqual-to operator, ==, 3.3.9

equality expressions, 3.3.9

ERANGE macro, 4.1.3, 4.5, 4.5.1, 4.10, 4.10.1
errno macro, 4.1.3, 451, 47.1.1, 4.9.104, 4.10.1
errno.h header, 4.1.3

error, domain, 4.5.1

error, range, 4.5.1

error conditions, 4.5.1

error handling functions, 4.9.10, 4.11.6.2

crror indicator, 4.9.1, 4.9.7.1, 4.9.7.3

#error preprocessing directive, 3.8.5

escape sequences, 2.2.1,2.2.2, 3.1.3.4
evaluation, 3.1.5, 3.3

exception. 3.3

exclusive OR assignment operator, *=, 3.3.16.2
exclusive OR operator, *~, 3.3.11

executable program, 2.1.1.1

exccution environment, character scts, 2.2.1
execution environment limits, 2.2.4.2
execution environments, 2.1.2

execution sequence, 2.1.2.3, 3.6

exit function, 2.1.2.2.3, 4.10.4.3

EXIT FAILURE macro, 4.10, 4.10.4.3
EXIT_SUCCESS muacro, 4.10, 4,10.4.3
explicit conversion, 3.2

exp function, 4.5.4.1

exponent part, floating constant, 3,1.3.1
exponential functions, 4.5.4

expression, 3.3

expression, full, 3.6

expression, primary, 3.3.1

expression. unary. 3.3.3

expression statement, 3.6.3

extended character sct, 1.6, 2.2.1.2

extern storage-class specifier, 3.1.2.2, 3.5.1, 3.7
external definitions, 3.7

external identifiers, underscore. 4.1.2

Index

external linkage. 3.1.2.2
external name, 3.1.2
cxternal object definitions. 3.7.2

fabs function. 4.5.6.2

felose function, 4.9.5.1

feof function. 4.9.10.2

ferror tunction. 4.9.10.3

f££lush function, 4.9.5.2

fget.c function. 4.9.7.1

fgetpos function. 4.9.9.1

fget.s function, 4.9.7.2
FILENAME MAX. 4.9.1

file, closing, 4.9.3

file, creating, 4.9.3

file, opening. 4.9.3

file access functions, 4.9.5

file identilicr scope, 3.1.2.1. 3.7

filc name, 4.9.3

FILFE object type, 4.9.1

fite operations. 4.9.4

file position indicator. 4.9.3

file positioning functions, 4.9.9

files. 4.9.3

float type, 3.1.2.5, 35.2

float type conversion, 3.2.1.4. 3.2.1.5
float.h header, 1.7. 2.2.4.2.2. 4.1.4
floating arithmetic functions, 4.5.6
floating constants, 3.1.3.1

floating sutfix, € or F, 3.1.3.1
floating types, 3.1.2.5

floating-point numbers. 3.1.2.5
floor function, 4.5.6.3

FLT_ macros, 2.2.4.2.2

fmod (unction, 4.5.6.4

fopen (unction, 4.9.5.3
FOPEN_MAX mucro. 4.9.1. 4.9.3
for statement, 3.6.5, 3.6.5.3
form-feed character, 2.2.1, 3.1
form-feed escape sequence, \£. 2.2.2. 3.1.3.4
formatted input/output functions, 4.9.6
forward references, definition of, 1.6
fpos_t object type, 4.9.1
fprintf function. 4.9.6.1

fputc functior, 2.2.2, 4.9.7.3
fputs function, 4.9.7.4

fread function, 4.9.8.1

free function, 4.10.3.2
treestanding execution environment, 2.1.2. 2.1.2.1
freopen function, 4.9.5.4

frexp function. 4.5.4.2

fscanf function, 4.9.6.2

fseek function. 4.9.9.2

fsetpos function, 4.9.9.3

ftell function, $.9.9.4

AMERICAN NATIONAL STANDARD X3.159- 1089

C Standard 214

tull expression, 3.6

tully buffered stream, 4.9.3
function, recursive call, 3.3.2.2
function argument, 3.3.2.2
function body. 3.7. 3.7.1
function call. 3.3.2.2

function call, library, 4.1.6
function declarator. 3.5.4.3
function definition, 3.5.4.3, 3.7.1
function designator, 3.2.2.1
function identifier scope, 3.1.2.1
function image. 2.2.3

function library, 2.1.1.1. 4.1.6

function parameter, 2,1.2.2.1, 3.3.2.2
function prototype. 3.1.2.1, 3.3.2.2, 3.54.3. 3.7.1
function prototype identifier scope, 3.1.2.1

function return. 3.6.6.4

function type., 3.1.2.5

function type conversion, 3.2.2.1
function-call operator, {). 3.3.2.2
future directions. 1.8, 3.9. 4.]3
future language dircctions. 3.9
future library directions, 4.13
fwrite function. 4.9.8.2

general utility library, 4.10
getc function, 4.9.7.5
getchar function, 4.9.7.6
getenv function. 4.10.4.4
gets function. 4.9.7.7
gmtime function. 4.12.3.3
goto statement, 3.1.2.1, 3.6.1.
graphic characters, 2.2.1
greater-than operator, > 3.3.8
greater-than-or-equal-to operator, >=, 3.3.8

3.6.60, 3.6.6.1

header names. 3.1. 3.1.7. 3.8.2

headers, 4.1.2

hexadecimal constant, 3.1.3.2

hexadecimal digit. 3.1.3.2, 3.1.34
hexadecimal escape sequence. 3.1.3.4
high-order bit, 1.6

horizontal-1ab character, 2.2.1, 3.1
horizontal-tab escape sequence, \t. 2.2.2, 3.1.3.4
hosted execution environment, 2.1.2, 2.1.2.2
HUGE VAL macro, 4.5.1.5.1, 4.10.1.4
hyperbolic functions. 4.5.3

identifier. 3.1.2. 3.3.1

identifier, maximum length. 3,1.2
identifier, reserved. 4.1.2.1
identificr linkage. 3.1.2.2
identifier list, 3.5.4

identifier name space. 3.1.2.3
identifier scope. 3.1.2.1

Index

identifier type, 3.1.2.5
IEEE floating-point arithmetic standard. 2.2.4.2.2
#if preprocessing directive, 3.8, 3.8.1

if statement. 3.6.4. 3.6.4.1

#ifdef preprocessing directive. 3.8, 3.8.1
#ifndef preprocessing directive, 3.8, 3.8.1
implementation, definition of, 1.6
implementation limits, 1.6, 2.2.4. Appendix D.
implementation-defined behavior, 1.6. F.3
implicit conversion, 3.2

implicit function declaration, 3.3.2

#include preprocessing directive. 2.1.1.2, 3.8.2
inclusive OR assignment operator, |=. 3 3 1 2
inclusive OR operator. {. 3.3.12

incomplete type, 3.1.2.5

increment operator, postfix, ++, 3.3.2.4
Increment operator, preﬁx. ++. 3331

indirection operator. *, 3.3
inequality operator. !=.
initialization. 2.1.2, 3.1

=

initializer, string hleml

initializer briaces. 3.5.7

initial shift state, 2,2.1.2, 4.10.7

input/output, device, 2.1.2.3

input/output header, 4.9

int type, 3.1.2.5. 3.1.3.2, 3.2.1.1. 3.2.1.2. 3.5,

INT_ MAX macro. 2.2.4.2.1

INT MIN macro, 2.2.4.2.1

integer arithmetic functions, 4.10.6

integer character constant. 3.1.3.4

integer constants, 3.1.3.2

integer suftix, 3.1.3.2

integer type. 3.1.2.5

integer type conversion. 3.2.1.1. 3.2.1.2

integral constant expression, 3.4

integral promotions. 2.1.2.3. 3.2.1.1

integral type, 3.1.2.5

integral type conversion. 3.2.1.3

interactive device. 2.1.2.3, 4.9.3, 4953

internal Iinkage, 3.1.2.2

internal name, 3.1.2

isalnum function. 4.3.1.1

isalpha function, 4.3.1.2

isentrl function. 4.3.1.3

isdigit function, 4.3.1.4

isgraph function. 4.3.1.5

islower function. 4.3.1.6

1SO 4217:1987 Currencies and Funds Representation.
3. 4.4.2.1

1SO 646:1983 Invariant Code Set. 1.3, 2.2.1.1

isprint function, 2.2.2, 4.3.1.7

ispunect function, 4.3.1.8

isspace function. 4.3.1.9

isupper function. 4.3.1.10

isxdigit function, 4.3.1.11

N

s
P

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard

italic rvpe convention, Section 3,
iteration statements, 3.6.8

jmp buf array. 4.6
jump statements. 3.6.6

keywords. 3.1.1

L_tmpnam macro. 4.9.1

label name, 3.1.2.1, 3.1.2.3

labeled statements, 3.6.1

labs function, 4.10.6.3

language, Section 3.

language, future directions, 3.9
language syntax summary, Appendix A,
LC_ALL. 4.4

LC_COLLATE. 4.4

LC_CTYPE, 4.4

LC_MONETARY, 44

LC_NUMERIC, 4.4

LC_TIME, 4.4

lconwv structure type, 4.4

LDBL_ macros, 2,2.4.2.2

ldexp function. 4.5.4.3

1div function, 4.10.6.4

ldiv_t type, 4.10

leading underscore in identifiers, 4.1.2
left-shift assignment operator, <<=, 3.3.16.2
left-shift operator, <<, 3.3.7

length function, 4.11.6.3

less-than operator, <, 3.3.8
less-than-or-equal-to operator, <=, 3.3.8
letter, 4,1.1

lexical elements, 2.1.1.2, 3.1

library, 2.1.1.1, Section 4.

library. future directions, 4,13

library funciions, use of, 4.1.6

library summary, Appendix C.
library terms, 4.1.1

limits, environmental, 2.2.4

limits. numerical, 2.2.4,2

limits, translation, 2.2.4.1

limits.h header, 1.7, 2.2.4.2.1, 4.14
line buffered stream. 4.9.3

line number, 3.8.4

#1line preprocessing directive, 3.8.4
lines, 2.1.1.2, 3.8, 4.9.2

lines, logical, 2.1.1.2

lines. preprocessing directive, 3.8
linkages of identifiers, 3.1.2.2

locale. definition of, 1.6
locale-specific behavior, 1.6, F 4
locale.h header. 4.4
localeconv function, 4,4.2.1
localizanon. 4.4

Index

localtime function, 4,12.3.4

log function, 4.5.4.4

logl0 function, 4.5.4.5

logarithmic functions, 4.5.4

togical AND operator, &&. 3.3.13

logical negation operator, !, 3.3.3.3

logical OR operator, ||, 3.3.14

logical source lines, 2.1.1.2

long double suffix, 1 or L, 3.1.3.1

long double type, 3.1.2.5, 3.1.3.1, 3.5.2
long double type conversion, 3.2.14, 3.2.1.5
long int type, 3.1.2.5, 32,12, 352
long integer suffix, 1 or L, 3.1.3.2
LONG_MAX macro, 2.2.4.2.1

LONG_MIN macro, 2.2.4.2.1

longdmp function, 4.6.2.1

low-order bit, 1.6

Ivatue, 3.2.2.1. 3.3.1, 3324, 3.3.3.1, 33.16

macro tunction vs. definition, 4.1.6
macro name definition, 2.2.4.1
macro names, predefined, 3.8.8
macro. redefinition of, 3.8.3

macro replacement, 3.8.3

main (unctior, 2.1.2.2.1 2.1.2.2.3
malloc function, 4.10.3.3
math.h header, 4.5

MB CUR MAX. 4.10

MB_LEN MAX. 2.24.2.1

mblen function, 4,10.7.1
mbstowcs function, 4.10.8.1
mbtowc function, 4.10.7.2
member-access operators, .
memchr function, 4.11.5.1
memcmp function, 4.11.4.1
memcpy function, 4.11.2.1
memmove function, 4,11,2,2
memory management functions, 4.10.3
memset function. 4,11.6.1

minus operator, unary, =, 3.3.3.3
mktime function, 4.12,2.3

modf function, 4.5.4.6

modifiable lvalue, 3.2.2.1

modulus function, 4.5.4.6

and ->, 3.3.2.3

muitibytle characters, 2.2.1.2, 3.1.3.4. 4.10.7, 4.10.8

multibyte functions, 4.10.7, 4.10.8
multiplication assignment operator, *=, 3.3.16.2
multiplication operator, *, 3,3.5

multiplicative expressions, 3.3.5

name, file, 4.9.3

name spaces of identifiers, 3.1.2.3

NDEBUG macro, 4.2

nearest-integer functions, 4.5.6

new-line character. 2.1.1.2, 2.2.1, 3.1. 3.8. 3.8.4

AMERICAN NATIONAL STANDARD X3.156-1989

-2
(@)

C Standard

new-ling escape sequence, \n, 2.2.2. 3.1.3.4
nongraphic characters. 2.2.2. 3.1.3.4
nonlocal jumps header, 4.6

not-equal-to operator, '=.3.3.9

null character padding of binary streams. 4.9.2
null character. \0. 2.2.1, 3.1.3.4, 3.1.4
NULL macro. 4.1.5

null pointer, 3.2.2.3

null pointer constant. 3.2.2.3

null preprocessing directive, 3.8.7

null statement. 3.6.3

number, floating-point, 3.1.2.5

numerical limits, 2.2.4.2

object, definition of. 1.6

ohject type. 3.1.2.5

obsolescence. 1.8, 3.9, 4.13

actal constani. 3.1.3.2

octal digit. 3.1.3.2. 3.1.3.4

octal escape sequence. 3.1.3.4

offsetof macro. 4.1.5

operand. 3.1.5. 3.3

operating system. 2.1.2.1. 4. 10.4.5

opcrator. unary, 3.3.3

operators. 3.1.5, 3.3

OR assighment operator, exclusive, =, 3.3.16.2
OR assignment opecrator, inclusive, |=, 3.3.16.2
OR operater. exclusive, *, 3.3.11

OR operator, inclusive, |, 3.3.12

OR operator. logical, |, 3.3.14

order of memory allocation, 4.10.3

order of evaluation of c¢xpression. 3.3

ordinary identificr name space. 3.1.2.3

padding, null character, 4.9.2
parameter, elhipsis. , L3543
parameter. tunction. 3.3.2,.2

parameter. main function, 2.1.2.2.1
parameter. 1.6

parameter type list. 3.5.4.3

parameters. program. 2.1.2.2.1
parentheses punctuator, {). 3.L.6. 3.5.4.3
parenthesized expression, 3.3.1
perror {unction. 4.9.10.4

physical source lines, 2.1.1.2

plus operator, unary. +, 3.3.3.3

pointer, null. 3.2.2.3

pointer declarator. 3.5.4.1

pointer operator. =>, 3.3.2.3

pointer 1o {unction returning type, 3.3.2.2
pointer tvpe. 3.1.2.5

pointer type conversion, 3.2.2.1, 3.2.2.3
portability of implementations, 1.7
position indicator. file. 4.9.3

postfix decrement operator, —-, 3.3.2.4

Index

postfix expressions, 3.3.2

postfix increment operator, ++, 3.3.2.4
pow function, 4.3.5.1

power functions, 4.5.5

#pragma preprocessing directive, 3.8.6
precedence of expression operators. 3.3
precedence of syntax rules, 2.1.1.2
predefined macro names. 3.8.8

prefix decrement operator, —-. 3.3.3.1
prefix increment operator, ++. 3.3.3.1
preprocessing concatenation, 2.1.1.2, 3.8.3.3
preprocessing directives, 2.1,1.2, 3.8
preprocessing numbers. 3.1, 3.1.8
preprocessing tokens, 2.1.1.2. 3.1, 3.8
primary expressions, 3.3.1

printf function, 4.9.6.3

printing characters, 2.2.2, 4.3, 4.3.1.7
program. conforming, 1.7

program, strictly conforming, 1.7

program diagnostics. 4.2.1

program execution, 2,1.2.3

program file. 2.1.1.1

program image, 2.1.1.2

program name. argv [0]. 2.1.2.2.1
program parameters. 2.1.2.2.1

program startup. 2.12, 2.1.2.1, 2.1.2.2.1
program structure, 2.1.1.1

program termination, 2.1.2. 2.1.2.1. 2.
promotions, default argument, 3.3.2.2
promotions, integral, 2,1.2.3, 3.2.1.1
prototype. function. 3.1.2.1. 3.3.2.2, 3.5.4.3. 3.7.1
pseudo-random sequence functions, 4.10.2
ptrdiff_t type. 4.1.5

punctuators, 3.1.6

pute function, 4.9.7.8

putchar function, 4.9.7.9

puts function, 4.9.7.10

{2
B
o
[g]

2
Ll

gsort function, 4.10.5.2
qualified types, 3.1.2.5
qualified version, 3.1.2.5

raise function, 4.7.2.1

rand function. 4.10.2.1

RAND MAX macro. 4,10, 4.10.2.1

range crror, 4.5.1

realloc function, 4,10.3.4

recursive function call, 3.3.2.2
redefinition of macro. 3.8.3

reentrancy, 2.1.2.3. 2.2.3

referenced type, 3.1.2.5

register storage-class specifier, 3.5.1
relational expressions, 3.3.8

reliubility of data. interrupted, 2.1.2.3
remainder assignment operator, %$=. 3.3.16.2

AMERICAN NATIONAL STANDARID X3 [59-1589

C Standard 217

remainder operator, %, 3.3.5

remove tunction, 4.9.4.1

rename function, 4.9.4.2

restore calling environment function, 4.6.2.1
reserved identifiers, 4.1.2.1

return statement, 3.6.6, 3.6.6.4

rewind function, 4.9.9.5

right-shift assignment operator, >>=, 3,3.16.2
right-shift operator, >>, 3.3.7

rvalue, 3.2.2.1

save calling environment function, 4.6.1.1
scalar type. 3.1.2.5

scanf functicn, 4.9.6.4

SCHAR MAX macro, 2.2.4.2.1

SCHAR MIN macro, 2.2.4.2.1

scope of identifiers, 3.1.2.1

search functions, 4.10.5.1, 4.11.5
SEEK_CUR macro, 4.9.1

SEEK_END macro, 4.9.1

SEEK SET macro. 4.9.1

selection statements, 3.6.4

semicolon punctuator, ;. 3.1.6, 3.5, 3.6.3
sequence points, 2.1.2.3, 3.3, 3.6, Appendix B,
setbuf function, 4.9.5.5

set jmp macro, 4.6.1.1

setimp.h header, 4.6

setlocale function, 4.4.1.1
setvbuf function. 4.9.5.6

shift expressions, 3.3.7

shift states. 2.2,1.2, 4.10.7

short int type. 3.1.2.5, 3.5.2

short int typc conversion, 3.2.1.1
SHRT_MAX macro, L2.4.2.1

SHRT MIN macro, 2.2.4.2.1

side effects. 2.1.2.3. 3.3
sig_atomic_t type, 4.7

$IG_DFL macro. 4.7

SIG_ERR mucro, 4.7

SIG_IGN macro. 4.7

SIGABRT macro, 4.7, 4.10.4.1

SIGFPE macro, 4.7

SIGILL macro, 4.7

SIGINT mucro, 4.7

SIGSEGV macro, 4.7

SIGTERM macro, 4.7

signal function. 4.7.1.1

stgnal handler, 2.1.2.3, 2.2.3. 4.7.1.1
signal.h header. 4.7

signals, 2,1.2.3,2.2.3, 4.7

signed char. 3.1.2.5

signed char type conversion, 3.2.1.1
signed integer types, 3.1.2.5. 3.1.3.2, 3.2.1.2
signed type. 3.1.2.5, 3.5.2

significand part, floating constant, 3.1.3.1

Index

simple assignment operator. =, 3.3.16.1

sin function, 4.5.2.6

single-precisior. arithmetic. 2.1.2.3

sinh function, 4.5.3.2

size t type, 4.1.5

sizeof operator, 3.3.3.4

sort function, 4.10.5.2

source character set. 2.2.1

source file inclusion. 3.8.2

source files, 2.1.8.1

souree text, 2.1.1.2

space character. 2.1.1.2, 2.2.1, 3.1

sprintf function, 4.9.6.5

sqgrt function. 4.5.5.2

srand function, 4.10.2.2

sscanf function. 4.9.6.6

standard streams. 4.9.1, 4.9.3

standard header, £loat . h, 1.7, 2.2.4.2

standard header, 1imits.h, 1.7, 2.2.4.

standard header, stdarg.h. 1.7. 4.8

standard header, stddef . h, 1.7, 4.1.5

standard headers, 4.1.2

state-dependent encoding. 2.2.1.2, 4.10.7

statements, 3.6

static storage duration, 3.1.2.4

static storage-class specifier,
3.1.2.2.3.1.24,3.5.1, 3.7

stdarg.h header. 1.7. 4.8

stddef . h header 1.7, 4.1.5

stderr file, 4.9.1, 4.9.3

stdin file. 4.9.1, 4.9.3

stdio.h header, 4.9

stdlib.h header. 4.10

stdout file, 4.9.1. 4.9.3

storage duration, 3.1.2.4

storage-class specifier, 3.5.1

strcat function. 4,11.3.2

strehr function, 4.11.5.2

stremp function, 4.11.4.2

strecoll function, 4,11.4.3

strepy function, 4.11.2.3

strespn function, 4.11.5.3

stream, [ully buffered, 4.9.3

strear, line buffered. 4.9.3

streaim, standard error. stderr, 4.9.1, 49.3

stream, standard input, stdin, 4.9.1, 4.93

stream, standard output, stdout, 4.9.1, 49.3

stream. unbuffered. 4.9.3

streams. 4.9.2

strerror function, 4.11.6.2

strftime function, 4.12.3.5

strictly conforming program, 1.7

string. 4.1.1

string conversion functions, 4.10.1

string handling header, 4.11

2.4.1.4
2.1, 4.14

AMERICAN NATIONAL STANDARD X3.159-1489

C Standard 218 Tndex

string length, 4.1.1, 4.11.6.3 tmpnam function. 4,9.4.4
string literal, 2.1.1.2, 2.2.1, 3.1.4, 3.3.1, 3.5.7 tokens. 2.1.1.2, 3.1. 3.8
string.h header, 4.11 tolower function, 4.3.2.1
strlen function, 4.11.6.3 toupper function. 4.3.2.2
strncat function, 4.11.3.2 translation environment, 2.1.1
strncmp function. 4.11.4.4 translation limits, 2.2.4.1
strnepy function. 4.11.2.4 translation phases. 2.1.1.2
strpbrk function. 4.11.5.4 translation unit, 2.1.1.1, 3.7
strrchr function. 4.11.5.5 trigonometric functions. 4.5.2
strspn function, 4.11.5.6 trigraph sequences, 2.1.1.2, 2.2.1.1
strstr function, 4.11.5.7 type, character, 3.1.2,5. 3.2.2.1, 3.5.7
strtod function, 4.10.1.4 type, compatible, 3.1.2.6, 3.5.2, 3.5.3, 354
strtok function, 4.11.5.8 type. composite, 3.1.2.6
strtol function, 4.10.1.5 type, const-yualified, 3.1.2.5, 3.5.3
strtoul function, 4.10.1.6 type. function, 3.1.2.5
structure/union arrow operator, —>. 3.3.2.3 type. incomplete, 3.1.2.5
structure/union content, 3.5.2.3 type. object. 3.1.2.8
structure/union dot operator, ., 3.3.2.3 tvpe. qualified. 3.1.2.5
structure/union member name space, 3.1.2.3 tvpe. unqualified, 3.1.2.5
structure/union specifiers, 3.5.2.1 tvpe. volatile-qualified. 3,1.2.5, 3.5.3
structure/union tag, 3.5.2.3 type category, 3.1.2.5
structure/union type, 3.1.2.5, 3.5.2.1 type conversions, 3.2
strxfrm function, 4.11.4.5 type definitions, 3.5.6
subtraction assignment operator, —=, 3.3.16,2 lype names. 3.5.5
subtraction operator, —, 3.3.6 type specitiers, 3.5.2
suffix, floating constant, 3.1.3.1 type qualifiers. 3.5.3
suffix, integer constant, 3.1.3.2 typedef specifier. 3.5.1, 3.5.2, 3.5.6
switch body, 3.6.4.2 types, 3.1.2.5
switch case label, 3.6.1, 3.6.4.2
switch default label, 3.6.1, 3.6.4.2 UCHAR MAX macro, 2.2.4.2.1
switch statement, 3.6.4, 3.6.4.2 UTNT_MAX macro, 2.2.4.2,1
syntactic categories, Section 3. ULONG_MAX macro, 2.2.4.2.1
syntax notation, Section 3. unary arithmetic operators. 3.3.3.3
syntax rules, precedence of, 2.1.1,2 unary expressions, 3.3.3
syntax summary, language, Appendix A. unary minus operator, —. 3.3.3.3
system function. 4.10.4.5 unary operators, 3.3.3

unary plus operator, +, 3.3.3.3
tab characters, 2.2.1 unbuffered stream. 4.9.3
tabs, white space, 3.1 #undef preprocessing directive, 3.8, 3.8.3. 4.1.6
tag. enumeration, 3.5.2.3 undefined behavior, 1.6. F.2
tag, structure/union. 3.5.2.3 underscore. leading, in identificrs, 4.1.2.1
1ag name space, 3.1.2.3 ungete function, 4.9.7.11
tan function. 4.5.2,7 union initialization. 3.58.7
tanh functicn, 4.5.3.3 union tag, 3.5.2.3
tentative definitions, 3.7.2 union type specifier. 3.1.2,5, 3.5.2, 3.5.2.1
text stream, 4.9.2 ungualified type. 3.1.2.5
time components, 4.12.1 unqgualified version. 3.1.2.5
1ime conversion functions, 4.12.3 unsigned infeger suffix, u or U, 3.1.3.2
time function, 4.12.2.4 unsigned integer types, 3.1.2.5, 3.1.3.2
time manipulation functions, 4.12.2 unsigned type conversion. 3.2.1.2
time.h header, 4.12 unsigned type, 3.1.2.5,3.2,1.2,3.5.2
time_t tvpe. 4.12.1 unspecified behavior, L6, Fo
tm structure type, 4.12.1 USHRT MAX macro, 2.2.4.2.1
TMP_MAX macro, 4.9.1 usual arithmetic conversions. 3.2,1.5

tmpfile function, 4.9.4.3

AMERICAN NATIONAL STANDARID X3.150-19K89

C Standard 219

va_arg macro, 4.8.1.2

va_end macro, 4.8.1.3

va_list type 4.8

va_start macro, ¢4.8.1.1

variable arguments header, 4.8
vertical-tab character, 2.2.1, 3.1
vertical-tab escape sequence, \v, 2.2.2, 3.1.34
vEprint £ function, 4.9.6.7
visibility of identifiers, 3.1.2.1

void expression, 3.2.2.2

void function parameter, 3.5.4.3
void type. 3.1.2.5, 3.5.2

void type conversion, 3.2.2.2
volatile storage. 2.1.2.3
volatile-qualified type, 3.1.2.5, 3.5.3
volatile type qualifier, 3.5.3
vprint £ function. 4.9.6.8
vsprintf function, 4.9.6.9

wchar t type, 3.1.34,3.1.4, 357, 4.1.5, 4.10
wcstombs function, 4.10.8.2

wcetomb function, 4.10.7.3

while statement, 3.6.5, 3.6.5.1

white space, 2.1.1.2, 3.1, 3.8, 4.3.19

wide character, 3.1.3.4

wide character constant, 3.1.3.4

wide string literal, 2.1.1.2, 3.1.4

Index

Rationale for
American National Standard
for Information Systems —
Programming Language —
C

(This Rationale is not part of American National Standard X3.159-1989, but is included for information only.)

UNIX is a registered trademark of ATET.
DEC and PDP-11 are trademarks of Digital Equipmeni Corporation.
POSIX is a trademark of IEEFE.

Contents

1 INTRODUCTION
1.1 Purpose oo i e e e e e e e e e
1.2 8Scope . . . e e e e e
13 ReferemCes v vy v e et e e e e e e e e e e e
1.4 Organization of thedocument, .
1.5 Basedocuments. 0 i e e e e
1.6 Definitionsof terms. v v v v s e .
1.7 Compliance o e e e e
1.8 Futuredirections i e
2 ENVIRONMENT
2.1 Conceptualmodels L oL o o o
2.1.1 Translation environment
2,1.2 Execution environmentst
2.2 FEnvironmental considerations
2.2.1 Charactersets v v v v vt i e e
2.2.2 Character display semantics
2.2.3 Signals and interrupts Lo
2.2.4 Environmental limits,
3 LANGUAGE
3.1 Lexical Elements i e
311 Keywords e
3.1.2 Identifiers e e e
3.1.3 Comstants . . . v v .0 e e e
3.1.4 Stringliterals
3.1, 0perators . . . v v v v i v e e e e e e e e e e e
3.1.6 Punctuators. e e e e e
3.1.7 Headernames. e e
3.1.8 Preprocessing numbers. L. L.
319 Comments. ., e e e
3.2 Conversions e e e e e e e e e e e e
3.2.1 Arithmeticoperands

iii

00 O OV UL b A =

11
13
13
16
16
17

v

3.3

3.4
3.5

3.6

3.7

38

CONTENTS

322 Otheroperands oo L 36
Expressions o oo e 38
3.3.1 Primary expressionso 40
3.3.2 Postfixoperators Lo L oo 41
3.3.3 Unaryoperators i 43
3.3.4 Castoperators 44
3.3.5 Multiplicative operatorso oL L. 45
3.3.6 Additive operators oo oo 45
3.3.7 Bitwise shift operators, 416
3.3.8 Relational operators o L L. 7
3.3.9 Equality operatorso 47
3.3.10 Bitwise AND operator 47
3.3.11 Bitwise exclusive OR operator 47
3.3.12 Bitwise inclusive OR operator 47
3.3.13 Logical AND operator 47
3.3.14 Logical OR operator 47
3.3.15 Conditional operator L. 47
3.3.16 Assignment operators v v e e e e e e 48
3.3.17 Comma operator 49
Constant Expressions L o 49
Declarations e 30
3.5.1 Storage-classspecifiers L. 51
3.5.2 Typespeciflers L 51
3.5.3 Typequalifiers e e 52
354 Declarators L. L 54
3.5.0 Typenames v v vt v i e e e e e 57
3.5.6 Typedefinitions L 0 L. 5T
3.5.7 Initialization oL oL 57
Statements L. L e e 58
36.1 Labeled statements., 58
3.6.2 Compound statement,or block 58
3.6.3 EIExpression and null statements 58
3.6.4 Seclection statements L. 59
3.6.5 Iteration statements 0oL oL 59
3.6.6 Jump statements Lo 59
External definitions oo L oL Lo 80
3.7.1 Function definitions oL 60
3.7.2 External object definitionso L. 61
Preprocessing directives 0oL L L. L. 61
3.8.1 Conditional inclusion o oL 62
3.8.2 Sourcefileinclusion oL oo 83
3.8.3 Macroreplacement o0 L 61
384 Linecontrol L. L 68

3.8.5 Errordirective e 68

CONTENTS v

3.8.6 Pragmadirective L o 68
3.8.7 Null directive , L 68
3.8.8 Predefined macronames 68

3.9 Future language directions L. 69
391 Externalnames, 69
3.9.2 Character escape SeqUeNCES v L oo v e e . 69
3.9.3 Storage-classspecifiers Lo o0 o L 69
3.9.4 Tunction declarators, 69
3.9.5 Function definitions 00 69
3.9.6 Arrayparameters 0o 69

4 LIBRARY 71
4.1 Introduction. 71
4.1.1 Definitionsof terms L L oL 71
4.1.2 Standard headers L L. 71
4.1.3 Frrors<errno.h>0 .. 73
4.1.4 Limits <float.h> and <dimits.h> 73
4.1.5 Common definitions <stddef.h> 74
4.1.6 Use of library functions, 75

4.2 Diagnostics €<assert.h> s 76
4.2.1 Program diagnostics oL oL, 76

4.3 Character Handling <ctype.h> 76
4.3.1 Character testing functions 77
4.3.2 Character case mapping functions 78

4.4 Localization <locale.h> 78
44.1 Localecontrol 80
4.4.2 Numeric formatting convention inquiry 80

4.5 Mathematics <math.h>., L. 80
4.5.1 Treatment of error conditions 81
4.5.2 Trigonometric functions 82
4.5.3 Hyperbolic functions 83
4.5.4 Exponential and logarithmic functions 83
4.5.5 Powerfunctions., 83
4.5.6 Nearest integer, absolute value, and remainder functions . . . 84

4.6 Nonlocal jumps <setjmp.h> 84
4.6.1 Save calling environment L., 83
4.6.2 Restore calling environment 85

4.7 Signal Handling <signal.h> 86
4.7.1 Specify signal handling 86
472 Sendsignal e 87

4.8 Variable Arguments <stdarg.h> 87
4.8.1 Variable argument list access macros 87

4.9 Input/Output <stdio.h> 88
4.9.1 Introduction e 89

RATIONALE

vi CONTENTS
4.9.2 Streams e e e 90
4.93 Files L e 91
4.94 Operationsonfiles00 92
4.9.5 TFile access functions o0 93
4.9.6 Tormatted input/output functions 95
4.9.7 Character input/output functions. a7
4.9.8 Direct input/outpnt functions L. 98
4.9.9 File positioning functions oL Lo 99
4.9.10 Error-handling functions o o000 L00

4.10 General Utilities <stdlib.h> 100
4.10.1 String conversion functionso oL 100
4.10.2 Pseudo-random sequence generation functions 101
4.10.3 Memory management funclionso L. 101
4.10.4 Communication with the environment 102
4.10.5 Scarching and sorting utilities 104
4.10.6 Integer arithmetic functions 104
4.10.7 Multibyte character functions 105
4.10.8 Multibyte string functionso Lo 105

4.11 STRING HANDLING <string.h> 105
4.11.1 String function conventions L. 105
4.11.2 Copying functions L. 106
4.11.3 Concatenation functions 106
4.11.4 Comparison functions 0oL 107
4.11.5 Searchfunctions 107
4.11.6 Miscellaneous functions 0oL 108

4.12 DATE AND TIME <time.h> 108
4.12.1 Componentsof timeo 108
4.12.2 Time manipulation funclionso L. 108
4.12.3 Time conversion functions 110

4.13 Future library directions oL 111
1.13.1 Errers <errno.h>o 111
4.13.2 Character handling <ctype.h> 111
4.13.3 Localization <locale.h> 111
4.13.4 Mathematics <math.h>, 111
4.13.5 Sigunal handling <signal.h>. 111
4.13.6 Input/output <stdie.h> 111
4.13.7 Geuneral ntilities <stdlib.h> 111
4.13.8 String handling <string.h>. 111

5 APPENDICES 113

INDEX 115

Section 1

INTRODUCTION

This Rationale summarizes the deliberations of X3J11, the Technical Committee
charged by ANSI with devising a standard for the C programming language. It has
been published along with the draft Standard to assist the process of formal public
review.

The X3J11 Committee represents a cross-section of the C community: it con-
sists of about fifty active members representing hardware manufacturers, vendors
of compilers and other software development tools, software designers, consultants,
academics, authors, applications programmers, and others. In the course of its
deliberations, it has reviewed related American and international standards both
published and in progress. It has attempted to be responsive to the concerns of the
broader community: as of September 1988, it had received and reviewed almost 200
letters, including dozens of formal comments from the first public review, suggesting
modifications and additions to the various preliminary drafts of the Standard.

Upon publication of the Standard, the primary role of the Committee will be to
offer interpretations of the Standard. It will consider and respond to ail correspon-
dence received.

1.1 Purpose

The Committee’s overall goal was to develop a clear, consistent, and unambiguous
Standard for the C programming language which codifies the common, existing def-
inition of C and which promotes the portability of user programs across C language
environments.

The X3J11 charter clearly mandates the Committee to codify common existing
practice. The Committee has held fast to precedent wherever this was clear and
unambiguous. The vast majority of the language defined by the Standard is precisely
the same as is defined in Appendix A of The ¢ Programming Language by Brian
Kernighan and Dennis Ritchie, and as is implemented in almost all C translators.
(This document is hereinafter referred to as K&R.)

K&R is not the only source of “existing practice.,” Much work has been done over

2 Section 1. INTRODUCTION

the years to improve the C language by addressing its weaknesses. The Committee
has formalized enhancements of proven value which have become part of the various
dialects of C.

Existing practice, however, has not always been consistent. Various dialects
of C have approached problems in different and sometimes diametrically opposed
ways. This divergence has happened for several reasons. First, K&R, which has
served as the langnage specification for almost all C translators, is itaprecise in some
areas {thereby allowing divergent interpretations), and it does not address some
issues (such as a complete specification of a library) important for code portability.
Second, as the language has matured over the years, various extensions have been
added in different dialects to address limitations and weaknesses of the language;
these extensions have not been consistent across dialects.

One of the Committee’s goals was to consider such areas of divergence and to
establish a set of clear, unambiguous rules consistent with the rest of the language.
This effort included the consideration of extensions made in various C dialects, the
specification of a complete set of required library functions, and the development of
a complete, correct syntax for C.

The work of the Commiltee was in large part a balancing act. The Committee
has tried to improve portability while retaining the definition of certain features of
(as machine-dependent. It attempted to incorporate valuable new idcas without
disrupting the basic structure and fabric of the language. It tried to develop a clear
and consistent language without invalidating existing programs. All of the goals were
important and each decision was weighed in the light of sometimes contradictory
requirements in an attempt to reach a workable compromise.

In specifying a standard language, the Committee used several guiding principles,
the most important of which are:

Existing code is important, existing implementations are not. A large body
of C code exists of considerable commercial value. Every attempt has been made
to ensure that the bulk of this code will be acceptable to any implementation con-
forming to the Standard. The Comimittee did not want to force most programmers
to modify their C programs just to have them accepted by a conforming translator.

On the other hand, no one implementation was held up as the exemplar by which
to define C: it is assumed that all existing implementations must change somewhat
to conform to the Standard.

C code can be portable. Although the € language was originally born with the
UNIX operating system on the DEC PDP-11, it has since been implemented on a
wide variety of computers and operating systems. It has also seen considerable use
in cross-compilation of code for embedded systems to be executed in a free-standing
environment. The Committee has attempied to specily the language and the library
to be as widely implementable as possible, while recognizing that a system must meet
certain minimum criteria to be considered a viable host or target for the language.

C code can be non-portable. Although it strove to give programmers the op-
portunity to write truly portable programs, the Cominittee did not want to force

1.1. Purpose 3

programmers into writing portably, to preclude the use of C as a “high-level as-
sembler”: the ability to write machine-specific code is one of the strengths of C.
It is this principle which largely motivates drawing the distinction between strictly
conforming program and conforming program (§1.7).

Avoid “quiet changes.” Any change to widespread practice altering the meaning
of existing code causes problems. Changes that cause code to be so ill-formed as to
require diagnostic messages are at least easy to detect. As much as seemed possible
consistent with its other goals, the Committee has avoided changes that quietly
alter one valid program to another with different semantics, that cause a working
program to work differently without notice. In important places where this principle
is violated, the Rationale points out a QUIET CHANGE.

A standard is a treaty between implementor and programmer. Some nu-
merical limits have been added to the Standard to give both implementors and
programmers a better understanding of what must be provided by an implemen-
tation, of what can be expected and depended upon to exist. These limits are
presented as neinimum mazima (i.e., lower limits placed on the values of upper lim-
its specified by an implementation) with the understanding that any implementor is
at liberty to provide higher limits than the Standard mandates. Any program that
takes advantage of these more tolerant limits is not strictly conforming, however,
since other implementations are at liberty to enforce the mandated limits.

Keep the spirit of C. The Committee kept as a major goal to preserve the
traditional spirit of . There are many facets of the spirit of C, but the essence is
a community sentiment of the underlying principles upon which the C language is
based. Some of the facels of the spirit of C can be summarized in phrases like

o Trust the programmer.
e Don’t prevent the programmer from doing what needs to be done.
s [leep the language small and simple.

o Provide only one way to do an operation.

e Make it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient code
generation is one of the most important strengths of C. To help ensure that no code
explosion occurs for what appears to be a very simple operation, many operations
are defined to be how the largel machine’s hardware does it rather than by a general
abstract rule. An example of this willingness to live with what the machine does can
be seen in the rules that govern the widening of char ohjects for use in expressions:
whether the values of char objects widen to signed or unsigned quantities typically
depends on which byte operation is more efficient on the target machine.

One of the goals of the Committee was to avoid interfering with the ability
of translators to generate compact, efficient code. In several cases the Committee
has introduced features to improve the possible efficiency of the generated code;
for instance, floating point operatlions may be performed in single-precision if both
operands are float rather than double.

RATIONALE

4 Seciion 1. INTRODUCTION

1.2 Scope

This Rationale focuses primarily on additions, clarifications, and changes made to
the language as described in the Base Documents (see §1.5}. Tt js not a rationale for
the C language as a whole: the Committee was charged with codifying an existing
language, not designing a new one. No attempt is made in this Rationale to defend
the pre-existing syntax of the language, such as the syntax of declarations or the
binding of operators.

The Standard is contrived as carefully as possible to permit a broad range of im-
plementations, from direct interpreters to highly optimizing compilers with separate
linkers, {from ROM-based embedded microcomputers to multi-user multi-processing
host systems. A certain amount of specialized terminology has therefore been cho-
sen to minimize the bias toward compiler implementations shown in the Base Doc-
uments.

The Rationale discusses some language or library features which were not
adopted into the Standard. These are usually features which are popular in some C
implementations, so that a user of those implementations might question why they
do not appear in the Standard.

1.3 References

1.4 Organization of the document

This Rationale is organized to parallel the Standard as closely as possible, to facil-
itate finding relevant discussions. Some subsections of the Rationale comprise just
the subsection title from the Standard: this indicates that the Committee thought
no special comment was necessary. Where a given discussion touches on several
areas, attermpts have been made to include cross-references within the text. Such
references, unless they specify the Standard or the Rationale, arc deliberately am-
biguous.

As for the organization of the Standard itsell, Base Documents existed only for
Sections 3 (Language) and 4 (Library) of the Standard. Section 1 {Introduction)
was modeled after the introductory matter in several other standards for procedural
languages. Section 2 (Environment) was added to fill a need, identified from the
start, to place a C program in context and describe the way it interacts with its
surroundings. The Appendices were added as a repository for related material not
included in the Standard itself, or to bring together in a single place information
ahout a topic which was scattered throughout the Standard.

Just as the Standard proper excludes all examples, footnotes. references, and
appendices, this rationcle is not part of the Standard. The C language is defined
by the Standard alone. If any part of this Rationale is not in accord with that
definition, the Comiittee would very much like to be so informed.

RATIONALE

1.5. Base documents 5

1.5 DBase documents

The Base Document for Section 3 (Language) was “The C Reference Manual” by
Dennis M. Ritchie, which was used for several years within AT&T Bell Laborato-
ries and reflects enhancements to C within the UNIX environment. A version of
this manual was published as Appendix A of The C Programming Language by
Kernighan and Ritchie (K&R). Several deviations in the Base Document from K&R
were challenged during Committee deliberations, but most changes from K&R ulti-
mately included in the Standard were readily endcrsed by the Committee since they
were widely known and accepted outside the UNIX user community.

The Base Document for Section 4 (Library) was the 1984 Jusr/group Standard.
(/usr/group is a UNIX system users group.) In defining what a UNIX-like environ-
ment looks like to an applications programmer writing in C, fusr/group was obliged
to describe library functions usable in any C environment. The Committee found
{usr/group’s work to be an excellent codification of existing practice in defining
C libraries, once the UNIX-specific functions had been removed.

The work begun by /usr/group is being continued by the IEEE Committee 1003
to define a portable operating system interface (“POSIX”) based on the UNIX
environment. The X3J11 Committee has been working with IEEE 1003 to resolve
potential areas of overlap or conflict between the two Committees. The result of
this coordination has been to divide responsibility for standardizing library functions
into two areas. Those functions needed for a C implementation in any environment
are the responsibility of X3J11 and are included in the Standard. IEEE 1003 retains
responsibility for those functions which arc operating-system-specific; the (POSIX)
standard will refer to the ANSI C Standard for C library function definitions.

Many of the discussions in this Rationale ecmploy the formula “feature X has
been changed (added, removed) because” The changes (additions, removals)
should be understood as being with respect to the appropriate Base Document.

1.6 Definitions of terms

The definitions of object, bit, byte, and alignment reflect a strong consensus, reached
after considerable discussion, about the fundamental nature of the memory organi-
zation of a C environment:

¢ All objects in C must be representable as a contiguous sequence of bytes, each
of which is at least 8 bits wide.

¢ A char (or signed char or unsigned char) occupies exactly one byte.

(Tlhus, for instance, on a machine with 36-bit words, a byte can be defined to consist
of 9,12, 18, or 36 bits, these numbers being all the exact divisors of 36 which are not
less than 8.) These strictures codify the widespread presumption that any object
can be treated as an array of characters, the size of which is given by the sizeof
operator with that object’s type as its operand,

RATIONALE

6 Section 1. INTRODUCTION

These definitions do not preclude “holes” in struct objects. Such holes are in
fact often mandated by alignment and packing requirements. The holes simply do
not participate in representing the (composite) value of an object.

The definition of object does not employ the notion of type. Thus an object has
no type in and of itself. However, since an object may only be designated by an
lvalue (see §3.2.2.1), the phrase “the type of an object” is taken to mean, here and
in the Standard, “the type of the Ivalue designating this object,” and “the value of
an object” means “the contents of the object interpreted as a value of the type of
the lvalue designating the object.”

The concept of multi-byie character has been added to C to support very large
character sets. See §2.2.1.2.

The terms unspecified behavior, undefined behavior, and implementation-defined be-
havior are used to categorize the result of writing programs whose properties the
Standard does not, or cannot, completely describe. The goal of adopting this cate-
gorization is to allow a certain variety among implementations which permits quality
of implementation to be an active force in the marketplace as well as to allow certain
popular extensions, without removing the cachet of conformance to the Standard.
Appendix I to the Standard catalogs those behaviors which fall into one of these
three categories.

Unspecified behavior gives the implementor some latitude in translating pro-
grams. This latitude does not extend as far as failing to translate the program.

Undefined behavior gives the implementor license not to catch certain program
crrors that are difficult to diagnose. It also identifies areas of possible conforming
language extension: the implementor may augment the language by providing a
definition of the officially undefined behavior.

Implementation-defined behavior gives an implementor the freedom to choose
the appropriate approach, but requires that this choice be explained to the user.
Behaviors designated as implementation-defined are generally those in which a user
could make meaningful coding decisions based on the implementation definition.
Implementors should bear in mind this criterion when deciding how extensive an
implementation definition ought to be. As with unspecified behavior, simply failing
to translate the source containing the implementation-defined behavior is not an
adequate response.

1.7 Compliance

The three-fold definition of compliance is used to broaden the populalion of con-
forming programs and distinguish between conforming programs using a single im-
plementation and portable conforming programs.

A strictly conforming program is another term for a maximally portable program.
The goal is to give the programmer a fighting chance to make powerful C programs
that are also highly portable, without demeaning perfectly useful C programs that
happen not to be portable. Thus the adverb strictly.

1.7. Compliance 7

By defining conforming implementations in terms of the programs they accept,
the Standard leaves open the door for a broad class of extensions as part of a
conforming irplementation. By defining both conforming hosted and conforming
freestanding implementations, the Standard recognizes the use ol C to write such
programs as opcrating systems and ROM-based applications, as well as more conven-
tional hosted applications. Beyond this two-level scheme, no additional subsetting
is defined for C, since the Committee felt strongly that toc many levels dilutes the
effectiveness of a standard.

Conforming program is thus the most tolerant of all categories, since only one
conforming iraplementation need accept a program to rule it conforming. The pri-
mary limitation on this license is §2.1.1.3.

Diverse sections of the Standard comprise the “treaty” between programmers
and implementors regarding various name spaces — if the programmer follows the
rules of the Standard the implementation will not impose any further restrictions or
surprises:

o A strictly conforming program can use only a restricted subset of the identifiers
that begin with underscore (§4.1.2). Identifiers and keywords are distinct
(§3.1.1). Otherwise, programmers can use whatever internal names they wish;
a conforming implementation is guaranteed not to use conflicting names of
the form reserved to the programmer. (Note, however, the class of identifiers
which are identified in §4.13 as possible future library names.)

¢ The external functions defined in, or called within, a portable program can be
named whatever the programmer wishes, as long as these names are distinct
from the external names defined by the Standard library (§4). External names
in a maximally portable program must be distinct within the first 6 characters
mapped into one case (§3.1.2).

¢ A maximally portable program cannot, of course, assume any language key-
words other than those defined in the Standard.

¢ Fach function called within a maximally portable program must either be
defined within some source file of the program or else be a function in the
Standard library.

One proposal long entertained by the Committee was to mandate that each im-
plementation have a translate-time switch for turning off extensions and making
a pure Standard-conforming implementation. It was pointed out, however, that
virtually every translate-time switch sctting effectively creates a different “imple-
mentation,” however close may be the effect of translating with two different switch
settings. Whether an implementor chooses to offer a family of conforming imple-
mentations, or to offer an assortment of non-conforming implementations along with
one that conforms, was not the business of the Committee to mandate. The Stan-
dard therefore confines itself to describing conformance, and merely suggests arcas
where extensions will not compromise conformance.

8 Section 1. INTRODUCTION

Other proposals rejected more quickly were to provide a validation suite, and to
provide the source code for an acceptable library. Both were recognized to be major
undertakings, and both were seen to compromise the integrity of the Standard by
giving concrete examples that might bear more weight than the Standard itself. The
potential legal implications were also a concern.

Standardization of such tools as program consistency checkers and symbolic
debuggers lies outside the mandate of the Committee. However, the Committee
has taken pains to allow such programs to work with conforming programs and
implementations.

1.8 Future directions

Section 2

ENVIRONMENT

Because C has scen widespread use as a cross-compiled language, a clear distinction
must be made between translation and execution environments. The preprocessor,
for instance, is permitted to evaluate the expression in a #if statement using the
long integer arithmetic native to the translation environment: these integers must
comprise at least 32 bits, but need not match the number of bits in the execution
environment. Other translate-time arithmetic, however, such as type casting and
floating arithmetic, must more closely model the execution environment regardless
of translation environment.

2.1 Conceptual models

The as if principle is invoked repeatedly in this Rationale. The Committee has found
that describing various aspects of the C language, library, and environment in terms
of concrete models best serves discussion and presentation. Every attempt has been
made to craft the models so that implementors are constrained only insofar as they
must bring about the same result, as if they had implemented the presentation
modcl; often enough the clearest model would make for the worst implementation.

2.1.1 Translation environment

2.1.1.1 Program structure

The terms source file, external linkage, linked, libraries, and ezecutable program all
imply a conventional compiler-linker combination. All of these concepts have shaped
the semantics of C, however, and are inescapable even in an interpreted environment,
Thus, while implementations are not required to support separate compilation and
linking with libraries, in some ways they must behave as if they do.

2.1,1.2 Translation phases

Perhaps the greatest undesirable diversity among existing C implementations can be
found in preprocessing. Admittedly a distinct and primitive langnage superimposed

10 Section 2. ENVIRONMENT

upon C, the preprocessing commands accreted over time, with little central direction,
and with even less precision in their documentation. This evolution has resulted in
a variety of local features, each with its ardent adherents: the Base Document offers
little clear basis for choosing one over the other.

The consensus of the Committee is that preprocessing should be simple and
overt, that it should sacrifice power for clarity. For instance, the macro invocation
f(a, b) should assuredly have two actual arguments, even if b expands to ¢, d;
and the formal definition of £ must call for exactly two arguments. Above all,
the preprocessing sub-language should be specified precisely enough to minimize or
eliminate dialect formation.

To clarify the nature of preprocessing, the translation from source text to tokens
is spelled out as a number of separate phases. The separate phases need not actually
be present in the translator, but the net effect must be as if they were. The phases
need not be performed in a separate preprocessor, although the definition certainly
permits this common practice. Since the preprocessor need not know anything
about the specific properties of the target, a machine-independent implementation
is permissible.

The Committee deemed that it was outside the scope of ils mandate to require
the cutput of the preprocessing phases be available as a separate translator output
file.

The phases of translation are spelled out to resolve the numerous questions
raised about the precedence of different parses. Can a #define begin a comment?
(No.) Is backslash/new-line permitted within a trigraph? {No.) Must a comment
be contained within one #include file? (Yes.) And so on. The Rationale section
on preprocessing (§3.8) discusses the reasons for many of the particular decisions
which shaped the specification of the phases of translation.

A backslash immediately before a new-line has long been used to continue string
literals, as well as preprocessing command lines. In the interest of easing machine
generation of C, and of transporting code to machines with restrictive physical
line lengths, the Committee gencralized this mechanism to permit any token to be
continued by interposing a backslash/new-line sequence.

2.1.1.3 Diagnostics

By mandating some form of diagnostic message for any program containing a syntax
error or constraint violation, the Standard performs twe important services. First, it
gives teeth to the concept of erroneous program, since a conforming implementation
must distinguish such a program from a valid one. Second, it severely constrains
the nature of extensions permissible to a conforming implementation.

The Standard says nothing about ithe nature of the diagnostic message, which
could simply be “syntax error”, with no hint of where the error occurs. (An
implemecntation must, of course, describc what translator output constitutes a di-
agnostic message, so that the user can recognize it as such.) The Committee ulti-

2.1. Conceptual models 11

mately decided that any diagnostic activity beyond this level is an issue of quality of
implementation, and that market forces would encourage more useful diagnostics.
Nevertheless, the Committee felt that at least some significant class of errors must
be diagnosed, and the class specified should be recognizable by all translators.

I'he Standard does not forbid extensions, but such extensions must not inval-
idate strictly conforming programs. The translator must diagnose the use of such
extensions, or allow them to be disabled as discussed in (Rationale) §1.7. Other-
wise, extensions to a conforming C implementation lie in such realms as defining
semantics for syntax to which no semantics is ascribed by the Standard, or giving
meaning to undefined hehavior.

2.1.2 Execution environments

The definition of program startup in the Standard is designed to permit initialization
of static storage by cxccutable code, as well as by data translated into the program
image.

2.1.2.1 Freestanding environment

As little as possible is said about freestanding environments, since little is served by
coustraining them.

2.1.2.2 Hosted environment

The properties required of a hosted environment are spelled out in a fair amount of
detail in order to give programmers a reasonable chance of writing programs which
are portable among such environments.

The behavior of the arguments to main, and of the interaction of exit, main
and atexit (see §4.10.4.2) has been codified to curb some unwanted variety in the
representation of argv strings, and in the meaning of values returned by main.

The specification of arge and argv as arguments to main recognizes extensive
prior practice. argv[argc] is required to be a null pointer to provide a redundant
check for the end of the list, also on the basis of common practice.

main is tle only function that may portably be declared either with zero or two
arguments. { The number of arguments must ordinarily match exactly between invo-
cation and definition.) This special case simply recognizes the widespread practice
of leaving off the arguments to mair. when the program does not access the program
argument strings. While many implementations support more than two arguments
to main, such practice is neither blessed nor forbidden by the Standard; a program
that defines main with three arguments is not strictly conforming. (See Standard
Appendix F.5.1.)

Command line 1/0 redirection is not mandated by the Standard; this was deemed
to be a feature of the underlving operating system rather than the C language.

RATIONALE

12 Section 2. ENVIRONMENT

2.1.2.3 Program execution

Because C expressions can contain side effects, issues of sequencing are lmporiant
in expression evaluation. (See §3.3.) Most operators impose no sequencing require-
ments, but a few operators impose sequence points upon the evaluation: comma,
logical- AND, logical-OR, and conditional. For example, in the expression (i = 1,
ali]l = 0) the side effect (alteration to storage) specified by 1 = 1 must be com-
pleted before the expression ali] = 0 is evaluated.

Other sequence points are imposed by statement execution and completion of
evaluation of a full ezpression. (See §3.6). Thus in fn(++a), the incrementation of
a must be completed before fn is called. In 1 = 1; alil = 0; the side effect of
i = 1 must be complete before a[i] = 0 is evaluated.

The notion of agreement has to do with the relationship between the abstract
machine delining the semantics and an actual implementation. An egreerment point
for some object or class of objects is a sequence point at which the value of the
object(s) in the real implementation must agree with the value prescribed by the
abstract semantics.

For example, compilers that held variables in registers can sometimes drastically
reduce execution times. In a loop like

sum = 0;
for (1 = 0; i € N; ++i)
sum += al[i];

both sum and i might be profitably kept in registers during the execution of the
loop. Thus, the actual memory objects designated by sum and i would not change
state during the loop.

Such behavior is, of course, too loose for hardware-oriented applications such as
device drivers and memory-mapped I/0. The following loop looks almost identical
to the previous example, but the specification of volatile ensures that each assign-
ment to *ttyport takes place in the same sequence, and with the same values, as
the (hypothetical) abstract machine would have done.

volatile short *ttyport;

/* ... %/

for (i = 0; 1 < N; ++i)
*ttyport = ali];

Another common optimization is to pre-compute common subexpressions. In
this loop:

volatile short *ttyport;
short maskl, mask2;
FE I ¥
for (i = 0; i < N; ++1)
*ttyport = ali] & maskl & mask2;

2.2. Environmental considerations 13

evaluation of the subexpression maskl & mask2 could be performed prior to the
loop in the real implementation, assuming that neither mask1 nor mask2 appear as
an operand of the address-of (&) operator anywhere in the function. In the abstract
machine, of course, this subexpression is re-evaluated at each loop iteration, but
the real implementation is not required to mimic this repetitiveness, because the
variables maskl and mask2 are not volatile and the same results are obtained
either way.

The previcus example shows that a subexpression can be pre-computed in the
real implementation. A question sometimes asked regarding optimization is, “Is
the rearrangement still conforming if the pre-computed expression might raise a
signal (such as division by zero)?” Tortunately for optimizers, the answer is “Yes,”
because any evaluation that raises a computational signal has fallen into an undefined
behavior (§3.3), for which any action is allowable.

Behavior is described in terms of an abstract machine to underscore, once again,
that the Standard mandates results as if certain mechanisms are used, without
requiring those actual mechanisms in the implementation. The Standard specifies
agreement points at which the value of an object or class of objects in an implemen-
tation must agree with the value ascribed by the abstract semantics.

Appendix B to the Standard lists the sequence points specified in the body of
the Standard.

The class of interactive devices is intended to include at least asynchronous ter-
minals, or paired display screens and keyboards. An implementation may extend the
definition to include other input and output devices, or even network inter-program
connections, provided they obey the Standard’s characterization of interactivity.

2.2 Environmental considerations

2.2.1 Character sets

The Committee ultimately came to remarkable unanimity on the subject of character
set requirements. There was sirong sentiment that C should not be tied to ASCII,
despite its heritage and despite the precedent of Ada being defined in terms of ASCII.
Rather, an implementation is required to provide a unique character code for each
of the printable graphics used by C, and for each of the control codes representable
by an escape sequence. (No particular graphic representation for any character is
prescribed — thus the common Japanese practice of using the glyph ¥ for the C
character *\' is perfectly legitimate.) Translation and execution environments may
have different character sets, but cach must meet this requirement in its own way.
The goal is to ensure that a conforming implementation can translate a C translator
written in C.

For this reason, and economy of deseription, source code is described as if it
undergoes the same {ranslation as text that isinput by the standard library I/0 rou-
tines: each line is terminated by sorie new-line character, regardless of its external
representation.

RATIONALE

14 Section 2. ENVIRONMENT

2.2.1.1 Trigraph sequences

Trigraph sequences have been introduced as alternate spellings ol some characters
to allow the implementation of C in character scts which do not provide a sufficient
number of non-alphabetic graphics.

Implementations are required to support these alternate spellings, even if the
character set in use is ASCII, in order to allow transportation of code from systems
which must use the trigraphs.

The Committee faced a serious problem in trying to define a character set for C.
Not all of the character sels in general use have the right number of characters, nor do
they support the graphical symbols that C users expect to see. For instance, many
character sets for languages other than Iinglish resemble ASCII except that codes
used for graphic characters in ASCII are instead used for extra alphabetic characters
or diacritical marks. C relies upon a richer set of graphic characters than most other
prograinming languages, so the represcntation of programs in character sets other
than ASCII is a greater problem than for most other programming languages.

The International Standards Organization (ISO) uses three technical terms to
describe character sets: repertoire, collating sequence, and codeset. The repertoire is
the set of distinct printable characters. ‘'he term abstracts the notion of printable
character from any particular representation; the glyphs R, R, R, R, R, R, and R all
represent the same element of the repertoire, upper-case-R, which is distinct from
lower-case-r. Having decided on the repertoire to be used (C needs a repertoire of
96 characters), one can then pick a collating sequence which corresponds to the in-
ternal representation in a computer. The repertoire and collating sequence together
form the codeset.

What is nceded for Cis to determine the necessary repertoire, ignore the collating
sequence altogether (it is of no importance to the language), and then find ways of
expressing the repertoire in a way that should give no problems with currently
popular codesets.

C derived its repertoire from the ASCII codeset. Unfortunately the ASCII reper-
toire is not a subset of all other commonly used character sets, and widespread
practice in Burope is not to implement all of ASCII either, but use some parts of
its collating sequence for special national characters.

The solution is an internationally agreed-upon repertoire, in terms of which
an international representation of C can be defined. The ISO hag defined such a
standard: ISO 646 describes an invariant subset of ASCIL

The characters in the ASCII repertoire used by C and absent from the ISO 646
repertoire are:

L1 LN 177

Given this repertoire, the Committec faced the problem of defining representations
for the absent characters. The obvious idea of defining two-character escape se-
quences fails because C uses all the characters which ere in the ISO 646 repertoive:

2.2. Environmental considerations 15

no single escape character is available. The best that can be done is to use a trigraph
— an escape digraph followed by a distinguishing character.

7?7 was selected as the escape digraph because it is not used anywhere else
in C (except as noted below); it suggests that something unusual is going on. The
third character was chosen with an eye to graphical similarity to the character being
represented.

The sequence 77 cannot currently occur anywhere in a legal C program except
in strings, character constants, comments, or header names. The character escape
sequence '\?' (see §3.1.3.4) was introduced to allow two adjacent question-marks
in such contexts to be represented as ?7\7, a form distinct from the escape digraph.

The Committee makes no claims that a program written using trigraphs looks
attractive. As a matter of style, it may be wise to surround trigraphs with white
space, so that they stand out better in program text. Some users may wish to define
preprocessing macros for some or all of the trigraph sequences.

QUIET CHANGE

Programs with character sequences such as ??! in string constants,
character constants, or header names will now produce different results.

2.2.1.2 Multibyte characters

The “byte = character” orientation of C works well for text in Western alphabets,
where the size of the character set is under 256. The fit is rather uncomfortable for
languages such as Japanese and Chinese, where the repertoire of ideograms numbers
in the thousands or tens of thousands.

Internally, such character sets can be represented as numeric codes, and it is
merely necessary to choose the appropriate integral type to hold any such character.

Externally, whether in the files manipulated by a program, or in the text of the
source files themselves, a conversion between these large codes and the various byte
media is necessary.

The support in C of large character sets is based on these principles:

s Multibyre encodings of large character sets are necessary in I/0O operations,
in source text comments, and in source text string and character literals.

e No existing multibyte encoding is mandated in preference to any other; no
widespread existing encoding should be precluded.

¢ The null character ('\0') may not be used as part of a multibyte encoding,
except for the one-byte null character itself. This allows existing functions
which manipulate strings transparently to work with multibyte sequences.

¢ Shift encodings (which interpret bytc scquences in part on the basis of some
state information) must start out in a known {defauls) shift state under certain
circumstances, such as the start of string literals.

RATIONALE

16 Section 2. ENVIRONMENT

¢ The minimum number of absolutely necessary library functions is introduced.
(See §4.10.7.)

2.2.2 Character display semantics

The Standard defines a number of internal character cades for specifying “format
effecting actions on display devices,” and provides printable escape sequences for
each of them. These character codes are clearly modelled after ASCII control codes,
and the mnemonic letters used to specify their escape sequences reflect this her-
itage. Nevertheless, they are internal codes for specifying the format of a display
in an environment-independent mannecr; they must be written to a text file to effect
formatting on a display device. The Standard states quite clearly that the exter-
nal representation of a text file (or data stream) may well differ from the internal
form, both in character codes and number of characters needed to represent a single
internal code.

The distinction between internal and external codes most needs emphasis with
respect to new-line. ANSI X312 (Codes and Character Sets) uses the term to re-
fer to an external code used for information interchange whose display semantics
specify a move to the next line. Both ANSI X3L2 and 150 646 deprecate the com-
bination of the motion to the next line with a motion to the initial position on the
line. The C Standard, on the other hand, uses new-line to designate the end-of-line
internal code represented by the escape sequence '\n'. While this ambiguity is
perhaps unfortunate, use of the term in the latter sense is nearly universal within
the C community. But the knowledge that this internal code has numerous ex-
ternal representations, depending upon operating system and medium, is equally
widespread.

The alert sequence ('\a') has been added by popular demand, to replace, for
instance, the ASCII BEL code explicitly coded as '\007".

Proposals to add "\e' for ASCIT ESC ('\033") were not adopted becanse other
popular character sets such as EBCDIC have no obvious equivalent. (Sce §3.1.3.4.)

The vertical tab sequence ('\v') was added since many existing implementations
support it, and since it is convenient to have a designation within the language for
all the defined white space characters.

The semantics of the motion control escape sequences carefully avoid the Western
language assumptions that printing advances left-to-right and top-to-bottom.

To avold the issue of whether an implementation conforms if it cannot properly
effect vertical tabs (for instance), the Standard emphasizes that the semantics merely
describe intent.

2.2.3 Signals and interrupts

Stgnals are dillicult to specify in a system-independent way. The Committee con-
cluded that about the only thing a strictly conforming program can do in a signal
handler is to assign a value to a volatile static variable which can be written

2.2, Environmental considerations 17

uninterruptedly and promptly return. (The header <signal.h> specifies a type
sig atomic_t which can be so written.) It is further guaranteed that a signal han-
dler will not corrupt the automatic storage of an instantiation of any executing
function, even if that function is called within the signal handler.

No such guarantees can be extended to library functions, with the explicit ex-
ceptions of longjmp (§4.6.2.1) and signal (§4.7.1.1), since the library functions
may be arbitrarily interrelated and since some of them have profound effect on the
environment.

Calls to longjmp are problematic, despite the assurances of §4.6.2.1. The signal
could have occurred during the execution of some library function which was in the
process of updating external state and/or static variables,

A second signal for the same handler could occur before the first is processed,
and the Standard makes no guarantees as to what happens to the second signal.

2.2.4 Environmental limits

The Committee agreed that the Standard must say something about certain capa-
cities and limitations, but just how to enforce these treaty points was the topic of
considerable debate.

2.2.4,1 ‘Translation limits

The Standard requires that an implementation be able to translate and compile
some program that meets each of the stated limits. This criterion was felt to give
a useful latitude to the implementor in meeting these limits. While a deficient
implementation could probably contrive a program that meets this requirement, yet
still succeed in being useless, the Committee felt that such ingenuity would probably
require more work than making something useful. The sense of the Committee is
that implementors should not construe the translation limits as the values of hard-
wired parameters, but rather as a set of criteria by which an implementation will
be judged.

Some of the limits chosen represent interesting compromises. The goal was to
allow reasonably large portable programs to be written, without placing excessive
burdens on rezsonably small implementations.

The minimum maximum limit of 257 cases in a switch statement allows coding
of lexical routines which can branch on any character (one of at least 256 values) or
on the value EOF.

2.2.4.2 Numerical limits

In addition to the discussion below, see §4.1.4.

2.2.4.2.1 Sizes of integral types <limits.h> Such alarge body of C code has
been developed for 8-bit byte machines that the integer sizes in such environments

RATIONALE

18 Section 2. ENVIRONMENT

must be considered narmative. The prescribed limits are minima: an implementa-
tion on a machine with 9-bit hytes can be conforming, as can an implementation
that defines int to be the same width as Iong. The negative limits have been cho-
sen to accommodate ones-complement or sign-magnitude implementations, as well
as the more usual twos-complement. The limits for the maxima and minima of un-
signed types are specifled as unsigned constants (e.g., 65535u) to avoid surprising
widenings of expressions involving these extrema.

The macro CHAR BIT makes available the number of bits in a char abject. The
Committee saw little utility in adding such macros for other data types.

The names associated with the short int types {SHRT_MIN, etc., rather than
SHORT_MIN, etc.) reflect prior art rather than obsessive abbreviation on the Com-
mittee’s part.

2.2.4.2.2 Characteristics of floating types <flcat.h> The characterization
of floating point follows, with minor changes, that of the 'ORTRAN standardiza-
tion committee (X3J3).1 The Committee chose to follow the FORTRAN model in
some part out of a concern for FORTRAN-to-C translation, and in large part out
of deference to the FORTRAN committee's greater experience with fine points of
floating point usage. Note that the floating point model adopted permits all com-
mon representations, including sign- magnitude and twos-complement, but precludes
a logarithmic implementation.

Single precision (32-bit) floating point is considered adequate to support a con-
forming C implementation. Thus the minimum maxima constraining floating types
are extremely permissive.

The Committee has also endeavored to accommodate the IEEF 754 floating
point standard by not adopting any constraints on floating point which are contrary
to this standard. '

The term FLT_MANT_DIG stands for “float mantissa digits.” The Standard now
uses the more precise term significand rather than mantissa.

!See X313 working docnment S8-112.

Section 3

LANGUAGE

While more formal methods of language definition were explored, the Committee
decided early on 10 employ the style of the Base Document: Backus-Naur Form for
the syntax and prose for the constraints and semantics. Anything more ambitious
was considered to be likely to delay the Standard, and to make it less accessible to
its andience.

3.1 Lexical Elements

The Standard 2ndeavors to bring preprocessing more closely into line with the token
orientation of the language proper. To do so requires that at least some information
about white space be retained through the early phases of translation (see §2.1.1.2).
It also requires that an inverse mapping be defined from tokens back to source
characters (see §3.8.3).

3.1.1 Keywords

Several keywords have been added: const, enum, signed, veid, and volatile.

As much as possible, liowever, new features have been added by overloading ex-
isting keywords, as, for example, long double instead of extended. It is recognized
that each added keyward will require some existing code that used it as an identi-
fier to be rewritten. No meaningful programs are known ta be quietly changed by
adding the new keywords.

The keywords entry, fortran, and asm have not becn included since they were
either never used, or are not portable. Uses of fortran and asm as keywords are
noted as common extensions.

3.1.2 Identifiers

While an implementation is not obliged to remember more than the first 31 charac-
ters of an identifier for the purpose of name matching, the programmer is effectively
prohibited from intentionally creating two different identifiers that are the same in

19

20 Section 3. LANGUAGE

the first 31 characters. Implementations may therefore store the full identifier; they
are not obliged to truncate to 31.

The decision to extend significance to 31 characters for internal names was made
with little opposition, but the decision to retain the old six-character case-insensitive
restriction on significance of external names was most painful. While strong senti-
ment was expressed for making C “right” by requiring longer names everywhere, the
Committee recognized that the language must, for years to come, coexist with other
languages and with older assemblers and linkers. Rather than undermine support
for the Standard, the severe restrictions have been retained,

The Committee has decided to label as cbsolescent the practice of providing
different identifier significance for internal and external identifers, thereby signalling
its intent that some future version of the C Standard require 31-character case-
sensitive external name significance, and thereby encouraging new implementations
to support such significance.

Three solutions to the external identifier length/case problem were explored,
each with its own set of problems:

I. Label any C implementaiion without at least §1-character, case-sensilive sig-
nificance in external wentifiers as non-standard. 'T'his 1s unacceptable since
the whole reason for a standard is portability, and many systems today simply
do not provide such a name space.

2. Require a C implementation which cannot provide 31-character, case-sensitive
stgnificance to map long identifiers into the identifier name space that it can
provide. This option quickly becomes very complex for large, multi-source
programs, since a program-wide datalase has to be maintained for all modules
to avoid giving two different identifiers the same actual external name. Tt also
reduces the usefulness of source code debuggers and cross reference programs,
which generally work with the short mapped names, since the source-code
rame used by ihe programmer would likely bear little resemblance to the
name actually generated.

3. Require a C implementation which cannot provide 31-character, case-sensitive
significance to rewrite the linker, assembler, debugger, any other language
translators which use the linker, c¢ic. This is not always practical, since
the C implementor might not be providing the linker, etc. Indeed, on some
systems only the manufacturer’s linker can be used, either because the format
of the resulting program file is not documented, or because the ability to create
program [iles is restricted to secure programs.

Because of the decision to restrict significance of external identifiers to six case-
insensitive characters, C programmers are faced with these choices when writing
portable programs:

1. Make sure that external identifiers are unique within the first six characters,

3.1. Lexical Flements 21

and use only one case within the name. A unique six-character prefix could be
used, followed by an underscore, followed by a longer, more descriptive name:

extern int a_xvzZ_real_long_name;
extern int a_rwt_real_long_nameZ2;

2. Use the prefix method described above, and then use #define statements to
provide a longer, more descriptive name for the unique name, such as:

#define real_long _name a_xvz_real_long_name
#define real_long_name2 a_rwt_real_long_name2

Note that overuse of this technique might result in exceeding the limit on the
number of allowed #define macros, or some other implementation limit.

3. Use longer and/or multi-case external names, and limit the portabilitv of the
programs to systems that support the longer names.

4. Declare all exported items (or pointers thereto) in a single data structure
and export that structure. The technique can reduce the number of external
identifliers to one per translation unit; member names within the structure are
internal identifiers, hence can have full significance. The principal drawback
of this technique is that functions can only be exported by reference, not by
naine; ot many systems this entails a run-time overhead on each function call.

QUIET CHANGE

A program that depends upor internal identifiers matching only in the
first (say) eight characters may change to one with distinct objects for
each variant spelling of the identifier,

3.1.2.1 Scopes of identifiers

The Standard has separated from the overloaded keywords for storage classes the
various concents of scope, linkage, name space, and storage duration. (See §3.1.2.2,
§3.1.2.3, §3.1.2.4.) This has traditionally been a major area of confusion.

One source of dispute was whetlher identifiers with external linkage should have
file scope even when introduced within a block. The Base Document is vague on
this point, and has been interpreted differently by different implementations. For
example, the following fragment would be valid in the file scope scheme, while invalid
in the block scope scheme:

typedef struct data d_struct ;

first(){
extern d_struct func();

I A ¥

RATIONALE

22 Section 3. LANGUAGE

second (){
d_struct n = func();

¥

While it was generally agreed that it is poor practice to take advantage of an external
declaration once it had gone out of scope, some argued that a translator had to
remember the declaration for checking anyway, so why not acknowledge this? The
compromise adopted was to decree essentially that block scope rules apply, but that
a conforming implementation need not diagnose a failure to redeclare an external
identifier that had gone out of scope (undefined behavior).

QUIET CHANGE

A program relying on file scope rules may he valid under block scope
rules but behave differently — for instance, if d_struct were defined as
type fleat rather than struct data in the example above.

Although the scope of an identifier in a function prototype begins at its declaration
and ends at the end of that function’s declarator, this scope is of course ignored by
the preprocessor. Thus an identifier in a prototype having the same name as that
of an existing macro is treated as an invocation of that macro. For example:

#define status 23
void exit{(int status);

generates an error, since the prototype after preprocessing becomes
void exit(int 23);
Perhaps more surprising is what happens if status is defined
#define status []
Then the resulting prototype is
void exit(int [1);
which is syntactically correct but semantically quite different from the intent.
To protect an implementation’s header prototypes frem such misinterpretation,
the implementor must write them to avoid these surprises. Possible solutions include

not using identifiers in prototypes, or using names (such as __status or _Status) in
the rescrved name space.

3.1. Lexical Flements 23

3.1.2.2 Linkages of identifiers

The Standard requires that the first declaration, implicit or explicit, of an identifier
specify (by the presence or absence of the keyword static) whether the identifier
has internal or external linkage. This requirement allows for one-pass compilation
in an implementation which must treat internal linkage items differently than ex-
ternal linkage items. An example of such an implementation is one which produces
intermediate assembler code, and which therefore must construct names for internal
linkage items to circumvent identifier length and/or case restrictions in the target
assembler,

Existing practice in this area is inconsistent. Some imp.ementations have avoided
the renaming problem simply by restricting internal linkage names by the same rules
as for external linkage. Others have disallowed a static declaration followed later by
a defining instance, even though such construets are necessary to declare mutually
recursive static functions. The requirements adopted in the Standard may call for
changes in some existing programs, but allow for maximum flexibility.

The definition model to be used for objects with external linkage was a major
standardization issue. The basic problem was to decide which declarations of an
object define storage for the object, and which merely reference an existing object.
A related problemn was whether mul:iple definitions of storage are allowed, or only
one is acceptable. Fxisting implementations of C exhibit at least four different
models, listed here in order of increasing restricliveness:

Common Every object declaration with external linkage {whether or not the key-
word extern appears in the declaration) creates a definition of storage. When
all of the modules are combined together, each definition with the same name
is located at the same address in memory. (The name is derived from common
storage in FORTRAN.)} This model was the intent of the original designer of
C, Dennis Ritchie.

Relaxed Ref/Def The appearance of the keyword extern (whether it is used out-
side of the scope of a function or not) in a declaration indicates a pure reference
(ref), which does not define storage. Somewhere in all of the translation units,
at least one definition (def) of the object must exist. An external definition
is indicated by an object declaration in file scope containing no storage class
indication. A reference without a corresponding definition is an error. Some
implementations also will not generate a reference for items which are declared
with the extern keyword, but zre never used within the code. The UNIX oper-
ating system C compiler and linker implement this model, which is recognized
as a common extension to the C langnage (I".4.11). UNIX C programs which
take advantage of this model are standard conforming in their environment,
but are rot maximally portable.

Strict Ref/Def This is the same as the relaxed ref/def model, save that only one
definition is allowed. Again, some implementations may decide not to put out

RATIONALE

24 Section 3. LANGUAGE

references to items that are not used. This is the model specified in K&R and
in the Base Document.

Initialization This medel requires an explicit initialization to define storage. All
other declarations are references.

Figure 3.1 demonstrates the differences between the models.

The model adopted in the Standard is a combination of features of the strict
ref/def model and the initialization model. As in the strict ref/def model, only a
single translation unit contains the definition of a given object — many environ-
ments cannot effectively or efficiently support the “distributed definition” inherent
in the common or relaxed ref/def approaches. However, either an initialization, or
an appropriate declaration without storage class specifier (see §3.7), serves as the
external definition. This composite approach was chosen to accommodate as wide
a range ol environments and existing implementations as possible.

3.1.2.3 Name spaces of identifiers

Implementations have varied considerably in the number of separate name spaces
maintained. The position adopted in the Standard is to permit as many separate
name spaces as can be distinguished by context, except that all tags (struct, union,
and enum) comprise a single name space.

3.1.2.4 Storage durations of objects

It was necessary to clarify the effect on aunlomatic storage of jumping into a block
that declares local storage. (See §3.6.2.) While many implementations allocate
the maximum depth of automatic storage upon entry to a function, some explicitly
allocate and deallocate on block entry and exit. The latter are required to assure that
local storage is allocated regardless of the path into the block (although initializers
in automatic declarations are not executed nnless the block is entered from the top).

To effect true reentrancy for functions in the presence of signals raised asyn-
chronously (see §2.2.3), an implementation must assure that the sterage for func-
tion return values has automatic duration. This means that the caller must allocate
automatic storage for the return value and communicate its location to the called
function. (The typical case of return registers for small types conforms to this re-
quirement: the calling convention of the implementation implicitly communicates
the return location to the called function.)

3.1.2.5 Types

Several new types have heen added:

void
void #*
signed char

3.1. Lexical Flements

Figure 3.1: Comparison of identifier linkage models

[Maodel

| File 1

| File 2

commaon

extern int i;

main() {
i=1;
second();

extern int i;
second() {

third(i);
}

Relaxed Ref/Def

int 1i;

main() {
i=1;
second{();

int i;
second() {

third(i);
}

Strict Ref/Def

int i; extern int 1i;

main() { second() {
i=1; third(i);
second(); | }

}

Initializer

int i = 0; int 1i;

main() { second() {
i=1; third(i);
second(); | }

25

RATIONALE

26 Section 3. LANCGUAGE

unsigned char
unsigned short
unsigned long
leng double

New designations [ur existing types have been added:

signed short for short
signed int for int
signed long for long

void is used primarily as the typemark for a function which returas no result. It
may also be used, in any context where the value ol an expression is Lo he discarded,
to indicate explicitly that a value is ignored by writing the cast (void). Finally, a
function prototype list that has no arguments is written as f(void}, because £{)
retains its old meaning that nothing is said about the arguments.

A “pointer to vaid,” void *, is a gencric pointer, capable of pointing to any
(data) object without truncation. A pointer to void must have the same represen-
tation and alignment as a pointer to character; the intent of this rule it to allow
existing programs which call library functions {(such as memcpy and free) to con-
tinue to work. A pointer to void may not be dereferenced, although such a peointer
may be converted to a normal pointer type which may be dereferenced. Pointers to
other types coerce silently to and from void * in assignments, function prototypes,
comparisons, and conditional! expressions, whereas other pointer type clashes are
invalid. It is undefined what will happen if a pointer of some type is converted to
vold *,and then the void * pointer is converted to a type with a stricter alignment
requirement.

Three types of char are specified: signed, plain, and unsigned. A plain char
may be represented as either signed or unsigned. depending upon the iimplementa-
tion, as in prior practice. The type signed char was introduced to make available
a one-byte signed integer type on those systems which implement plain char as
unsigned. For reasons of symmetry, the keyword signed is allowed as part of the
type name of other integral types.

Two varieties of the integral types are specified: signed and unsigned. if neither
specifier 1s uscd, signed is assumed. In the Base Document the only nnsigned type
is unsigned int.

The keyword unsigned is something of a misnomer, suggesting as it does arith-
metic that is non-negative but capable of overflow. The semantics of the C type
unsigned is that of modulus, or wrap-aronnd, arithmetic, for which overflow has
no meaning. The result of an unsigned arithmetic operation is thus always defined.
whereas the result of a signed operation may (in principle) be undefined. In prac-
tice, on twos-complement machines, both types often give the same result for all
operators exceptl division, modulus, right shift, and comparisons. Hence there has
been a lack of sensitivity in the C community to the differences betweon signed and
unsigned arithmetic (see §3.2.1.1).

3.1. Lexical FElements 27

The Committee has explicitly restricted the C language to binary architectures,
on the grounds that this stricture was implicit in any case:

¢ DBit-fields are specified by a number of bits, with no mention of “invalid integer”
representation. The only reasonable encoding for such bit-fields is binary.

o The integer formats for printf suggest no provision for “illegal integer” values,
implying that any result of bitwise manipulation produces an integer result
which can be printed by printf.

o All methods of specifying integer constants — decimal, hex, and octal —
specify an integer value. No method independent of integers is defined for
specifying “bit-string constants.” Ouly a binary encoding provides a coraplete
one-to-one mapping between bit strings and integer values.

The restriction to “binary numeration systems” rules out such curiosities as Gray
code, and makes possible arithmetic definitions of the bitwise operators on unsigned
types (sce §3.3.3.3, §3.3.7, §3.3.10, §3.3.11, §3.3.12).

A new floating type long double has been added to C. The long double type
must offer at least as much precisicn as the type double. Several architectures
support more than two floating types and thus can map a distinct machine type
onto this additional C type. Several architectures which only support two float-
ing point types can also take advantage of the three C types by mapping the less
precise type onto float and double. and designaling the more precise type long
double. Architectures in which this mapping might be desirable include those in
which single precision floats offer at least as much precision as most other ma-
chines’s double-precision, or those on which single-precision is considerably more
efficient than double-precision. Thus the common C floating types would map onte
an cfficient implementation type, but the more precise type would still be available
to those programmers who require its use.

To avoid confusion, long float as a synonym for double has been retired.

Enumerations permit the declaration of named constants in a more convenient and
structurcd fashion than #define’s. Both enumcration constants and variables be-
have like integer types for the sake of type checking, however.

The Committee considered several aliernatives for enumeration types in C:

1. leave them out;

2. include them as definitions of integer constants;

3. include them in the weakly typad form of the UNIX C compiler;
4. include them with strong typing, as, for example, in Pascal.

The Committee adopted the second alternative on the grounds that this approach
most clearly reflects common practice. Doing away with enumerations altogether
would invalidate a fair amount of existing code; stronger typing than integer creates
problems, for instance, with arrays indexed by enumerations.

RATIONALE

28 Section 3. LANGUAGE

3.1.2.6 Compatible type and composite type

The notions of compatible types and compostte type have been introduced to discuss
those situations in which type declarations need not be identical. These terms are
especially useful in explaining the relationship between an incomplele type and a
complete type.

Structure, union, or enumeration type declarations in two different transtation
units do not formally declare the same type, even if the text of these declarations
come from the same include file, since the translation units are themselves disjoint.
The Standard thus specifies additional compatibility rules for such types, so that if
two such declarations are suflficiently similar they are compatible.

3.1.3 Constants

In folding and converting constants, an implementation must use at least as much
precision as is provided by the target environment. However, it is not required 1o use
exactly the same precision as the target, since this would require a cross compiler
to simulate target arithmetic at translation time.

The Committee considered the introduction of structure constants. Although it
agreed that structure literals would occasionally be useful, its policy has been not to
invent new features unless a strong need exists. Since the language already allows
for initialized const structure objects, the need for inline anonymous structured
constants seems less than pressing.

Several implementation difficultics beset structure constants. All other forms of
constants are “self typing” — the type of the constant is evident from its lexical
structure. Structure constants would require either an explicit type mark, or typing
by context; either approach is considered to require increased complexity in the
design of the translator, and either approach would also require as much, if not
more, care on the part of the programmer as using an initialized structure object.

3.1.3.1 Floating constants

Consistent with existing practice, a floating point constant has been defined to have
type double. Since the Standard now allows expressions that contain only float
operands to be performed in float arithmetic (see §3.2.1.5) rather than double, a
method of expressing explicit £loat constants is desirable. The new long double
type raises similar issues.

Thus the F and L suffixes have been added to convey type information with
floating constants, much like the L suffix for long integers. The default type of
floating constants remains double, for compatibility with prior practice. Lower
case £ and 1 are also allowed as suffixes.

Note that the run-time selection of the decimal point character by setlocale
(§4.4.1) has no effect on the syntax of C source text: the decimal point character is
always period.

3.1. Lexical Elements 29

3.1.3.2 Integer constants

The rule that the default type of a decimal integer constant is either int, long, or
unsigned long, depending on which type is large enough to hold the value without
overflow, simplifies the use of constants.

The suffixes U and u have been added to specify unsigned numbers.

Unlike decimal constants, octal and hexadecimal constants too large to be ints
are typed as unsigned int (if within range of that type), since it is more likely that
they represent bit patterns or masks, which are generally best treated as unsigned,
rather than “real” numbers.

Little support was expressed for the old practice of permitting the digits 8 and 9
in an octal constant, so it has been dropped.

A proposal to add binary constants was rejected due lo lack of precedent and
insufficient utility.

Despite a concern that a lower-case L could be taken for the numeral one at the
end of an integral (or floating) literal, the Committee rejected proposals to remove
this usage, primarily on the grounds of sanctioning existing practice.

The rules given for typing integer constants were carefully worked out in accor-
dance with the Committee’s deliberations on integral promotion rules (see §3.2.1.1).

QUIET CHANGE

Unsuffixed integer constants may have different types. In K&R, unsuf-
fixed decimal constants greater than INT_MAX, and unsuffixed octal or
hexadecimal constants greater than UINT_MAX are of type long.

3.1.3.3 Enumeration constants

Whereas an enumeration variable may have any integer type that correctly repre-
sents all its values when widened to int, an enumeration constant is only usable as
the value of an expression. Hence its type is simply int. (See §3.1.2.5.)

3.1.3.4 Character constants

The digits 8 and 9 are no longer permitted in octal escape sequences. (Cf. octal
constants, §3.1.3.2.)

The alert escape sequence has been added (see §2.2.2).

Hexadecimal escape sequences, beginning with \x, have been adopted, with
precedent in several existing implementations. (Little sentiment was garnered for
providing \X as well.) The escape sequence extends to the first non-hex-digit char-
acter, thus providing the capability of expressing any character constant no matter
how large the type char is. String concatenation can be used to specify a hex-digit
character following a hexadecimal e:cape sequence:

char a[]
char b[J

"\Xff“ nfu ;
{\xff, ’£7, °\O’};

I

RATIONALE

30 Section 3. LANGUAGE

These two initializations give a and b the same string value.

The Committee has chosen to reserve all lower case letters not currently used
for future escape sequences (undefined behavior). All other characters with no cur-
rent meaning are left to the implementor for extensions (implementation-defined
behavior). No portable meaning is assigned to multi-character constants or ones
containing other than the mandated source character set (implementation-defined
behavior).

The Committee considered proposals to add the character constant '\e' {o
represent the ASCIT ESC ('1\033") character. This proposal was based upon the use
of ESC as the initial character of most contirol sequences in common terminal driving
disciplines, such as ANSI X3.64. However, this usage has no obvious counterpart
in other popular character codes, such as EBCDIC. A programmer merely wishing
to avoid having to type \033 to represent the ESC character in an ASCII/X3.64
cuvironment, may, instead of writing

printf ("\033[10;10h%d\n", somevalue);
write:
#define ESC "\033"

printf(ESC "[10;10h%d\n", scmevalue);

Notwithstanding the general rule that literal constants are non-negativel, a char-
acter constant containing one character is effectively preceded with a (char) cast
and hence may yield a negative value if plain char is represented the same as signed
char. This simply reflects widespread past practice and was deemed tco dangerous
to change.

QUIET CHANGE

A constant of the form '\078' is valid, but now has different meaning,.
It now denotes a character constant whose value is the (implementation-
defined) combination of the values of the two characters '\07"' and '8".

In some implementations the old meaning is the character whose code is
078 = 0100 = 64.

QUIET CHANGE

A constant of the form "\a' or '\x' now may have different meaning.
The old meaning, if any, was implementation dependent.

An L prefix distinguishes wide character constants. (See §2.2.1.2.)

'-3 is an expression: unary minus with operand 3.

3.1. Lexical Elements 31

3.1.4 String literals

String literals are specified to be unmodifiable. This specification allows imple-
mentations to share copies of strings with identical text, to place string literals in
read-only memory, and perform certain optimizations. However, string literals do
not have the type array of const char, in order to avoid the problems of pointer
type checking, particularly with library functions, since assigning a pointer to const
char to a plain pointer to char is not valid. Those members of the Committee who
insisted that string literals should be modifiable were content to have this practice
designated a common extension (see F.5.5).

Existing code which modifies string literals can be made strictly conforming by
replacing the string literal with an initialized static character array. For instance,

char *p, #*make_temp{char *str);
[x ... %/
p = make_temp('tempXXX");
/* make_temp ovarwrites the literal #*/
/* with a unique name */

can be changed to:

char *p, *make_temp(char #str);

FE I)

{
static char template[] = "tempXXX";
p = make_temp(template);

}

A long string can be continued across multiple lines by using the backslash-
newline line continuation, but this practice requires that the continuation of the
string start in the first position of the next line. To permit more flexible layout,
and to solve some preprocessing problems (see §3.8.3), the Committee introduced
string literal concatenation. Twao string literals in a row are pasted together (with
no null character in the middle) to make one combined string literal. This addition
to the C language allows a programmer to extend a string literal beyond the end of
a physical line without having to use the backslash-newline mechanism and thereby
destroying the indentation scheme of the program. An explicit concatenation oper-
ator was not introduced because the concatenation is a lexical construct rather than
a run-time operation.

without concatenation:
/* say the column is this wide */
alpha = "abcdefghijklm\

nopqrstuvwxyz" ;

with concatenation:

RATIONALE

32 Section 3. TANGUAGE

/# say the column is this wide */
alpha = "abcdefghijklm"”
"nopgrstuvwxyz";

QUIET CHANGE

A string of the form "\078" is valid, but now has different meaning. (See
§3.1.3.)

QUIET CHANGE

A string of the form "\a" or "\x" now has different meaning. (See
§3.1.3.)

QUIET CHANGE

It is neither required nor forbidden that identical string literals be rep-

resented by a single copy of the string in memaory; a program depending
upon either scheme may behave differently.

An L prefix distinguishes wide string literals. A prefix (as opposed to suffix)
notation was adopted so that a translator can know at the start of the processing
of a long string literal whether it is dealing with ordinary or wide characters. (See
§2.2.1.2.)

3.1.5 Operators

Assignment operators of the form =+, described as old fashioned even in K&R, have
been dropped.

The form += is now defined to be a single token, not two, so no white space is
permitted within it; no compelling case could be made for permitting such white
space.

QUIET CHANGE

Expressions of the form x=-3 change meaning with the loss of the old-
style assignment operators.

The operator # has been added in preprocessing statements: within a #define it
causes the macro argument following to be converted to a string literal.

The operator ## has aiso been added in preprocessing statements: within a
#define it causes the tokens on either side to be pasted Lo make a single new token.
See §3.8.3 for further discussion of these preprocessing operators.

3.1. Lexical Elements 33

3.1.6 Punctuators

The punctuator ... (ellipsis) has been added to denote a variable number of trailing
arguments in a function prototype. (See §3.5.4.3.)

The constraint that certain punctuators must occur in pairs (and the similar con-
straint on certain operators in §3.1.5) only applies after preprocessing. Syntactic
constraints are checked during syntactic analysis, and this follows preprocessing.

3.1.7 Header names

Header names in #include ditectives obey distinct tokenization rules; hence they
are identified as distinct tokens. Attempting to treat quote-enclosed header names
as string literals creates z contorted description of preprocessing, and the problems
of treating angle-bracket-enclosed header names as a sequence of C tokens is even
more severe.

3.1.8 DPreprocessing numbers

The notion of preprocessing numbers has been introduced to simplify the description
of preprocessing. It provides a means of talking about the tokenization of strings
that look like numbers, or initial substrings of numbers, prior to their semantic
interpretation. In the interests of keeping the description simple, occasional spurious
forms are scanned as preprocessing numbers — 0x123E+1 is a single token under the
rules. The Committee felt that it was better to tolerate such anomalies than burden
the preprocessor with a more exact, and exacting, lexical specification. It felt that
this anomaly was no worse than the principle under which the characters a+++4++4b
are tokenized as a ++ ++ + b (an invalid expression), even though the tokenization
a ++ + ++ b would yield a syntactically correct expression. In both cases, exercise
of reasonable precaution in coding style avoids surprises.

3.1.9 Comments

The Committee considered proposals to allow comments to nest. The main argn-
ment for nesting comments is that it would allow programmers to “comment out”
code. The Committee rejected this proposal on the grounds that cominents should
be used for adding documentation to a program, and that preferable mechanisms
already exist for source code exclusicon. l'or example,

#if O

/* this code is bracketed out because ... */
code_to_be_axcluded();

#endif

Preprocessing directives such as this prevent the enclosed code from being scanned
by later translation phases, Bracketed material can include comments and other,
nested, regions of bracketed code.

RATIONALE

341 Section 3. LANGUAGE

Another way of accomplishing these goals is with an if statement:

if (0) {
/* this code is bracketed cut because ... */
code_to_be_excluded();

}

Many modern compilers will generate no code for this if statement.

3.2 Conversions

3.2.1 Arithmetic operands
3.2.1.1 Characters and integers

Since the publication of K&R, a serious divergence has occurred among implemen-
tations of C in the evolution of integral promotion rules. Implementations fall into
two major camps, which may be characterized as unsigned preserving and valuc
preserving. The difference between these approaches centers on the treatment of
unsigned char and unsigned short, when widened by the integral promotions,
but the decision has an impact on the typing of constants as well (sce §3.1.3.2).

The unsigned preserving approach calls for promoting the two smaller unsigned
types tounsigned int. Thisis a simple rule, and yields a type which is independent
of execution environment.

The value preserving approach calls for promoting those types to signed int,
if that type can properly represent all the valucs of the original type, and otherwise
for promoting those types to unsigned int. Thus, i the execution environment
represents short as something smaller than int, unsigned short becomes int;
otherwise it hecomes unsigned int.

Both schemes give the same answer in the vast majority of cases, and both
give the same effective result in even more cases in implementations with twos-
complement arithmetic and quiet wraparound on signed overflow — that is, in most
current implementations. In such implementations, differences hetween the two only
appear when these two conditions are both true:

1. An expression involving an unsigned char or unsigned short produces an
int-wide result in which the sign bit is set: i.e., either a unary operation on
such a type, or a binary operation in which the other operand is an int or
“narrower” type.

2. The result of the preceding expression is used in a context in which its signed-
ness is significant:

» sizeof(int) <« sizeof(leng) and it is in a context where it must be
widened to a long type, or

3.2. Conversions 35

e it is the left operand of the right-shift operator (in an implementation
where this shift is defined as arithmetic), or

¢ it is either operand of /, %, <, <=, », or >=,

In such circumstances a genuine ambiguity of interpretation arises. The result
must be dubbed questionably signed, since a case can be made for cither the signed or
unsigned interpretation. Exactly the same ambiguity arises whenever an unsigned
int confronts a signed int across an operator, and the signed int has a negative
value. (Neither scheme does any better, or any worse, in resolving the ambiguity
of this confrontation.) Suddenly, the negative signed int becomes a very large
unsigned int, which may be surprising — or it may be exactly what is desired by
a knowledgable programmer. Of course, all of these ambiguilies can be avoided by
a judicious uce of casts.

One of the important outcomes of exploring this problem is the understanding
that high-quality compilers might do well to look for such questionable code and
offer (optional) diagnostics, and that conscientious instructors might do well to warn
programmers of the problems of implicit type conversions.

The unsigned preserving rules greatly increase the number of situations where
unsigned int confronts signed int to yield a questionably signed result, whereas
the value preserving rules minimize such confrontations. Thus, the value preserving
rules were considered to be safer for the novice, or unwary, programmer. After much
discussion, the Committee decided in favor of value preserving rules, despite the fact
that the UNIX C compilers had evolved in the direction of unsigned preserving.

QUIET CHANGE

A program that depends upon unsigned preserving arithmetic conver-
sions will behave differently, probably without complaint. This is con-
sidered the most serious semantic change made by the Committee to a
widespread current practice.

The Standard clarifies that the integral promotion rules also apply to bit-fields.

3.2.1.2 Signed and unsigned integers

Precise rules are now provided for converting to and from unsigned integers. On a
twos-complement machine, the operation is still virtual (no change of representation
is required), but the rules are now stated independent of representation.

3.2.1.3 Floating and integral

There was strong agreement that floating values should truncate toward zero when
converted to an integral type, the specification adopted in the Standard. Although
the Base Document permitted negative floating values to truncate away from zero,
no Committee member knew of current hardware that functions in such a manner.?

?We have since been informed of one such implementation.

RATIONALE

36 Section 3. LANGUAGE

3.2.1.4 Floating types

The Standard, unlike the Base Document, does not require rounding in the double
to float conversion. Some widely used IEEE floating point processor chips control
floating to integral conversion with the same mode ‘hits as for double-precision to
single-precision conversion; since truncation-toward-zero is Lthe appropriate setting
for C in the former case, it would be expensive to require such implementations to
round to float.

3.2.1.5 TUsual arithmetic conversions

The rules in the Standard for these conversions are slight modifications of those
in the Base Document: the modifications accommodate the added types and the
value preserving rules (see §3.2.1.1). Explicit license has been added to perform
calculations in a “wider” type than absolutely necessary, since this can sometimes
produce smaller and faster code (not to mention the correct answer more often).
Calculations can also be performed in a “narrower” type, by the as if rule, so long
as the same end result is oblained. FEaplicil casting can always be used to obiain
exactly the intermediate lypes required.

The Committee relaxed the requirement that float operands be converted to
double. An implementation may still choose to counvert.

QUIET CHANGE

Expressions with £loat operands may now be computed at lower preci-
sion. The Base Document specified that all floating point operations be
done in double.

3.2.2 Other operands
3.2.2.1 Lvalues and function designators

A difference of opinion within the C conimunity has centered around the meaning
of lvalue, one group considering an lvalue to be any kind of object locator, another
group holding that an lvaluc is meaningful on the left side of an assigning operator.
The Committee has adopted the definition of lvalue as an object locator. The term
modifiable lvalue is used for the second of the above concepts.

The role of array objects has been a classic source of confusion in C, in large
part because of the numerous contexts in which an array relerence is converted to
a pointer to its first element. While this conversion neatly handles the semantics
of subscripting, the fact that ali] is itself a modifiable lvalue while a is not has
puzzled many students of the language. A more precise description has therefore
been incorporated in the Standard, in the hopes of combatting this confusion.

3.2. Conversions 37

3.2.2.2 void

The description of operators and expressions is simplified by saying that void yields
a value, with the understanding that the value has no representation, hence requires
no storage.

3.2.2.3 Pointers

C has now been implemented on a wide range of architectures. While some of
these architectures feature uniform pointers which are the size of some integer type,
maximally portable code may not assume any necessary correspondence between
different pointer types and the integral types.

The use of void * (“pointer to void”) as a generic object pointer type is an
invention of the Committee., Adoption of this type was stimulated by the desire
to specify function prototype arguments that either quietly convert arbitrary point-
ers (as in fread) or complain if the argument type does not exactly match (as in
strcmp). Nothing is said about pointers to functions, which may be incommensurate
with object pointers and/or integers.

Since pointers and integers are now considered incommensurate, the only integer
that can be safely converted to a pointer is the constant 0. The result of converting
any other integer to a pointer is machine dependent.

Consequences of the treatment of pointer types in the Standard include:

¢ A pointer to void may be converted to a pointer to an object of any type.
¢ A pointer to any object of any type may be converted to a pointer to void.

¢ If a pointer to an object is converted to a pointer to void and back again to
the original pointer type, the result compares equal o original pointer.

¢ It is invalid to convert a pointer to an object of any type to a pointer to an
object of a different type without an explicit cast.

¢ Even with an explicit cast, it is invalid to convert a function pointer to an
object pointer or a pointer to void, or vice-versa.

e It is invalid to convert a pointer to a function of one type to a pointer to a
function of a different type without a cast.

¢ Pointers fo functions that have different parameter-type information (includ-
ing the “old-style” absence of parameter-type information) are different types.

Implicit in the Standard is the notion of invalid pointers. In discussing pointers, the
Standard typically refers to “a pointer to an object” or “a pointer to a function” or
“a null pointer.” A special case in address arithmetic allows for a pointer to just
past the end of an array. Any other pointer is invalid.

RATIONALE

38 Section 3. LANGUAGE

An invalid pointer might be created in several ways. An arbitrary value can be
assigned (via a cast) to a pointer variable. (This could even create a valid pointer,
depending on the value.) A pointer to an object becomes invalid il the memory
cantaining the object is deallocated. Pointer arithmetic can produce pointers outside
the range of an array.

Regardless how an invalid pointer is created, any use of it yields undefined be-
havior. Even assignment, comparison with a null pointer constant, or comparison
with itself, might on some systems result in an exception.

Consider a hypothetical segmented architecture, on which pointers comprise a
segment descriptor and an offset. Suppose that segments are relatively small, so
that large arrays are allocated in multiple segments. While the segments are valid
(allocated, mapped to real memory), the hardware, operating system, or C imple-
mentation can make these multiple segments behave like a single object: pointer
arithmetic and relational operators use the defined mapping to impose the proper
order on the elements of the array. Once the memory is deallocated, the mapping
is no longer guaranteed to exist; use of the segment descriptor might now cause an
exception, or the hardware addressing logic might return meaningless data.

3.3 Expressions

Several closely-related topics are involved in the precise specification of expression
evaluation: precedence, associativity, grouping, sequence points, agreement points,
order of evaluation, and interleaving. The latter three terms are discussed in §2.1.2.3.

The rules of precedence are encoded into the syntactic rules for cach operator.
For example, the syntax for additive-erpression includes the rule

additive-expression + multiplicative-expression

which implies that a+b*c parses as a+(b*c). The rules of associativity are similarly
encoded into the syntactic rules. For example, the syntax for assignment-ezpression
includes the rule

unary-expression assignment-operator assigniment-crpression

which implies that a=b=c parses as a=(b=c).

With rules of precedence and associativity thus embodied in the syntax rules, the
Standard specifies, in general, the grouping (association of operands with operators)
in an expression.

The Base Document describes C as a language in which the operands of succes-
sive identical commutative associative operators can be regrouped. The Committee
has decided to remove this license from the Standard, thus bringing C into accord
with most other major high-level languages.

This change was motivated primarily by the desire to make C more suitable
for floating point programming. Floating point arithmetic does not obey many of
the mathematical rules that real arithmetic does. For instance, the two expressions

3.3. Expressions 39

(a+b)+c and a+{(b+c) may well yield different results: suppose that b is greater
than 0, a equals -b, and c is positive but substantially smaller than b. (That is,
suppose c¢/b is less than DBL_EPSILON.) Then (a+b}+c is O+c, or ¢, while a+(b+c)
equals a+b, or 0. That is to say, floating point addition (and multiplication) is not
associative.

The Base Document’s rule imposes a high cost on translation of numerical code
to C. Much numerical code js written in FORTRAN, which does provide a no-
regrouping guarantee; indeed, this is the normal semantic interpretation in most
high-level languages other than C. The Base Document’s advice, “rewrite using
explicit temporaries,” is burdensome to those with tens or hundreds of thousands
of lines of code to convert, a conversion which in most other respects could be done
automatically.

Elimination of the regrouping rule does not in fact prohibit much regrouping
of integer expressions. The bitwise logical operators can be arbitrarily regrouped,
since any regrouping gives the samme result as if the expression had not been re-
grouped. This is also true of integer addition and multiplication in implementations
with twos-complement arithmetic and silent wraparound on overflow. Tndeed, in
any implementation, regroupings which do not introduce overflows behave as if no
regrouping had occurred. (Results may also differ in such an implementation if the
expression as written results in overflows: in such a case the behavior is undefined,
so any regrouping couldn’t be any worse.)

The types of lvalues that may be used to access an object have been restricted so
that an optimizer is not required to make worst-case aliasing assumptions.

In practice, aliasing arises with the use of pointers. A contrived example to
illustrate the issues is

int a;

void f{int * b)

{
a=1;
*p = 2,
g(a);

}

It is templing to generate the call to g as if the source expression were g(1), but b
might point to a, so this optimization is not safe. On the other hand, consider
int a;
void f(double * b)
{
a=1;
*b = 2.0;
g(a);

RATIONALE

40 Section 3. LANGUAGE

Again the optimization is incorrect only if b points to a. However, this would
only have come about if the address of a were somewhere cast to (double*). The
Committee has decided that such dubious possibilities need not be allowed for.

In principle, then, aliasing only need be allowed for when the lvalues all have the
same type. In practice, the Committee has recognized certain prevalent exceptions:

e The lvalue types may differ in signedness. In the common range, a signed
integral type and its unsigned variant have the same representation; it was
felt that an appreciable body of existing code is not “strictly typed” in this
area.

e Character pointer types are often used in the bytewise manipulation of objects;
a byte stored through such a character pointer may well end up in an object
of any type.

¢ A qualified version of the object’s type, though formally a different type, pro-
vides the same interpretation of the value of the object.

Structure and union types also have problematic aliasing properties:

struct fi{ float f; int i;};

voild £{ struct fi * fip, int * ip)

{
static struct fi a = {2.0, 1};
*ip = 2;
*fip = a;
g(*ip);
*fip = a;
*ip = 2;
g(fip->1i);
}

It is not safe to optimize the first call to g as g(2), or the second as g(1), since the
call to £ could quite legitimately have been

struct fi x;
f(&x, &x.1);

These observations explain the other exception to the same-type principle.

3.3.1 Primary expressions

A primary expression may be void (parenthesized call to a function returning void),
a function designator (identificr or parenthesized function designator), an lvalue
(identifier or parenthesized lvalue), or simply a value expression. Constraints ensure

3.3. Expressions 41

that a void primary expression is ne part of a further expression, except that a void
expression may be cast to void, may be the second or third operand of a conditional
operator, or may be an operand of a comma operator.

3.3.2 Postfix operators
3.3.2.1 Array subscripting

The Committee found no reason to disallow the symmetry that permits a{i] to be
written as ila].

The syntax and semantics of multidimensional arrays follow logically from the
definition of arrays and the subscripting operation. The material in the Standard
on multidimensional arrays introduces no new language features, but clarifies the C
trealment of this important abstract data type.

3.3.2.2 Function calls

Pointers to functions may be used either as (*pf) () or as pf{). The latter con-
struct, not sanctioned in the Base Documment, appears in some present versions of
C, is unambiguous, invalidates no old code, and can be an important shorthand.
The shorthand is useful for packages that present only one external name, which
designates a structure full of pointers to objects and functions: member functions
can be called as graphics.open(file) instead of (*graphics.open) (file).

The treatment of function designators can lead to some curious, but valid, syn-
tactic forms. Given the declarations:

int £0, Gpf)();
then all of the following expressions are valid function calls:

@£)Q); £O;)5 xx£)(); (kxx£) ()
pE(); OepE) ()5 Crrpf) () Cexspf) ()

The first expression on each line was discussed in the previous paragraph. The
second is conventional usage. All subsequent expressions take advantage of the
implicit conversion of a function designator to a pointer value, in nearly all expression
contexts. The Committee saw no real harm in allowing these forms; cutlawing forms
like (x£) (), while still permitting *a (for int a[l), simply seemed more trouble
than it was worth.

The rule for implicit declaration of functions has been retained, but various past
ambiguities have been resolved by describing this usage in terms of a corresponding
explicit declaration.

For compatibility with past practice, all argument promotions occur as described
in the Base Document in the absence of a prototype declaration, including the (not
always desirable) promotion of float to double. A prototype gives the implementor
explicit license to pass a float as a float rather than a double, or a char as a

RATIONALE

42 Section 3. LANGUAGE

char rather than an int, or an argument in a special register, etc. If the definition
of a function in the presence of a prototype would cause the function to expect other
than the default promotion types, then clearly the calls to this function must be
made in the presence of a compatible protlotype.

To clarify this and other relationships between function calls and function defi-
nitions, the Standard describes an equivalence between a function call or definition
which does occur in the presence of a prototype and one that does not.

Thus a prototyped function with no “narrow” types and no variable argument
list must be callable in the ahsence of a prototype, since the types actually passed in
a call are equivalent to the explicit function definition prototype. This constraint is
necessary to rctain compatibility with past usage of library functions. (See §4.1.3.)

This provision constrains the latitude of an implementor because the parame-
ter passing conventions of prototype and non-prototype function calls must be the
same for functions accepting a fixed number of arguments. Implementations in en-
vironments where efficient function calling mechanisms are available must, in effect,
use the efficient calling sequence either in all “fixed argument list” calls or in none.
Since efficient calling sequences often do not allow for variable argument functions,
the fixed part of a variable argument list may be passed in a completely different
fashion than in a lixed argument list with the same number and type of arguments.

The existing practice of omitting trailing parameters in a call if it is known that
the parameters will not be used has consistently been discouraged. Since omission
of such parameters creates an inequivalence between the call and the declaration,
the behavior in such cases is undefined, and a maximally portable program will
avoid this usage. Hence an implementalion is free to implement a funection calling
mechanism for fixed argument lists which would (perhaps fatally) fail if the wrong
number or type of arguments were to be provided.

Strictly speaking then, calls to printf are obliged to be in the scope of a proto-
type (as by #include <stdioc.h>), but implementations are not obliged to fail on
such a lapse. {The behaviar is undefined).

3.3.2.3 Structure and union members

Since the language now permits structure parameters, structure assignment and
functions returning structures, the concept of a structure expression is now part of
the C language. A structure value can be produced by an assignment, by a function
call, by a comma operator expression or by a conditional operator expression:

sl = (82 = 83)
sf(x)

(x, s1)

x 7 sl : 82

In these cases, the result is not an lvalue; hence it cannot be assigned to nor can its
address be taken.

3.3. Expressions 43

Similarly, x.y is an lvalue only if x is an lvalue. Thus none of the following valid
expressions are lvalues:

sf{3).a
(s1=s2).a
((i==8)7s1:82).a
(x,s1).a

Even when x.y is an lvalue, it may not be modifiable:

const struct S si;
si.a = 3; /* invalid */

The Standard requires that an implementation diagnose a constraint error in the
case that the member of a structure or union designated by the identifier following
a member selection operator (. or ->) does not appear ia the type of the structure
or union designated by the first operand. The Base Document is unclear on this
point.

3.3.2.4 Postfix increment and decrement operators

The Committee has not endorsed the practice in some implementations of consid-
ering post-increment and post-decrement operator expressions to be lvalues.

3.3.3 Unary operators
3.3.3.1 Prefix increment and decrement operators

See §3.3.2.4.

3.3.3.2 Address and indirection operators

Some implementations have not allowed the & operator to be applied o an array or
a function. {The construct was permitted in early versions of C, then later made
optional.) The Committee has endorsed the construct since it is unambiguous, and
since data abstraction is enhanced by allowing the important & operator to apply
uniformly to any addressable entity.

3.3.3.3 Unary arithmetic operators

Unary plus was adopted by the Committee from several implementations, for sym-
metry with unary minus.

The bitwise complement operator =, and the other bitwise operators, have now
been defined arithmetically for unsigned operands. Such operations are well-defined
because of the restriction of integral representations to “binary numeration systems.”
(See §3.1.2.5.)

RATIONALE

44 Section 3. LANGUAGE

3.3.3.4 The sizeof operator

It is fundamental to the correct usage of functions such as malloc and fread that
sizeof (char) be exactly one. In practice, this means that a byfec in C terms is
the smallest unit of storage, even if this unit is 36 bits wide; and all objects are
comprised ol an integral number of these smallest units. (See §1.6.)

The Standard, like the Base Document, defines the result of the sizeof operator
to be a constant of an unsigned integral type. Common implementations, and
common usage, have often presumed that the resulting type is int. Old code that
depends on this behavior has never been portable to implementations that define
the result to be a type other than int. The Committee did not feel it was proper
to change the language to protect incorrect code.

The type of sizeof, whatever it is, is published (in the library header
<stddef.h>) as size.t, since it is useful for the programmer to be able to refer
to this type. This requirement implicitly restricts size_t to be a synonym for an
existing unsigned integer type, thus quashing any notion that the largest declarable
object might be too big to span even with an unsigned long. This also restricts
the maximum number of elements that may be declared in an array, since for any
array a of N elements,

N == sizeof(a)/sizeof(al0])

Thus size_t is also a convenient type for array sizes, and is so used in several library
functions. (See §4.9.8.1, §4.9.8.2, §4.10.3.1, etc.)

The Standard specifies that the argument to sizeof can be any value except a
bit field, a vold expression, or a function designator. This generality allows for
interesting environmental enquiries; given the declarations

int *p, *q;
these expressions determine the size of the type used for ...

sizeof (F(x)) /* ... F’s return value */
sizeof (p-q) /* ... pointer differesnce */

(The last type is of course available as ptrdiff_t in <stddef.h>.)

3.3.4 Cast operators

A (void) cast is explicitly permitted, more for documentation than for utility.

Nothing portable can be said about casting integers to pointers, or vice versa, siice
the two are now incommensurate.

The definition of these conversions adopted in the Standard resembles that in
the Base Document, but with several significant differences. The Base Document
required that a pointer successfully converted to an integer must be guaranteed to

3.3. Expressions 45

be convertible back to the same pointer. This integer-to-pointer conversion is now
specified as implementation-defined. While a high-quality implementation would
preserve the same address value whenever possible, it was considered impractical to
require that the identical representation be preserved. The Committee noted that,
on some current machine implementations, identical representations are required for
eflicient code generation for pointer comparisons and arithmetic operations.

The conversion of the integer constant 0 to a pointer is defined similarly to the
Base Document. The resulting pointer must not address any object, must appear to
be equal to an integer value of 0, and may be assigned to or compared for equality
with any other pointer. This definition does not necessarily imply a representation
by a bit pattern of all zeros: an implementation could, for instance, use some address
which causes a hardware trap when dereferenced.

The type char must have the least strict alignment of any type, so char * has often
been used as a portable type for representing arbitrary object pointers. This usage
creates an unfortunate confusion between the ideas of arbitrary pointer and character
or string pointer. The new type void *, which has the sarne representation as char
*, is therefore preferable for arbitrary pointers.

It is possible to cast a pointer of come qualified type (§3.5.3) to an unqualified
version of that type. Since the qualifier defines some special access or aliasing
property, however, any dereference of the cast pointer results in undefined behavior.

The Standard (§3.2.1.4) requires that a cast of one floating point type to another
(e.g., double to float) results in an actual conversion.

3.3.5 Multiplicative operators

There was considerable sentiment for giving more portable semantics to division
(and hence remainder) by specifying some way of giving, less machine dependent
results for negative operands. Few Committee members wanted to require this by
default, lest existing fast code be gravely slowed. One suggestion was tc make
signed int atype distinct from plain int, and require better-defined semantics for
signed int division and remainder. This suggestion was opposed on the grounds
that effectively adding several types would have consequences out of proportion to
the benefit to be obtained; the Committee twice rejected this approach. Instead the
Committee has adopted new library functions div and 1div which produce integral
quotient and remainder with well-defined sign semantics. (See §4.10.6.2, §4.10.6.3.)

The Committee rejected extending the % operator to work on floating types;
such usage would duplicate the facility provided by fmod. (See §4.5.6.5.)

3.3.6 Additive operators

As with the sizeof operator, implementations have taken different approaches in
defining a type for the difference between two pointers (see §3.3.3.4). It is important

RATIONALE

16 Section 3. LANGUAGE

that this type be signed, in order to obtain proper algebraic ordering when dealing
with pointers within the same array. However, the magnitude of a pointer difference
can be as large as the size of the largest object that can be declared. (And since that
is an unsigned type, the difference between two pointers may cause an overflow.)

The type of pointer minus pointer is defined to be int in K&R. The Stan-
dard decfines the result of this operation to be a signed integer, the size of which
is implementation-defined. The type is published as ptrdiff_t, in the standard
header <stddef.h>. Old code recompiled by a conforming compiler may no longer
work if the implementation defines the result of such an operation to be a type other
than int and if the program depended on the result to be of type int. 'This behavior
was considered by the Committee to be correctable. Overllow was considered not
to break old code since it was undefined by K&R. Mismatch of types between ac-
tual and formal argument declarations is correctable by including a properly defined
function prototype in the scope of the function invocation.

An important endorsement of widespread practice is the requirement that a
pointer can always be incremented to just past the end of an array, with no fear of
overflow or wraparound:

SOMETYPE array[SPAN];
YRR ¥4
for (p = &array[0]; p < &array[SPAN]; p++)

This stipulation merely requires that every object be followed by one byte whose
address is representable. That byte can be Lhe first byte of the next object declared
for all but the last object located in a contignous segment of memaory. (In the exam-
ple, the address &array[SPAN] must address a byte following the highest element
of array.) Since the pointer expression p+1 need not (and should not) be derefer-
enced, it is unnecessary to leave room for a complete object of size sizeof (*p).

In the case of p-1, on the other hand, an entire object would have to be allocated
prior to the array of objects that p traverses, so decrement loops that run off the
bottom of an array may fail. This restriction allows segmented architectures, for
instance, to place objects at the start of a range of addressable memory.

3.3.7 Bitwise shift operators

See §3.3.3.3 for a discussion of the arithmetic definition of these operators.

The description of shift operators in K&R suggests that shifting by a long count
should force the left operand to be widened to long before being shified. A more
intuitive practice, endorsed by the Connnitiee, is that the type of the shift count
has no bearing on the type of the result.

QUIET CHANGE

Shifting by a long count no longer coerces the shifted operand to long.

3.3. Exprescions 47

The Committee has affirmed the freedom in implementation granted by the Base
Document in not requiring the signed right shift operation to sign extend, since such
a requirement might slow down fast code and since the usefulness of sign extended
shifts is marginal. (Shifting a negative twos-complement integer arithmetically right
one place is not the same as dividing by two!)

3.3.8 Relational operators

For an explanation of why the pointer comparison of the object pointer P with the
pointer expression P+1 is always safe, sce Rationale §3.3.6.

3.3.9 Equality operators

The Committee considered, on more than one occasion, permitting comparison of
structures for equality. Such proposals foundered on the problem of holes in struc-
tures. A byte-wise comparison of two structures would require that the holes as-
suredly be set to zero so that all holes would compare equal, a difficult task for
automatic or dynamically allocated variables. (The possibility of union-type ele-
ments in a structure raises insuperable problems with this approach.) Otherwise
the implementation would have to be prepared to break a structure comparison into
an arbitrary number of member comparisons; a seemingly simple expression could
thus expand into a substantial stretch of code, which is contrary to the spirit of C.

In pointer comparisons, one of the operands may be of type void *. In partic-
ular, this allows NULL, which can be defined as (void #)0, to be compared to any
object pointer.

3.3.10 Bitwise AND operator

See §3.3.3.3 for a discussion of the arithmetic definition of the bitwise operators.

3.3.11 Bitwise exclusive OR operator

See £§3.3.3.3.

3.3.12 Bitwise inclusive OR operator

See §3.3.3.3.

3.3.13 Logical AND operator
3.3.14 Logical OR operator
3.3.15 Conditional operator

The syntactic restrictions on the middle operand of the conditional operator have
been relaxed to include more than just logical-OR-expression. several extant imple-
mentations have adopted this practice.

RATIONALE

48 Section 3. LANGUAGE

The type of a conditional operator expression can be void, a structure, or a
union; most other operators do not deal with such types. The rules for balancing
type between pointer and integer have, however, been tightened, since now only the
constant 0 can portably be coerced to pointer.

The Standard allows one of the second or third operands to be of type void *.
if the other is a pointer type. Since the result of such a conditional expression is
void *, an appropriate cast must be used.

3.3.16 Assignment operators

Certain syntactic forms of assignment operators have been discontinued, and others
tightened up (see §3.1.5).

The storage assignment need not take place until the next sequence point. (A
vestriction in earlier drafts that the storage take place before the value of the ex-
pression is used has been removed.) As a consequence, a straightforward syntactic
test for ambignous expressions can be stated. Some definitions: A side effect is a
storage to any data object, or aread of a volatile object. An ambiguous expressionis
one whose value depends upon the order in which side effects are evaluated. A pure
funcition is one with no side effects; an impure function is any other. A sequenced
erpression is one whose major operator defines a sequence point: comma, &&, ||,
or conditional operator; an unsequenced expression is any other. We can then say
that an unsequenced expression is ambiguous if more than one operand invokes any
impure function, or if more than one operand contains an lvalue referencing the
same object and one or more aperands specily a side-effect to that object. further,
any expression containing an ambiguous expression is ambiguous.

The optimization rules for factoring out assignments can also be stated. Iet
X(i,S) be an expression which contains no impure functions or sequenced operators,
and suppose that X contains a storage S(i) to i. The storage expressions, and
related expressions, are

S(i): Sval(i): Snew(i):
++1 i+1 i+1

i++ i i+1

--1 i-1 i-1

i-- i i-1
i=y y v
iop=y iopy iopy

Then X(i,S) can be replaced by either

(T =1, 1 Snew(i), X(T,Sval))

or

(T = X(i,5val), i = Snew(i), T)

provided that neither i nor y have side effects themselves.

3.4. Constant Lxpressions 49

3.3.16.1 Simple assignment

Structure assignment has been added: its use was foreshadowed even in K& R, and
many existing implementations already support it.

The rules for type compatibility in assignment also apply to argument compati-
bility between actlual argument expressions and their corresponding argument types
in a function prototype.

An implementation need not correctly perform an assignment between over-
lapping operands. Overlapping operands occur most naturally in a union, where
assigning one ficld to another is often desirable to effect a type conversion in place;
the assignment may well work properly in all simple cases, but it is not maximally
portable. Maximally portable code should use a temporary variable as an interme-
diate in such an assignment.

3.3.16.2 Compound assignment

The importance of requiring that the left operand lvalue be evaluated only once is
not a question of efficiency, although that is one compelling reason for using the
compound assignment operators. Rather, it is to assure that any side effects of
evaluating the left operand are predictable.

3.3.17 Comma operator

The left operand of a comma operator may be void, since only the right-hand
operator is relevant to the type of the expression.

The example in the Standard clarifics that commas separating arguments “bind”
tighter than the comma opcrator in expressions.

3.4 Constant Expressions

To clarify existing practice, several varieties of constant expression have been iden-
tified:

The expressicn following #if (§3.8.1) must expand to integer constants, charac-
ter constants, the special operator defined, and operators with no side effects.
No environmental inquiries can be made, since all arithmetic is donc as translate-
time (signed or unsigned) long integers, and casts are disallowed. The restriction to
translate-time arithmetic frees an implementation from having to perform execution-
environment arithmetic in the host environment. It does not preclude an imple-
mentation from doing so — the implementation may simply define “translate-time
arithmetic” to be that of the target.

Unsigned arithmetic is performed in these expressions (according to the default
widening rules) when unsigned operands are involved; this rule allows for unsur-
prising arithmetic involving very large constants (i.e, those whose type is unsigned

RATIONALE

a0 Section 3. LANGUAGE

long) since they cannot be represented as long or constants explicitly marked as
unsigned.

Character constants, when evaluated in #if expressions, may be interpreted in
the source character set, the execution character set, or some other implementation-
defined character set. This latitude reflects the diversity of existing practice, espe-
cially in cross-compilers.

An integral constant expression must involve only numbers knowable at translate
time, and operators with no side effects. Casts and the sizeof operator may be
used to interrogate the execution environment.

Static initializers include integral constant expressions, along with floating constants
and simple addressing expressions. An implementation must accept arbitrary ex-
pressions involving floating and integral numbers and side-effect-free operators in
arithmetic initializers, but it is at liberty to turn such initializers into executable
code which is invoked prior to program startup (see §2.1.2.2); this scheme might
impose some requirements on linkers or runtime library code in some implementa-
tions.

The translation environment must not produce a less accurate value for a
floating-point initializer than the execution environment, but it is at liberty to
do better. Thus a static initializer may well be slightly different than the same
expression computed at execution time. However, while implementations are cer-
tainly permitted to praduce exactly the same result in translation and execution
environments, requiring this was deemed to be an intolerable burden on many cross-
compilers.

QUIET CHANGE

A program that uses #if expressions to determine properties of the ex-
ecution environment may now get different answers.

3.5 Declarations

The Committee decided that empty declarations are invalid (except for a special case
with tags, see §3.5.2.3, and the case of enumerations such as enum {zero,one};,
see §3.5.2.2). While many seemingly silly constructs are tolerated in other parts
of the language in the interest of facilitating the machine generation of C, empty
declarations were considered sufliciently easy to avoid.

The practice of placing the storage class specifier other than first in a declaration
has been branded as obsolescent (See §3.9.3.) The Committee feels it desirable to
rule out such coustructs as

enum { aaa, aab,
/* etc */
ZzZy, 2zz } typedef alz;

in some future standard.

3.5. Declarations 51

3.5.1 Storage-class specifiers

Because the address of a register variable cannot be taken, objects of storage class
register effectively exist in a space distinct from other objects. {Functions occupy
vet a third address space). This makes them candidates for optimal placement, the
usual reason for declaring registers, but it also makes them candidates for more
aggressive oplimization.

The practice of representing register variables as wider types (as when register
char is quietly changed to register int) is no longer acceptable.

3.5.2 Type specifiers

Several new type specifiers have been added: signed, enum, and void. long float
has been retired and long double has been added, along with a plethora of integer
types. The Committee’s reasons for each of these additions, and the one deletion,
are given in section §3.1.2.5 of this document.

3.5.2.1 Structure and union specifiers

Three types of bit ficlds are now defined: “plain” int calls for implementotion-
defined signedness (as in the Basc Document), signed int calls for assuredly signed
ficlds, and unsigned int calls for unsigned fields. The old constraints on bit fields
crossing word boundaries have been relaxed, since so many properties of bit fields
are implementation dependent anyway.

The layout of structures is determined only to a limited extent:

+ 10 hole may occur at the beginning;
¢ members occupy increasing storage addresses; and

¢ if necessary, a hole is placed on the end to make the structure big enough to
pack tightly into arrays and maintain proper alignment.

Since some existing implementations, in the interest of enhanced access time, leave
internal holes larger than absolutely necessary, it is not clear that a portable deter-
ministic method can be given for traversing a structure field by field.

To clarify what is meant by the notion that “all the ficlds of a union occupy the
same storage,” the Standard specifies that a pointer to a union, when suitably cast,
points to each member (or, in the case of a bit-field member, to the storage unit
containing the bit field).

3.5.2.2 Enumeration specifiers
3.5.2.3 Tags

As with all block structured languages that also permit forward references, C Las a
problem with structure and union tags. If one wants to declare, within a block, two
mutually referencing structures, one must write something like:

RATIONALE

52 Section 3. LANGUAGE

struct x { struct y *p; /*...x/ };
struct y { struct x *q; /*...%/ };

But if struct y is already defined in a containing block, the first field of struct x
will refer to the older declaration.
Thus special semantics has been given to the form:

struct y;

It now hides the outer declaration of v, and “opens” a new instance in the current

block.

QUIET CHANGE

The empty declaration struct x; is no longer innocuous.

3.5.3 Type qualifiers

The Committee has added to C two fype qualifiers: const and volatile. Indi-
vidually and in combination they specify the assumptions a compiler can and must
make when accessing an object through an lvalue,

The syntax and semantics of const were adapted from C++; the concept itself
has appeared in other languages. volatile is an invention of the Committee; it
follows the syntactic model of const.

Type qualifiers were introduced in part to provide greater control over opti-
mization. Several important optimization techniques are based on the principle of
“cacheing”: under certain circumstances the compiler can remember the last value
accessed (read or written) from a location, and use this retained value the next time
that location is read. (The memory, or “cache”, is typically a hardware register.) If
this memory is a machine register, for instance, the code can be smaller and faster
using the register rather than accessing external memory.

The basic qualifiers can be characterized by the restrictions they impose on
access and cacheing:

const No writes through this lvalue. In the absence of this qualifier, writes may
occur through this lvalue.

volatile No cacheing through thislvalue: each operation in the abstract semantics
must be performed. (That is, no cachecing assumptions may be made, since
the location is not guaranteed to contain any previous value.) In the absence
of this qualifier, the contents of the designated location may be assumed to be
unchanged (except for possible aliasing.)

A translator design with no cacheing optimizations can effectively ignore the
type qualifiers, except insofar as they affect assignment compatibility.

It would have been possible, of course, to specify a nonconst keyword instead
of const, or nonvolatile instead of velatile. The senses of these concepts in

3.5. Declarations 53

the Standard were chosen to assure that the default, unqualified, case was the most
common, and that it corresponded most clearly to traditional practice in the use of
Ivaiue expressions.

Four combinations of the two qualifiers is possible; each dafines a useful set of lvalue
properties. The next several paragraphs describe typical uses of these qualifiers.

The translator may assume, for an unqualified lvalue, that it may read or write
the referenced object, that the value of this object cannot be changed except by
explicitly programmed actions in the current thread of control, but that other lvalue
expressions could reference the same object.

const is specified in such a way that an implementation is at liberty to put
const objects in read-only storage, and is encouraged to diagnose obvious attempts
to modify them, but is not required to track down all the subtle ways that such
checking can be subverted. If a function parameter is declared const, then the
referenced object is not changed (through that lvalue) ir. the body of the function
— the parameter is read-only.

A static volatile object is an appropriate model for a memory-mapped I/0
register. Implementors of C translators should take into account relevant hardware
details on the target systems when implementing accesses to volatile objects. For
instance, the hardware logic of a system way require that a two-byle memory-
mapped rtegister not be accessed with byte operations; a compiler for such a system
would have to assure that no such instructions were generated, even if the source
cade only accesses one hyle of the register. Whether read-modify-write instructions
can be nsed on such device registers must also be considered. Whatever decisions are
adopted on such issues must be documented, as volatile access is implementation-
defined. A volatile object is an appropriate model for a variable shared among
multiple processes.

A static const volatile ohject appropriately models a memory-mapped input
port, such as a real-time clock. Similarly, a const volatile object models a variable
which can be altered by another process but not by this one.

Although the type qualifiers are formally treated as defining new types they actually
serve as modifiers of declarators. Thus the declarations

const struct s {int a,b;} x;
struct s ¥,

declare x as a const object, but not y. The const property can be associated with
the aggregate type by means of a type definition:

typedef const struct s {int a,b;} stype;

stype X;

stype y;
In these declarations the const property is associated with the declarator stype, so
x and y are both const abjects.

RATIONALE

54 Section 3. LANGUAGE

The Committee considered making const and velatile storage classes, but this
would have ruled out any number of desirable constructs, such as const members
of structures and variable pointers to const types.

A cast of a value to a qualified type has no effect; the qualification (velatile,
say) can have no effect on the access since it has occurred prior to the cast. I it is
necessary to access a non-volatile object using volatile semantics, the technique is
to cast the address of the object to the appropriate pointer-to-qualified type, then
dereference that pointer.

3.5.4 Declarators

The function prototype syntax was adapted from C+4-. (See §3.3.2.2 and §3.5.4.3)

Some current implementations have a limit of six type modifiers (function re-
turning, array of, pointer (o), the limit used in Ritchie’s original compiler. This
limit has been raised to twelve since the original limit has proven insufficient in
some cases; in particular, it did not allow for FORTRAN-to-C translation, since
FORTRAN allows for seven subscripts. (Some users have reported using nine or {en
levels, particularly in machine-generated C code.)

3.5.4.1 DPointer declarators

A pointer declarator may have its own type qualifiers, to specify the attributes of the
poiuter itself, as opposed to those of the reference type. The construct is adapted
from C++.

const int * means {variable) pointer to constant int, and int * const means
constant pointer to (variable) int, just as in C+4, from which these constructs
were adopted. (And mulatis mutandis for the other type qualifiers.) As with other
aspects of € type declarators, judicious use of typedef statements can clarify the
code.

3.5.4.2 Array declarators

The concept of composite types (§3.1.2.6) was introduced to provide for the accretion
of information from incomplete declarations, such as array declarations with miss-
ing size, and function declarations with missing prototype (argument declarations).
Type declarators are therefore said to specify compatible types if they agree except
for the fact that one provides less information of this sort than the other.

The declaration of O-length arrays is invalid, under the general principle of not
providing for 0-length objects. The only common use of this construct has been in
the declaration of dynamically ailocated variable-size arrays, such as

struct segment {
short int count;
char c[N];

+

)|
o |

3.5. Declarations

struct segment * new_segment(censt int length)

{
struct segment * result;
result = malloc(sizeof segment + (length-N));
result->count = length;
return result;
}

In such usage, N would be 0 and (length-N) would be written as length. But this
paradigm works just as well, as written, if N is 1. (Note, by the by, an alternate way
of specifying the size of result:

result = malloc(offsetof(struct segment,c) + length);

This illustrates one of the uscs of the offsetof macro.)

3.5.4.3 Function declarators (including prototypes)

The function prototype mechanism is ane of the most useful additions to the C lan-
guage. The feature, of course, has precedent in many of the Algol-derived languages
of the past 25 years. The particular form adopted in the Standard is based in large
part upon C++.

Function prototypes provide a powerful translation-time error detection capa-
bility. In traditional C practice without prototypes, it is extremely difficult for the
translator to detect errors (wrong number or type of arguments) in calls to func-
tions declared in another source file. Detection of such errors has either occurred at
runtime, or through the use of auxiliary software tools.

In function calls not in the scope of a function prototype, integral arguments
have the integral widening conversions applied and float arguments are widened
to double. It is thus impossible in such a call to pass an unconverted char or
float argument. Function prototypes give the programmer explicit control over
the function argument type conversions, so that the often inappropriate and some-
times inefficient default widening rules for arguments can be suppressed by the
implementation. Maodifications of function interfaces are easier in cases where the
actual arguments are still assignment compatible with the new formal parameter
type — only the function definition and its prototype need to be rewritten in this
case; 1o function calls need be rewritten.

Allowing an optional identifier to appear in a function prototype serves two
purposes:

¢ the programmer can associate a meaningful name with each argument position
for documentation purposes, and

s a function declarator and a function prototype can use the same syntax. The
consistent syntax makes it easier for new users of C to learn the language. Au-
tomatic generation of function prototype declarators from function definitions
is also facilitated.

RATIONALE

a6 Section 3. LANGUAGE

Optimizers can also take advantage of function prototype information. Consider
this example:

extern int compare(const char * stringl,
const char * string2) ;

void funczZ(int x)

{
char * strl, * str2 ;
/* ... %/
X = compare(strl, str2) ;
fx .. %/
)4

The optimizer knows that the pointers passed to compare are not used to assign new
values to any objects that the pointers reference. Hence the optimizer can make less
conservative assumptions about the side effects of compare than would otherwise be
necessary.

The Standard requires that calls to functions taking a variable number of argu-
ments must occur in the presence of a prototype {using the trailing ellipsis notation
,+..). An implementation may thus assume that all other functions are called with
a fixed argument list, and may therefore use possibly more efficient calling sequences.
Programs using old-style headers in which the number of arguments in the calls and
the definition differ may not work in implementations which take advantage of such
optimizations. This is not a Quiet Change, strictly speaking, since the program
does not conform to the Standard. A word of warning is in order, however, since
the style is not uncommeon in extant code, and since a conforming translator is not
required to diagnose such mismatches when they occur in separate translation units.
Such trouble spots can be made manifest (assuming an implementation provides rea-
sonable diagnosties) by providing new-style function declarations in the translation
units with the non-matching calls. Programmers who currently rely on being able
to omit trailing arguments are advised to recode using the <stdarg.h> paradigm.

Function prototypes may be used to define function types as well:

typedef double (*d_binop) (double A, double B);

struct d_funct {

d_binop 1,

int {(*£2) (double, double);
};

The structure d_funct has two fields, hoth of which hold pointers to functions taking
two double arguments; the function types differ in their return type,

3.5. Declarations 57

3.5.5 Type names

Empty parcntheses within a type name are always taken as meaning function with
unspecificd arguments and never as (unnecessary) parentheses around the elided
identifier. This specification avoids an ambiguity by fiat.

3.5.6 Type definitions

A typedef may only be redeclared in an inner block with a declaration that explicitly
contains a type name. This rule avoids the ambiguity about whether to take the
typedef as the type name or the candidate for redeclaration.

Some implementations of C have allowed type specifiers to be added to a type
defined using typedef. Thus

typedef short int small ;
unsigned small x ;

would give x the type unsigned short int. The Comrmittee decided that since
this interpretation may be difficult to provide in many implementations, and since
it defeats much of the utility of typedef as a data abstraction mechanism, such type
modifications are invalid. This decision is incorporated in the rules of §3.5.2.

A proposed typeof operator was rejected on the grounds of insufficient utility.

3.5.7 Initialization

An implementation might conceivably have codes for floating zero and/or null
pointer other than all bits zero. In such a case, the implementation must fill out an
incomplete initializer with the various appropriate representations of zero; it may
not just fill the area with zero bytes.

The Committee considered proposals for permitting automatic aggregate initial-
izers Lo consist of a brace-enclosed series of arbitrary (execute-time) expressions,
instead of just those usable for a translate-time static initializer. However, cases
like this were troubling:

int x[2] = { £{(x[1]), g(x[01) };

Rather than determine a sct of rules which would avoid pathological cases and yet
not seem too arbitrary, the Committee elected to permit only static initializers. Con-
sequently, an implementation may choose to build a hidden static aggregate, using
the same machinery as for other aggregate initializers, then copy that aggregate to
the automatic variable upon block entry.

A structure expression, such as a call to a function returning the appropriate
structure type, is permitted as an automatic structure initializer, since the usage
seems unproblematic.

For programmer convenience, even though it is a minor irregularity in initializer
semantics, the trailing null character in a string literal need not initialize an array
element, as in:

RATIONALE

58 Section 3. LANGUAGE

char mesg[5] = "help!"

(Some widely used implementations provide precedenl.}

The Base Document allows a trailing comma in an initializer at the end of an
initializer-list. The Standard has retained this syntax, since it provides flexibility in
adding or deleting members from an initializer list, and simplifies machine generation
of such lists.

Various implementations have parsed aggregate initializers with partially elided
braces differently. The Standard has rcaffirmed the (top-down) parse described in
the Base Document. Although the construct is allowed, and its parse well defined,
the Committee urges programmers to avoid partially elided initializers: such initial-
izations can be quite confusing to read.

QUIET CHANGE

Code which relies on a bottom-up parse of aggregate initializers with
partially elided braces will not yield the expected initialized object.

The Committee has adopted the rule (already used successfully in some implemen-
tations) that the first member of the union is the candidate for initialization. Other
notations for union initialization were considered, but none seemed of sufficient merit
to outweigh the lack of prior art.

This rule has a parallel with the initialization of structures. Members of struc-
tures arc initialized in the sequence in which they are declared. 'T'he same can now
be said of unions, with the significant difference that only one union member (the
first) can be initialized.

3.6 Statements

3.6.1 Labeled statements

Since label definition and label reference are syntactically distinctive contexts, labels
are established as a separate name space.

3.6.2 Compound statement, or block

The Committee considered proposals for forbidding a goto into a block from outside,
since such a restriction would make possible much easier flow optimization and would
avoid the whole issue of initializing auto storage (see §3.1.2.4). The Committee
rejected such a ban out of fear of invalidating working code (however undisciplined)
and out of concern for those producing machine-generated C.

3.6.3 Expression and null statements

The void cast is not needed in an expression statement, since any value is always
discarded. Some checking compilers prefer this reassurance, however, for functions
that return objects of types other than veid.

3.6. Statements 59

3.6.4 Selection statements
3.6.4.1 The if statement
See §3.6.2.

3.6.4.2 The switch statement

The controlling expression of a switch statement may now have any integral type,
cven unsigned long. Floaling types were rejected for switch statements since exact
equality in floating point is not portable.

case labels are first converted to the type of the controlling expression of the
switch, then checked for equality with other labels; no two may match after conver-
sion.

Case ranges (of the form 1e .. hi) were seriously considered, but ultimately
not adopted in the Standard on the grounds that it added no new capability, just
a problematic coding convenience. The construct seems to promise more than it
could be mandated to deliver:

e A great deal of code (or jump table space) might be generated for an innocent-
looking case range such as 0 .. 65535.

e The range 'A'..'Z"' would specify all the integers between the character code
for A and that for Z. In some common character sets this range would include
non-alphahetic characters, and in others it might not include all the alphabetic
characters (especially in non-English character sets).

No scrious consideration was given to making the switch morce structured, as in
Pascal, out of fear of invalidating working code.

QUIET CHANGE

long expressions and constants in switch statements are no longer trun-
cated to int.

3.6.5 Iteration statements
3.6.5.1 The while statement
3.6.5.2 The do statement
3.6.5.3 The for statement
3.6.6 Jump statements
3.6.6.1 The goto statement
See §3.6.2.

RATIONALE

60 Section 3. LANGUAGE

3.6.6.2 The continue statement

The Committee rejected proposed enhancements to continue and break which
wonld allow specification of an iteration statement other than the immediately en-
closing one, on grounds of insufficient prior art.

3.6.6.3 The break statement
See §3.6.6.2.

3.6.6.4 The return statement

3.7 FExternal definitions

3.7.1 Function definitions

A function definition may have its old form (and say nothing about arguments on
calls), or it may be introduced by a prototype (which affects argnment checking and
coercion on subsequent calls). (See also §3.1.2.2.)

To avoid a nasty ambiguity, the Standard bans the use of typedef names as formal
parameters. For instance, in translating the text

int f(size_t, a_t, b_t, c_t, d_t, e_t, f_t, g_t,
h t, i_t, j_t, k_t, 1_t, m_t, n_.t, o_t,
p-t, g.t, r_t, s_t)

the translator determines that the construct can only be a prototype declaration as
soon as it scans the first size_t and following comma. In the absence of this rule,
it might be necessary to see the token following the right parenthesis that closes the
parameter list, which would require a sizeable look-ahead, before deciding whether
the text under scrutiny is a prototype declaration or an o¢ld-style function header
definition.

An argument Jist must be explicitly present in the declarator; it cannot be inherited
from a typedef (see §3.5.4.3). That is to say, given the definition

typedef int p(int ¢, int r);
the following fragment is invalid:

p funk /* weird */
{return q + r ; ¥

Some current implementations rewrite the type of a (for instance) char parameter

as if it were declared int, since the argument is known to be passed as an int
(in the absence of prototypes). The Standard requires, however, that the received
argument be converted as if by assignment upon function entry. Type rewriting is
thus no longer permissible.

3.8. Preprocessing directives 61

QUIET CHANGE

Functions that depend on char or short parameter types being widened
to int, or float to double, may behave differently.

Notes for implementors: the assignment conversion for argument passing often
requires no executable code. In most twos-complement machines, a short or char
is a contiguous subset of the bytes comprising the int actually passed (for even
the most unusual byte orderings), so that assignment conversion can be effected by
adjusting the address of the argument (if necessary) .

For an argument declared float, however, an explicit conversion must usually
be performed from the double actually passed to the fleat desired. Not many
implementations can subset the bytes of a double to get a float. (Even those that
apparently permit simple truncation often get the wrong answer on certain negative
numbers.)

Some current implementations permit an argument to be masked by a declaration
of the same identifier in the outermost block of a function. This usage is almost
always an erroneous attempt by a novice C programmer to declare the argument;
it is rarely the result of a deliberate attempt to render the argument unreachable.
The Committee decided, therefore, that arguments are effectively declared in the
outermost block, and hence cannot be quietly redeclared in that block.

The Committee considered it important that a function taking a variable number
of arguments, such as printf, be expressible portably in C. Hence, the Committee
devoted much time to exploring methods of traversing variable argument lists, One
proposal was to require arguments to be passed as a “brick” (i.e., a contiguous area
of memory), the layout of which would be sufficiently well specified that a portable
method of traversing the brick could be determined.

Several diverse implementations, however, can implement argument passing
more efficiently if the arguments are not required to be contiguous. Thus, the
Committee decided to hide the implementation details of determining the location
of successive elements of an argument list behind a standard set of macros (see §4.8).

3.7.2 External object definitions
See §3.1.2.2.

3.8 Preprocessing directives

For an overview of the philosophy behind the preprocessor, see §2.1.1.2.

Different implementations have had different notions about whether white space
is permissible before and/or after the # signalling a preprocessor line. The Com-
mittee decided to allow any white space before the #, and horizontal white space

RATIONALE

62 Section 3. LANGUAGE

(spaces or tabs) between the # and the directive, since the white space introduces
no ambiguity, causes no particular processing problems, and allows maximum {lex-
ibility in coding style. Note that similar considerations apply for comments, which
are reduced to white space early in the phases of translation (§2.1.1.2):

/* here a comment */ #if BLAH
#/% there a comment */ if BLAH
if /* every-

where a comment */ BLAH

The lines all illustrate legitimate placement of comments.

3.8.1 Conditional inclusion

For a discussion of evaluation of expressions following #if, see §3.4.

The operator defined has been added to make possible writing boolean com-
binations of defined flags with one another and with other inclusion conditions. If
the identifier defined were to be defined as a macro, defined(X) would mean the
macro expansion in C text proper and the operator expression in a preprocessing
directive {or else that the operator would no longer be available). To avoid this
problem, such a definition is not permitted (§3.8.8).

#elif has been added to minimize the stacking of #endif directives in multi-way
conditionals.

Processing of skipped material is defined such that an implementation need only
examine a logical line for the # and then for a directive name. Thus, assuming that
xxx is undefined, in this example:

ifndef xxx
define xxx "abc"
elif xxx > 0
/* ... %/
endif

an implementation is not required to diagnose an error for the elif statement, even
though if it were processed, a syntactic error would be detected.

Various proposals were considered for permitting text other than comments at
the end of directives, particularly #endif and #else, presumably to label them for
easier matchup with their corresponding #if directives. The Committee rejected
all such proposals because of the difficulty of specifying exactly what would be
permitted, and how the translator would have to process it.

Various proposals were considered for permitting additional urary expressions
to be used for the purpose of testing for the system type, testing for the presence of
a file before #include, and other extensions to the preprocessing language. These
proposals were all rejected on the grounds of insufficient prior art and/or insufficient
utility.

3.8. Preprocessing directives 63

3.8.2 Source file inclusion

Specification of the #include directive raises distinctive grammatical problems be-
cause the file name is conventionally parsed quite differently than an “ordinary”
token sequence:

¢ The angle brackets are not operators, but delimiters.

¢ The double quotes do not delimit a string literal with all its defined escape
sequences. (In some systems, backslash is a legitimate character in a filename.)
The construct just looks like a string literal.

¢ White space or characters not in the C repertoire may be permissible and
significant within either or both forms.

These points in the description of phases of translation are of particular relevance
to the parse of the #include directive:

¢ Any character otherwise unrecognized during tokenization is an instance of
an “invalid token.” As with valid tokens, the spelling is retained so that
later phases can, if necessary, map a token sequence (back) into a sequence of
characters.

¢ Preprocessing phases must maintain the spelling of preprocessing tokens; the
filename is based on the original spelling of the tokens, not on any interpreta-
tion of escape sequences.

o The filename on the #include (and #1ine) directive, if it does not begin with
" or <, is macro expanded prior to execution of the directive. Allowing macros
in the include directive facilitates the parameterization of include file names,
an important issue in transportability.

The file search rules used for the filename in the #include directive were left as
implementation-defined. The Standard intends that the rules which are eventually
provided by the implementor correspond as closely as possible to the original K&R.
rules. The primary reason that explicit rules were not included in the Standard
is the infeasibility of describing a portable file system structure. It was consid-
ered unacceptable to include UNIX-like directory rules due to significant differences
between this structure and other popular commercial file system structures.
Nested include files raise an issue of interpreting the file search rules. In UNIX
C an include statement found within an include file entails a search for the named
file relative to the file system directory that holds the outer #include. Other imple-
mentations, including the earlier UNIX C described in K&R, always search relative
to the same current directory. The Committee decided, in principle, in favor of the
K& R approach, but was unable to provide explicit search rules as explained above.

RATIONALE

64 Section 3. LANGUAGE

The Standard specifies a set of include file names which must map onto distinct host
file names. In the absence of such a requirement, it would be impossible to write
portable programs using include files.

Section §2.2.4.1 on translation limits contains the required number of nesting levels
for include files. The limits chosen were intended to reflect reasonable needs for
users constrained by rcasonable system resources available to implementors.

By defining a failure to read an include file as a syntax error, the Standard requires
that the failure be diagnosed. More than one proposal was presented for some form
of conditional include, or a directive such as #ifincludable, but none were accepted
by the Committee due to lack of prior art.

3.8.3 Macro replacement

The specification of macro definition and replacement in the Standard was based on
these principles:

¢ Interfere with existing code as little as possible.
¢ Keep the preprocessing model simple and uniform.
¢ Allow macros to be used wherever functions can be.

¢ Define macro expansion such that it produces the same token sequence whether

the macro calls appear in open text, in macro arguments, or in macro defini-
tions.

Preprocessing is specified in such a way that it can be implemented as a separate
(text-to-text) pre-pass or as a (token-oriented) portion of the compiler itself. Thus,
the preprocessing grammar is specified in terms of tokens.

However, the new-line character must he a token during preprocessing, because
the preprocessing grammar is line-oriented. The presence or absence of white space is
also important in several contexts, such as between the macro name and a following
parenthesis in a #define dircctive. To avoid overly constraining the implementation,
the Standard allows the preservation of each white space character (which is easy for
a text-to-text pre-pass) or the mapping of white space into a single “white space”
token {(which is easier for token-oriented translators).

The Committee desired to disallow “pernicious redefinitions” such as
(in headerl.h)
#define NBUFS 10
(in header2.h)
#define NBUFS 12

which are clearly invitations to serious bugs in a program. There remainced,

however, the question of “benign redefinitions,” such as

3.8. Preprocessing directives 65

(in headerl.h)

#define NULL_DEV 0
(in header2.h)

#define NULL_DEV O

The Committee concluded that safe programming practice is better served by
allowing benign redefinition where the definitions are the same. This allows inde-
pendent headers to specify their understanding of the proper value for a symbol of
interest to each, with diagnostics generated only if the definitions differ.

The definitions are considered “the same” if the identifier-lists, token sequences,
and occurrences of white-space (ignoring the spelling of white-space) in the two
definitions are identical.

Existing implementations have differed on whether keywords can be redefined by
macro definitions. The Committee has decided to allow this usage; it sees such
redefinition as useful during the transition from existing to Standard-conforming
translators.

These definitions illustrate possible uses:

define char signed char
define sizeof (int) sizeof
define const

The first case might be useful in moving extant code from a signed-char implementa-
tion to one in which char is unsigned. The second case might be useful in adapting
code which assumes that sizeof results in an int value. The redefinition of const
could be useful in retrofitting more modern C code to an older implementation.
As with any other powerful language feature, keyword redefinition is subject to

abuse. Users cannot expect any meaningful behavior to come about from source
files starting with

#define int double
#include <stdio.h>

or similar subversions of common sense.

3.8.3.1 Argument substitution
3.8.3.2 The # operator

Some implementations have decided to replace identifiers found within a string lit-
eral if they match & macro argument name. The replacernent text is a “stringized”
form of the actual argument token sequence. This practice appears to be contrary
to the definition, in K&R, of preprocessing in terms of token sequences. The Com-
mittee declined to claborate the syntax of string literals to the point where this

RATIONALE

66 Section 3. LANGUAGE

practice could be condoned. However, since the facility provided by this mechanism
seems to be widely used, the Committee introduced a more tractable mechanism of
comparable power.

The # operator has been introduced for stringizing. It may only he used in a
#define expansion. It causes the formal parameter name following to be replaced
by a string literal formed by stringizing the actual argument token scquence. In
conjunction with string literal concatenation (see §3.1.4), use of this operator permits
the construction of strings as effectively as by identifier replacement within a string.
An example in the Standard illustrates this feature.

One problem with defining the effect of stringizing is the treatment of white
space occurring in macro definitions. Where this could be discarded in the past, now
upwards of one logical line worth (over 500 characters) may have to be retained. Asa
compromise between token-based and character-based preprocessing disciplines, the
Committee decided to permit white space to be retained as one bit of information:
none or one. Arbitrary white space is replaced in the string by one space character.

The remaining problem with stringizing was to associate a “spelling” with each
token. (The problem arises in token-based preprocessors, which might, for instance,
convert a numeric literal to a canonical or internal representation, losing information
about base, leading 0’s, etc.) In the interest of simplicity, the Committee decided
that each token should expand to just those characters used to specify it in the
original source text.

QUIET CHANGE

A macro that relies on formal parameter substitution within a string
literal will produce different results.

3.8.3.3 The ## operator

Another facility relied on in much current practice but not specified in the Base Doc-
ument is “token pasting,” or building a new token by macro argument substitution.
One existing implementation is to replace a comment within a macro expansion
by zero characters, instead of the single space called for in K&R. The Committee
considered this practice unacceptable.

As with “stringizing.” the facility was considered desirable, but not the extant
implementation of this facility, so the Committee invented another preprocessing
operator. The ## operator within a macro expansion causes concatenation of the
tokens on either side of it into a new composite token. The specification of this
pasting operator is based on these principles:

¢ Paste operations are explicit in the source.
o The ## operator is associative.

o A formal parameter as an operand for ## is not expanded belore pasting. (The
actual is substituted for the formal, but the actual is not expanded:

3.8. Preprocessing directives 67

#tdefine a(n) aaa ## n
#define b 2

Civen these definitions, the expansion of a(b) is aaab, not aaa2 or aaan.)
o A normal operand for ## is not expanded before pasting.
» Pasting does not cross macro replacement boundaries.

¢ The token resulting from a paste operation is subject to further macro expan-
sion.

These principles codify the essential features of prior art, and are consistent with
the specification of the stringizing operator.

3.8.3.4 Rescanning and further replacement

A problem faced by most current preprocessors is how to use a macro name in its
expansion without suffering “recursive death.” The Committee agreed simply to
turn off the definition of a macro for the duration of the expansion of that macro.
An example of this feature is included in the Standard.

The rescanning rules incorporate an ambiguity. Given the definitions

#define f(a) axg
#define g f

it is clear (or at least unambiguous) that the expansion of £(2)(9) is 2%£(9) — the
f in the result clearly was introduced during the expansion of the original £, so is
not further expanded.

However, given the definitions

#define f(a) axg
#define g(a) f(a)

the expansion rules allow the result to be either 2+£(9) or 2%9%g — it is unclear
whether the £(9) token string (resulting from the initial expansion of £ and the
examination of the rest of the source file) should be considered as nested within
the expansion of £ or not. The Committee intentionally left this behavior ambigu-
ous: it saw no uselul purpose in specilying all the quirks of preprocessing for such
questionably useful constructs.

3.8.3.5 Scope of macro definitions

Some pre-Standard implementations maintain a stack of #define instances for each
identifier; #undef simply pops the stack. The Committee agreed that more than
one level of #define was more prone to error than utility.

It is explicitly permitted to #undef a macro that has no current definition. This
capability is exploited in conjunction with the standard library (sce §4.1.3).

RATIONALE

68 Section 3. LANGUAGE

3.8.4 Line control

Aside from giving values to __LINE__ and __FILE.. (see §3.8.8), the effect of #line
is unspecified. A good implementation will presumably provide line and file infor-
mation in conjunction with most diagnostics.

3.8.5 Error directive

The directive #error has been introduced to provide an explicit mechanism for
forcing translation to fail under certain conditions. (Formally the Standard only
requires, can only require, that a diagnostic be issued when the #error directive is
effected. It is the intent of the Committee, however, that translation cease imme-
diately upon encountering this directive, if this is feasible in the implementation;
further diagnostics on text beyond the directive are apt to be of little value.) Tra-
ditionally such failure has had to be forced by inserting text so ill-formed that the
translator gagged on it.

3.8.6 Pragma directive

The #pragma directive has been added as the universal method for extending the
space of directives,

3.8.7 Null directive

The existing practice of using empty # lines for spacing is supported in the Standard.

3.8.8 Predefined macro names

The rule that these macros may not be redefined or undefined reduces the complex-
ity of the name space that the programmer and implementor must understand; it
recognizes that these macros have special built-in properties.

The macros __DATE_ and __TIME__ have been added to make available the time of
translation. A particular format for the expansion of these macros has been specified
to aid in parsing strings initialized by them.

The macros __LINE__ and __FILE__ have been added to give programmers access
to the source line number and file name.

The macro __STDC__ allows for conditional translation on whether the translator
claims to be standard-conforming or not. It is defined as having value 1; future ver-
sions of the Standard could define it as 2, 3, ..., to allow for conditional compilation
on which version of the Standard a translator cenforms to. This macro should be
of use in the transition toward conformance to the Standard.

3.9. Future language directions 69

3.9 Future language directions

This section includes specific mention of the future direction in which the Com-
mittee intends to extend and/or restrict the language. The contents of this section
should be considered as quite likely to become a part of the next version of the Stan-
dard. Implementors arc advised that failure to take heed of the points mentioned
herein is considered undesirable for a conforming hosted or freestanding implemen-
tation. Users are advised that failure to take heed of the points mentioned herein is
considered undesirable for a conforming program.

3.9.1 External names
3.9.2 Character escape sequences
3.9.3 Storage-class specifiers

See §3.5.1.

3.9.4 Function declarators

The characterization as obsolescent of the use of the “old style” function declarations
and definitions — that is, the traditional style not using prototypes — signals the
Committee’s intent that the new prototype style should eventually replace the old
style.

The case for the prototype style is presented in §3.3.2.2 and §3.5.4.3. The gist
of this case is that the new syntax addresses some of the most glaring weaknesses
of the language defined in the Base Document, that the new style is superior to the
old style on every count.

It was obviously out of the question to remove syntax used in the overwhelming
majority of extant C code, so the Standard specifies two ways of writing function
declarations and function definitions. Characterizing the old style as obsolescent is
meant to discourage its use, and to serve as a strong endorsement by the Cammittee
of the new style. It confidently expects that approval and adoption of the prototype
style will make it feasible for some future C Standard to remove the old style syntax.

3.9.5 Function definitions

See §3.9.4.

3.9.6 Array parameters

As vector and parallel hardware, and numeric applications in C, become more com-
mon, the aliasing semantics of C have been a source of frustration for implementors
wanting to make optimum use of such hardware. If arrays are known not to overlap,
certain optimizations become possible, but C currently provides no way to specify
to a translator that argument arrays indeed do not overlap. The Committee, in

RATIONALE

70 Section 3. LANGUAGE

adopting this future direction, hopes to provide common ground for implementors
and users concerned with this problem, so that some future C Standard can adopt
this non-overlapping rule on the basis of widespread experience.

Section 4

LIBRARY

4.1 Introduction

The Base Document for this section of the Standard was the 1984 /usr/group Stan-
dard. The /usr/group document contains definitions of some facilities which were
specific to the UNIX Operating System and not relevant to other operating envi-
ronments, such as pipes, ioctls, file access permissions and process control facilities.
Those definitions were dropped from the Standard. Some other functions were ex-
cluded from the Standard because they were non-portable or were ill-defined.

Other facilities not in the library Base Document but present in many UNIX
implementations, such as the curses (terminal-independent screen handling) library
were considered to be more complex and less essential than the facilities of the Base
Document; these functions were not added to the Standard.

4.1.1 Definitions of terms

The decimal-point character is the character used in the input or output of floating
point numbers, and may be changed by setlocale. This is a library construct; the
decimal point in numeric literals in C source text is always a period.

4.1.2 Standard headers

Whereas in prior practice only certain library functions have been associated with
header files, the Standard now mandates that all library lunctions have a header.
Several headers have therefore been added, and the contents of a few old ones have
been changed.

In many implementations the names of headers are the names of files in special
directories. This implementation technique is not required, however: the Standard
makes no assumptions about the form that a file name may take on any system.
Headers may thus have a special status if an implementation so chooses. Standard
headers may even be built into a translator, provided that their contents do not
become “known” until after they are explicitly included. One purpose of permitting

71

72 Section 4. LIBRARY

these header “files” to be “built in” to the translator is to allow an implementation
of the C langnage as an interpreter in an un-hosted environment, where the only
“file” support may be a network interface.

The Committee decided to make library headers “idempotent” — they should
be includable any number of times, and includahle in any order. This requirement,
which reflects widespread existing practice, may necessitate some protective wrap-
pers within the headers, to avoid, for instance, redefinitions of typedefs. To ensure
that such protective wrapping can be made to work, and to ensure proper scoping
of typedefs, headers may only be included ontside of any declaration,

Note to implementors: a common way of providing this “protective wrapping”
is:

#ifndef __ERRNO_H
#define __ERRNO_H
/* body of <errno.h> %/
£ x/

fendif

where __ERRNO_H is an otherwise unused macro name.

Implementors often desire to provide implementations of C in addition to that pre-
scribed by the Standard. For instance, an implementation may want to provide
system-specific I/O facilities in <stdio.h>. A technique that allows the same header
to be used in both the Standard-conforming and alternate implementations is to add
the extra, non-Standard, declarations to the header as in this illustration:

#ifdef __EXTENSIONS__

typedef int file_no;

extern int read(file_no _N, veid * _Buffer, int _Nbytes);
FA I Y

#endif

The header is usable in an implementation of the Standard in the absence of a
definition of __EXTENSIONS_, and the non-Standard implementation can provide
the appropriate definitions to enable the extra declarations.

4.1.2.1 Reserved identifiers

To give implementors maximum latitude in packing library functions into files, all
external identifiers defined by the library are reserved (in a hosted environment).
This means, in effect, that no user supplied external names may match library
names, not cven if the user function has the same specification. Thus, for instance,
strtod may be defined in the same object module as printf, with no fear that
link-time conflicts will occur. Equally, strted may call printf, or printf may call
strtod, for whatever reason, with no fear that the wrong function will be called.

4.1. Introduction 73

Also reserved for the implementor are all external identifiers beginning with
an underscore, and all other identifiers beginning with an underscore followed by a
capital letter or an underscore. This gives a space of names for writing the numerous
behind-the-scenes non-external macros and functions a library needs to do its job
properly.

With these exceptions, the Standard assures the programmer that all other iden-
tifiers are available, with no fear of unexpected collisions when moving programs
from one implementation to another.! Note, in particular, that part of the name
space of internal identifiers beginning with underscore is available to the user —
translator implementors have not been the only ones to find use for “hidden” names.
C i1s such a portable language in many respects that this issue of “name space pollu-
tion” is currently one of the principal barriers to writing completely portable code.
Therefore the Standard assures that macro and typedef names are reserved only if
the associated header is explicitly included.

4.1.3 Errors
<errno.h>

<errnc.h> is a header invented to encapsulate the error handling mechanism used
by many of the library routines in math.h and strlib.h.?

The error reporting machinery centered about the setting of errno is generally
regarded with tolerance at best. It requires a “pathological coupling” between li-
brary functions and makes use of a static writable memory cell, which interferes
with the construction of shareable libraries. Nevertheless, the Committee preferred
to standardize this existing, however deficient, machinery rather than invent some-
thing more ambitious.

The definition of errno as an lvalue macro grants implementors the license to
expand it to something like *__errno_addr(), where the function returns a pointer
to the (current) modifiable copy of errno.

4.1.4 Limits
<flcat.h> and <limits.h>

Both <float.h> and <limits.h> are inventions. Included in these headers are
various parameters of the execution environment which are potentially useful at
compile time, and which are difficult or impossible to determine by other means.
The availability of this information in headers provides a portable way of tun-
ing a program to different environments. Another possible method of determining

!See §3.1.2.1 for a discussion of some of the precautions an implementor should take to keep
this promise. Note also that any implementation-defined member names in structures defined in
<time.h> and <locals.h> must begin with an underscore, rather than following the pattern of
other names in those structures.

21n earlier drafts of the Standard, errno and related macros were defined in <stddef.h>. When
the Committee decided that the other definitions in this header were of such general ntility that
they should be required even in freestanding environments, it created <errmo.h>.

RATIONALE

74 Section 4. LIBRARY

some of this information is to evaluate arithmetic expressions in the preprocessing
statements. Requiring that preprocessing always yield the same results as run-time
arithmetic, however, would cause problems for portable compilers (themselves writ-
ten in C) or for cross compilers, which would then he required to implement the
(possibly wildly different} arithmetic of the target machine on the host machine.
(See §3.1.)

<float.h> makes available to programmers a set of useful quantities for numerical
analysis. {See §2.2.4.2.) This set of quantities has seen widespread use for such anal-
ysis, in C and in other languages, and was recommended by the numerical analysts
on the Committce. The set was chosen so as not to prejudice an implementation’s
selection of floating-point representation.

Mest of the limits in <fleoat.h> are specified to be general double expressions
rather than restricted constant expressions

¢ to allow use of values which cannot readily (or, in some cases, cannot possibly)
he canstructed as manifest constants, and

e to allow for run-time selection of floating-point properties, as is possible, for
instance, in IEEL-854 implementations.

4.1.5 Common definitions
<stddef.h>

<stddef.h> is a header invented to provide definitions of several types and macros
used widely in conjunction with the library: ptrdiff_t (see §3.3.6), size_t (see
§3.3.3.4), wchar_t {see §3.1.3.4), and NULL. Including any header that references one
of these macros will also define it, an exception to the usual library rule that each
macro or function belongs te exactly one header.

NULL can be defined as any null pointer constant. Thus existing code can retain
definitions of NULL as 0 or OL, but an implementation may choose to define it as
{(void *)0; this latter form of definition is convenient on architecturcs where the
pointer size(s) do(es) not equal the size of any integer type. It has never been wise
to use NULL in place of an arbitrary pointer as a function argument, however, since
pointers to different types need not be the same size. The library avoids this problem
by providing special macros for the arguments to signal, the one library function
that might see a null function pointer.

The offsetof macro has been added to provide a portable means of determining
the offset, in bytes, of a member within its structure. This capability is useful in
programs, such as are typical in data-base implementations, which declare a large
number of different data structures: it is desirable to provide “generic” routines that
work from descriptions of the structures, rather than from the structure declarations
themselves.?

#Consider, for instance, a set of nodes (structures) which are to be dynamically allocated and

4.1. Introduction 75

In many implementations, offsetof could be defined as one of
(size_t)E(((s_namex)Q)=>n_name)
or
(size_t){char *)&({((s_name*)0)->m_name)
or, where X is some predeclared address (or 0) and A(Z) is defined as ((char*)&2),
(size_t)(A((s_name*)X->m_name) - A(X))

It was not feasible, however, to mandate any single one of these forms as a construct
guaranteed to be portable.

Other implementations may choose to expand this macro as a call to a built-in
function that interrogates the translator’s symbol table.

4.1.6 Use of library functions

To make usage more uniform for both implementor and programmer, the Standard
requires that every library function (unless specifically noted otherwise) must be
represented as an actual function, in case a program wishes to pass its address as
a parameter to another function. On the other hand, every library function is now
a candidate for redefinition, in its associated header, as a macro, provided that
the macro performs a “safe” evaluation of its arguments, i.e., it evaluates each of
the arguments exactly once and parenthesizes them thoroughly, and provided that
its top-level operator is such that the execution of the macro is not interleaved
with other expressions. Two exceptions are the macros getc and putc, which may
evaluate their arguments in an unsafe manner. (See §4.9.7.5.)

If a program requires that a library facility be implemented as an actual function,
not as a macro, then the macro name, if any, may be erased by using the #undef
preprocessing directive (sec §3.8.3).

All library prototypes arc specified in terms of the “widened” types: an argu-
ment formerly declared as char is now written as int. This ensures that most
library functions can be called with or without a prototype in scope (see §3.3.2.2),
thus maintaining backwards compatibility with existing, pre-Standard, code. Note,
however, that since functions like printf and scanf use variable-length argument
lists, they must be called in the scope of a prototype.

The Standard contains an example showing how certain library functions may
be “built in” in an implementation that remains conforining.

garbage-collected, and which can contain pointers to other such ncdes. A possible implementation
is to have the first field in each node point to a descriptor for that node. The descriptor includes a
table of the offsels of fields which are pointers to other nodes. A garbage-collector “mark” rouline
needs no further information about the content of the node (except, of course, where to put the
mark). New node types can be added to the program without requiring the mark routine to be
rewritten or even recompiled.

RATIONALE

76 Section 4, LIBRARY

4.2 Diagnostics
<assert.h>

4.2.1 Program diagnostics
4.2.1.1 The assert macro

Some implementations tolerate an arbitrary scalar expression as the argument to
assert, but the Committee decided to require correct operation only for int ex-
pressions. For the sake of implementors, no hard and fast format for the output
of a failing assertion is required; but the Standard mandates enough machinery to
replicate the form shown in the footnote.

It can be difficult or Impossible to make assert a true function, so it is restricted
to macro form only.

To minimize the number of different methods for program termination, assert
is now defined in terms of the abort function.

Note that defining the macro NDEBUG to disable assertions may change the be-
havior of a program with no failing assertion if any argument expression to assert
has side-effects, because the expression is no longer evaluated.

It is possible to turn assertious ofl and o in different functions within a transla-
tion unit by defining (or undefining) NDEBUG and including <assert.h> again. The
implementation of this behavior in <assert.h> is simple: undefine any previous
definition of assert before providing the new one. Thus the header might look like

#undef assert
#ifdef NDEBUG
#define assert(ignore) ({void) 0)
#else
extern void __gripe(char *_Expr, char *_File, int _Line);
#define assert(expr) \
((expr)? (void)0 : __gripe(#expr
#endif

FILE__, __LINE_.))

» -

Note that assert must expand to a void expression, so the more obvious if state-
ment does not suffice as a definition of assert. Note also the avoidance of names
in a header which would conflict with the nser’s name space (see §3.1.2.1).

4.3 Character Handling
<ctype.h>

Pains were taken to eliminate any ASCII depeundencies from the definition of the
character handling functions. One notable result of this policy was the elimination
of the function isascii, both becausc of the name and because its function was hard
to generalize. Nevertheless, the character functions are often most clearly explained
in concrete terms, so ASCII is used frequently to express examples.

4.3. Character Handling <ctype.h> [

Since these functions are often used primarily as macros, their domain is re-
stricted to the small positive integers representable in an unsigned char, plus the
value of EOF. EOF is traditionally —1, but may be any negative integer, and hence
distinguishable from any valid character code. These macros may thus be efficiently
implemented by using the argument as an index into a small array of attributes.

The Standard (§4.13.1) warns that names beginning with is and to, when these
are followed by lower-case letters, are subject to future use in adding items to
<ctype.h>,

4.3.1 Character testing functions

The definitions of printing character and control character have been generalized
from ASCIL
Note that none of these functions returns a nonzero value (true) for the argument

value EOF.
4.3,1,1 The isalnum function
4.3.1.2 The isalpha function

The Standard specifies that the set of letters, in the defauit locale, comprises the 26
upper-case and 26 lower-case letters of the Latin (English) alphabet. This set may
vary in a locale-specific fashion (that is, under control of the setlocale function,
§4.4) so long as

¢ isupper{c) implies isalpha(c)
¢ islower(c) implies isalpha(c)

e isspace(c), ispunct{c), iscntrl{c), or isdigit{c) implies !isalpha(c)

4.3.1.3 The iscntrl function
4.3.1.4 The isdigit function
4.3.1.5 The isgraph function
4.3.1.6 The islower function
4,3.1.7 The isprint function
4.3.1.8 The ispunct function
4.3.1.9 The isspace function

isspace is widely used within the library as the working definition of white space.

RATIONALE

78 Section 4. LIBRARY

4.3.1.10 The isupper function
4.3.1.11 The isxdigit function
4.3.2 Character case mapping functions

Earlier libraries had {almost equivalent) macros, .tolower and _toupper, for these
functions. The Standard now permits any library function to be additionally im-
plemented as a macro; the underlying function must still be present. _toupper and
-tolower are thus unneccessary and were dropped as part of the general standard-
ization of library macros.

4.3.2.1 The tolower function

4.3.2.2 The toupper function

4.4 Localization
<locale.h>

C has become an internalional language. Users of the language outside the United
States have been forced to deal with the various Americanisms built into the stan-
dard library routines.

Areas affected by international considerations include:

Alphabet. The English language uses 26 letters derived {rom the Latin alphabet.
This set of letters suffices for English, Swahili, and Hawaiian; all other living
languages use either the Latin alphabel plus other characters, or other, non-
Latin alphabets or syllabaries.

In English, cach letter has an upper-case and lower-case form. The German
“sharp 8”, 8, occurs only in lower-case. European French usually omits dia-
criticals on upper-case letters. Some languages do not have the concept of two
cases.

Collation. In both EBCDIC and ASCII the code for ‘z’ is greater than the code
for ‘a’, and so on for other letters in the alphabet, so a “machine sort” gives
not unreasonable resulis for ordering strings. In contrast, most European
languages use a codeset resembling ASCIT in which some of the codes used
in ASCI!I for punctuation characters are used for alphabetic characters. (See
§2.2.1.) The ordering of these codes is not alphabetic. In some languages
letters with diacritics sort as separate letters; in others they should be collated
just as the unmarked form. In Spanish, “lI” sorts as a single letter following
“”: in German, “f” sorts like “ss”.

Formatting of numbers and currency amounts. In the United States the pe-
riod is invariably used for the decimal point; this usage was built into the
definitions of such functions as printf and scanf. Prevalent practice in sev-
eral major European countries is to use a comma; a raised dot is employed

4.4.

Localization <locale.h> 79

in some locales. Similarly, in the United States a comma is used to separate
groups of three digits to the left of the decimal point; a period is common
in Europe, and in some countries digits are not grouped by threes. In print-
ing currency amounts, the currency symbol (which may be more than one
character) may precede, follow, or be embedded in the digits.

Date and time. The standard function asctime returns a string which includes

abbreviations for month and weekday names, and returns the various elements
in a format which might be considered unusual even in its country of origin.

Various common date formats include

1776-07-04 ISO Format

4.7.76 customary central European and
British usage

7/4/76 customary U.S. usage

4.VIL.76 Ttalian usage

76186 Julian date (YYDDD)

04JUL76 airline usage

Thursday, July 4, 1776 full U.S. format
Donnerstag, 4. Juli 1776 full German format

Time fermats are also quite diverse:

3:30 PM customary U.S. and British format
1530 U.S. military format

15h.30 Italian usage

15.30 German usage

15:30 common European usage

The Committee has introduced mechanisms into the C library to allow these and
other issues to be treated in the appropriate locale-specific manner.

The localization features of the Standard are based on these principles:

English for C source. The C language proper is based on English. Keywords

are based on English words. A program which uses “national characters® in
identifiers is not strictly conforming. (Use of naticnal characters in comments
is strictly conforming, though what happens when such a program is printed
in a different locale is unspecified.) The decimal point must be a period in C
source, and no thousands delimiter may be used.

Runtime sclectability. The locale must be selectable at runtime, from an

implementation-defined set of possibilities. Translate-time selection does not;
offer sufficient flexibility. Software vendors do not want to supply different

RATIONALE

80 Section 4. LIBRARY

object forms of their programs in different locales. Users do not want to use
different versions of a program just because they deal with several different
locales.

Function interface. Localeis changed by calling a function, thus allowing the im-
plementation to recognize the change, rather than by, say, changing a memory
location that contains the decimal point character.

Immediate effect. When a new locale is selected, affected functions reflect the
change immediately. {This is not meant to imply if a signal-handling function
were to change the sclected locale and return to a library function, that the
return value from that Jibrary function must be completely correct with respect
to the new locale.)

4.4,1 Locale control
4.4.1.1 The setlocale function

setlocale provides the mechanism for controlling locale-specific features of the li-
brary. The category argument allows parts of the library to be localized as neces-
sary without changing the entire locale-specific environment. Specifying the locale
argument as a string gives an implementation maximum flexibility in providing a
set of locales. For instance, an implementation could map the argument string into
the name of a file containing appropriate localization parameters — these files could
then be added and modified withoul requiring any recompilation of a localizable
program.

4.4.2 Numeric formatting convention inquiry
4.4.2.1 The localeconv function

The localaeconv function gives a programmer access to information about how
to format numeric quantities (monetary or otherwise). This sort of interface was
considered preferable to defining conversion functions directly: even with a specified
locale, the set of distinct formats that can be constructed from these clements is
large, and the ones desired very application-dependent.

4.5 Mathematics
<math.h>

Tor historical reasons, the math library is only defined for the floating type double.
All the names formed by appending £ or 1 to a name in <math.h> are reserved to
allow for the definition of flcat and long double libraries.

The functions ecvt, fevt, and gevt have been dropped since their capability is
available through sprintf.

4.5. Mathematics <math.h> 81

Traditionally, HUGE_VAL has been defined as a manifest constant that approxi-
mates the largest representable double value. As an approximation to infinity it is
problematic. As a function return value indicating overflow, it can cause trouble if
first assigned to a float before testing, since a float may not necessarily hold all
values representable in a double.

After considering several alternatives, the Committee decided to generalize
HUGE_VAL to a positive double expression, so that it could be expressed as an external
identifier naming a location initialized precisely with the proper bil pattern. It can
even be a special encoding for machine infinity, on implementations that support
such codes. It nced not be representable as a £loat, however.

Similarly, domain crrors in the past were typically indicated by a zero return,
which is not necessarily distinguishable from a valid result. The Committee agreed
to make the return value for domain errors implementation-defined, so that special
machine codes can be used to advantage. This makes possible an implementation
of the math library in accordance with the IEEE P854 proposal on floating point
representation and arithmetic.

4.5.1 Treatment of error conditions

Whether underflow should be considered a range error, and caunse arrno to be set,
is specified as implementation-defined since detection of underflow is ineflicient on
some systems.

The Standard has been crafted to neither require nor preclude any popular
implementation of floating point. This principle affects the definition of domain
error: an implementation may define extra domain errors to deal with floating point
arguments such as infinity or “not-a-number”.

The Committee considered the adoption of the matherr capability from UNIX
System V. In this feature of that system’s math library, any error {such as overflow

or underflow) results in a call from the library function to a user-defined exception
handler named matherr. The Committee rejected this approach for several reasons:

o This style is incompatible with popular floating point implementations, such
as IEEE 754 (with its special return codes), or that of VAX/VMS.

o It conflicts with the error-handling style of FORTRAN, thus making it more
difficult to translate useful bodies of mathematical code from that language

to C.

o It requires the math library to be reentrant (since math routines could be
called from matherr), which may complicate some implementations.

¢ It introduces a new style of library interface: a user-defined library function
with a library-defined name. Note, by way of comparison, the signal and
exit handling mechanisms, which provide a way of “registering” user-defined
functions.

RATIONALE

82 Section 4. LIBRARY

4.5.2 Trigonometric functions

Implementation note: trignometric argument reduction should be performed by a
method that causes no catastrophic discontinuities in the error of the computed
result. In particular, methods based solely on naive application of a calculation like

x - (2%pi) * (int) (x/(2¥pi))

are ill-advised.

4.5.2.1 The acos function
4.5.2.2 The asin function
4.5,2.3 The atan function
4.5.2.4 The atan2 function

The atan2 function is modelled after FORTRAN’s. It is described in terms of
arctan £ for simplicity; the Committce did not wish to complicatc the descriptions
by specifying in detail how the determine the appropriate quadrant, since that should
be obvious from normal mathematical convention. atan2(y,x) is well-defined and
finite, even when x is 0; the one ambiguily occurs when both arguments are 0, be-
cause at that point any value in the range of the function could logically be selected.
Since valid reasons can be advanced for all the different choices that have been in
this situation by various implements, the Standard preserves the implementor’s free-
dom to return an arbitrary well-defined value such as 0, to report a domain error,
or to return an IEEE NalV code.

4.5.2,.5 The cos function
4.5.2.6 The sin function
4,5.2.7 The tan function

The tangent function has singularities at odd multiples of %, approaching 4-co from
one side and —oo from the other. Implementations commonly perform argument
reduction using the best machine representation of 7; for arguments to tan suffi-
ciently close to a singularity, such reduction may yield a value on the wrong side of
the singularity. In view of such problems, the Committee has recognized that tan
is an exception to the range error rule (§4.5.1) that an overflowing result produces
HUGE VAL properly signed.)

4.5. Mathcmatics <math.h> 83

4.5.3 Hyperbolic functions

4.5.3.1 The cosh function

4.5.3.2 The sinh function

4.5.3.3 The tanh function

4.5.4 Exponential and logarithmic functions
4.5.4.1 The exp function

4.5.4.2 The frexp function

The functions frexp, 1dexp, and modf are primitives used by the remainder of the
library. There was some sentiment for dropping them for the same reasons that
ecvt, fevt, and gevt were dropped, but their adherents rescued them for general
use. Their use is problematic: on nonbinary architectures ldexp may lose precision,
and frexp may be inefficient.

4.5.4.3 The ldexp function

See §4.5.4.2.

4.5.4.4 The log function

Whether 1log(0.) is a domain error or a range error is arguable. The choice
in the Standard, range error, is for compatibility with IEEE P854, Some such
implementations would represent the result as —oo, in which case no error is raised.

4.5.4.5 The logi0 function
See §4.5.4.4.

4.5.4.6 The modf function

See §4.5.4.2.

4.5.5 Power functions
4.5.5.1 The pow function
4.5.5.2 The sqrt function

IEEE P854, unlike the Standard, requires sqrt(-0.) to return a negatively signed
magnitude-zero result. This is an issue on implementations that support a neg-
ative floating zero. The Standard specifies that taking the square root of a neg-
ative number (in the mathematical sense: less than 0) is a domain error which
requires the function to return an implementation-defined value. This rule permits

RATIONALE

81 Section 4. LIBRARY

implementations to support either the IEEE P854 or vendor-specific floating point
represenlations.

4.5.6 Nearest integer, absolute value, and remainder functions

4.5.6.1 The ceil function

Implementation note: The ceil function returns the smallest integral valne in dou-
ble format not less than x, even though that integer might not be representable in
a C integral type. ceil(x) equals x for all x sufficiently large in magnitude. An
implementation that calculates ceil{x) as

(double) (int) x

is ill-advised.

4.5.6.2 The fabs function

Adding an absolute value operator was rejected by the Committee. An implemen-
tation can provide a built-in function for efficiency.

4.5.6.3 The floor function
4.5.6.4 The fmod function

fmod is defined even if the quotient x/y is not representable -— this function is
properly implemented by scaled subtraction rather than by division. The Standard
defines the result in terms of the formula x — ¢ * y, where 7 is some integer. This
integer need not be representable, and need not even be explicitly computed. Thus
implementations are advised not to compute the result using a formula like

x -y * (int) (x/y)

Instead, the result can be computed in principle by subtracting ldexp(y,n) from
x, for appropriately chosen decreasing n, until the remainder is between 0 and x
efficiency considerations may dictate a different actual implementation.

The result of fmod(x,0.0) is either a domain error or 0.0; the result always lies
between 0.0 and y, so specifying the non-erroneous result as 0.0 simply recognizes
the limit case.

The Committee considered and rejected a proposal to use the remainder oper-
ator % for this function; the operators in general correspond to hardware facilities,
and fmod is not supported in hardware on most machines,

4.6 Nonlocal jumps
<setjmp.h>

jmp.buf must be an array Lype for compatibility with existing practice: programs
typically omit the address operator befora a jmp buf argumeunt, even though a

4.6. Nonlocal jumps <setjmp.h> 85

pointer to the argument is desired, not the value of the argument itself. Thus, a
scalar or sttuct type is unsuitable. Note that a one-clement array of the appropriate
type is a valid definition.

setjmp is constrained to be a macro only: in some implementations the infor-
mation neceszary to restore context is only available while executing the function
making the call to setjmp.

4.6.1 Save calling environment
4.6.1.1 The setjmp macro

One proposed requirement on setjmp is that it be usable like any other function
— that it be callable in any expression context, and that the expression evaluate
correctly whether the return from setjmp is direct or via a call to lengjmp. Un-
fortunately, any implementation of setjmp as a conventional called function cannot
know encugh about the calling environment to save any remporary registers or dy-
namic stack locations used part way through an expression evaluation. (A setjmp
macro seems 1o help only if it expands to inline assembly code or a call to a special
built-in function.) The temporaries may be correct on the initial call to setjmp,
but are not likely to be on any return initiated by a corresponding call to longjmp.
These considerations dictated the constraint that setjmp be called only from within
fairly simple cxpressions, ones not likely to need temnporary storage.

An alternative proposal considered by the Committes i3 to require that imple-
mentations recognize that calling setjmp is a special case,? and hence that they
take whatever precaulions are necessary to restore the setjmp environment prop-
erly upon a longjmp call. This proposal was rejected cn grounds of consistency:
implementations are currently ellowed to implement library functions specially, but
no other situations require special treatment.

4.6.2 Restore calling environment
4.6.2.1 The longjmp function

The Committee also considered requiring that a call to Longjmp restore the (setjmp)
calling environment fully — that upon execution of a longjmp, all local variables
in the environment of setjmp have the values they did at the time of the longjmp
call. Register variables create problems with this idea. Uafortunately, the best that
many implementations attempt with register variables is to save them (in jmp_buf)
at the time of the initial setjmp call, then restore them to that state on each return
initiated by a longimp call. Since compilers are certainly at liberty to change register
variables to automatic, it is nat obvious that a register declaration will indeed be
rolled back. And since compilers are at liberty to change automatic variables to

*This proposal was considered prior to the adoption of the stricture that setjmp be a macro. It
can be considered as equivalent to proposing that the setjmp macro expand to a call to a special
built-in compiler function.

RATIONALE

86 Section 4. LIBRARY

register (if their addresses are never taken), it is not obvious that an automatic
declaration will not be rolled back. Hence the vague wording. In fact, the only
reliable way to ensure that a local variable retain the value it had at the time of the
call to longjmp is to define it with the volatile atiribute.

Some implementations leave a process in a special state while a signal is being
handled. An explicit reassurance must be given to the environment when the signal
handler is done. To keep this job manageable, the Committee agreed to restrict
longjmp to only one level of signal handling.

The longimp function should not be called in an cxit handler (i.e., a function
registered with the atexit function (see §4.10.4.2)}, since it might jump to some
code which is no longer in scope.

4.7 Signal Handling
<signal.h>

This facility has been retained from the Base Document since the Committee felt
it important to provide some standard mechanism for dealing with exceptional pro-
gram conditions. Thus a subset of the signals defined in UNIX were retained in the
Standard, along with the basic mechanisms of declaring signal handlers and (with
adaptations, see §4.7.2.1) raising signals. For a discussion of the problems created
by including signals, see §2.2.3.

The signal machinery contains many misnomers: SIGFPE, SIGILL, and SIGSEGV
have their roots in PDP-11 hardware terminology, but the names are too entrenched
to change. (The occurrence of SIGFPE, for instance, docs not necessarily indicate
a floating-point error.) A conforming implementation is not required to field any
hardware interrupts.

The Committee has reserved the space of names beginning with SIG to permit
implementations to add local names to <signal.h>. This implies that such names
should not be otherwise used in a C source file which includes <signal.h>.

4.7.1 Specifly signal handling
4.7.1.1 The signal function

When a signal occurs the normal flow of control of a program is interrupted. If a sig-
nal occurs that is being trapped by a signal handler, that handler is invoked. When
it is finished, exccution continues at the point at which the signal occurred, This
arrangement could cause problems if the signal handler invokes a library function
that was being executed at the time of the signal. Since library functions are not
guaranteed to be re-entrant, they should not be called from a signal handler that
returns. {Scc §2.2.3.) A specific exception to this rule has been granted for calls
to signal from within the signal handler; otherwise, the handler could not reliably
reset the signal.

4.8. Variable Arguments <stdarg.h> 87

The specification that some signals may be effectively set to SIG_IGN instead of
SIG_DFL at program startup allows programs under UNIX systems to inherit this
effective setting from parent processes. -

Tor performance reasons, UNIX does not reset SIGILL to default handling when
the handler is called (usually to emulate missing instructions). This treatment is
sanctioned by specifying that whether reset occurs for SIGILL is ¢tmplementation-
defined.

4.7.2 Send signal
4.7.2.1 The raise function

The function raise replaces the Base Document’s kill function. The latter has an
extra argument which refers to the “process ID” affected by the signal. Since the
execution model of the Standard does not deal with multi-processing, the Comnittee
deemed it preferable to introduce a function which requires no (dummy) process
argument. The Committee anticipates that IEEE 1003 will wish to standardize the
Xill function in the POSIX specification.

4.8 Variable Arguments
<stdarg.h>

I'or a discussion of argnment passing issues, see §3.7.1.

These macros, modeled after the UNIX <varargs.h> macros, have been added
to enable the portable implementation in C of library functions such as printf and
scanf (see §4.9.6). Such implementation could otherwise be difficult, considering
newer machines that may pass arguments in machine registers rather than using the
more traditional stack-oriented methods.

The definitions of these macros in the Standard differ from their forebears: they
have been extended to support argument lists that have a fixed set of arguments
preceding the variable list.

va_start and va.arg must exist as macros, since va_start uses an argument
that is passed by name and va arg uses an argument which is the name of a data
type. Using #undef on these names leads to undefined behavior.

The va_list type is not necessarily assignable. However, a function can pass a
pointer to its initialized argument list object, as noted below.

4.8.1 Variable argument list access macros

4.8,1.1 The va_start macro

va_start must be called within the body of the function whose argument list is to
be traversed. That function can then pass a pointer to its va_list object ap to
other functions to do the actual traversal. (It can, of course, traverse the list itself.)

RATIONALE

88 Section 4. LIBRARY

The parmN argument to va_start is an aid to writing conforming ANSI C code
for existing C implementations. Many implementations can use the second param-
eter within the structure of existing C language constructs to derive the address of
the first variable argument. (Declaring parmN to be of storage class register would
interfere with use of these constructs; hence the effect of such a declaration is un-
defined behavior. Other restrictions on the type of parmN are imposed for the same
reason.) New implementations may choose to use hidden machinery that ignores
the second argument to va start, possibly even hiding a function call inside the
macro.

Multiple va_list variables can be in use simulaneously in the same function;
each requires its own calls to va_start and va_end.

4.8.1.2 The va.arg macro

Changing an arbitrary {ype name into a type name which is a pointer to that type
could require sophisticated rewriting. To allow the implementation of va_arg as a
macro, va_arg need only correctly handle those type names that can be transformed
into the appropriate pointer type by appending a *, which handles most simple cases.
(Typedefs can be defined to reduce more complicated types to a tractable form.)
When using these macros it is important to remember that the type of an argument
in a variable argument list will never be an integer type smaller than int, nor will
it ever be float. (See §3.5.4.3.)

va.arg can only be used to access the value of an argument, not to obtain its
address.

4.8.1.3 The va_end macro

va_end must also be called from within the body of the function having the variable
argument list. In many implementations, this is a do-nothing operation; but those
implementations that need it probably need it badly.

4.9 Input/Output
<stdio.h>

Many implementations of the C runtime environment (most notably the UNIX oper-
ating system) provide, aside from the standard I/O library (fopen, fclose, fread,
fwrite, fseek), a set of unbuffered I/0 services {open, close, read, write, 1seek).
The Committee has decided not to standardize the latter set of functions.

A suggested semantics for these functions in the UNIX world may be found in
the emerging IEEE P1003 standard. The standard 1/0 library functions use a file
pointer for referring to the desired I/0 stream. The unbuffered I/0 services use a
file descriptor (a small integer) to refer to the desired 1/0 stream.

Due to weak implementations of the standard 1/0 library, many implementors
have assumed that the standard I/0O library was used for small records and that the

4.9. Input/Output <stdio.h> 89

unbuffered I/0 library was used for large records. However, a good implementation
of the standard I/0 library can match the performance of the unbuffered services
on large records. The user also has the capability of tuning the performance of the
standard I/O library (with setvbuf) to suit the application.

Some subtle differences between the two sets of services can make the implemen-
tation of the unbuffered 1/0 services difficult:

¢ The model of a file used in the unbuffered 1/0 services is an array of characters.
Many C environments do not support this file model.

¢ Difficulties arise when handling the new-line character. Many hosts use con-
ventions other than an in-stream new-line character to mark the end of a line.
The unbuffered I/O services assume that no translation occurs between the
program’s data and the file data when performing 1/0, so either the new-line
character translation wonld he lost (which breaks programs) or the implemen-
tor must be aware of the new-line translation (which results in non-portable
programs).

e On UNIX systems, file descriptors 0, 1, and 2 correspond to the standard
input, output, and error streams. This convention may be problematic for
other systems in that (1) file descriptors 0, 1, and 2 may not be available
or may be reserved for another purpose, (2) the operating system may use a
different set of services for terminal I/0O than file I/0.

In summary, the Committee chose not to standardize the unbuffered 1/0 services
because:

¢ They duplicate the facilities provided by the standard I/O services.

¢ The performance of the standard I/O services can be the same or better than
the unbuffered T/O services.

e The unbuffered 1/0 file model may not be appropriate for many C language
environments.

4.9.1 Introduction

The macros _IOFBF, I0LBF, _IONBF are enumerations of the third argument to
setvbuf, a function adopted from UNIX System V.

SEEK_CUR, SEEK_END, and SEEK.SET have been moved to <stdio.h> from a header
specified in the Base Document and not retained in the Standard.

FOPEN_MAX and TMP.MAX arc added environmental limits of some interest to pro-
grams that manipulate multiple temporary files.

FILENAME_MAX is provided so that buffers to hold file names can be conveniently
declared. If the target system supports arbitrarily long filenames, the implemen-
tor should provide some reasonable value (807, 2557, 5097) rather than something
unusable like USHRT_MAX,

RATIONALE

90 Section 4. LIBRARY

4.9.2 Streams

C inherited its notion of text streams from the UNIX environment in which it was
born. Having cach line delimited by a single new-line character, regardless of the
characteristics of the actual terminal, supported a simple model of text as a sort of
arbitrary length scroll or “galley.” Having a chanunel that is “transparent” (no file
structure or reserved data encodings) eliminated the need for a distinction between
text and binary streams.

Many other environments have differcent properties, however. If a program writ-
ten in C is to produce a text file digestible by other programs, by text editors in
particular, it must conform to the text formatting conventions of that environment.

The 1/0 facilities defined by the Standard are both more complex and more
restrictive than the ancestral 1/0 facilities of UNIX. This is justified an pragmatic
grounds: most of the differences, restrictions and omissions exist to permit C /0O
implementations in environments which differ from the UNIX I/0O model.

Troublesome aspccts of the stream concept include:

The definition of lines. In the UNIX model, division of a file into lines is effected
by new-line characters. Different techniques are used by other systems —
lines may be separated by CR-LF (carriage return, line feed) or by unrecorded
areas on the recording medium, or each line may be prefixed by ifs length.
The Standard addresses this diversity by specifying that new-line be used as
a line separator at the program level, but then permitting an implementation
to transform the data read or written to conform to the conventions of the
environment.

Some environmenis represent text lines as blank-filled fixed-lengtih records.
Thus the Standard specifies that it is implemenialion-defined whether trailing
blanks are removed from a line on input. (This specification also addresses
the problems of environments which represent text as variable-length records,
but do not allow a record length of 0: an empty line may be written as a
one-character record containing a blank, and the blank is stripped on input.)

Transparency. Some programs require access (o external data withoul modifica-
tion. For instance, transformation of CR-LF to new-line character is usually
not desirable when object code is processed. The Standard defines two stream
types, text and binary, to allow a program to define, when a file is opened,
whether the preservation of its exact contents or of its line structure is more
important in an environment which cannot accurately reflect both.

Random access. The UNIX I/0 model features random access to data in a file,
indexed by character number. On systems where a new-line character pro-
cessed by the program represents an unknown number of physically recorded
characters, this simple mechanism cannot be consistently supported for text
streams. The Standard abstracts the significant properties of random access
for text streams: the ability to determine the current file position and then

4.9. Input/Qutput <stdio.h> 91

later reposition the file to the same location. ftell returns a file position
indicator, which has no necessary interpretation except that an fseek opera-
tion with that indicator value will position the file to the same place. Thus
an implementation may encode whatever file positioning information is most
appropriate for a text file, subject only to the constraint that the encoding
be representable as a long. Use of fgetpos and fsetpos removes even this
constraint.

Buflering. UNIX allows the program to control the extent and type of buffering
for various purposes. For cxample, a program can provide its own large I/0
buffer to improve efficiency, or can request unbuffered terminal I/O to process
each input character as it is entered. Other systems do not necessarily support
this generality. Some systems provide only line-at-a-time access to terminal
input; some systems support program-allocated buffers only by copying data
to and from system-allocated buffers for processing. Buffering is addressed
in the Standard by specilying UNIX-like setbuf and setvbuf functions, but
permitting greal latitude in their implementation. A conforming library need
neither attempt the impossible nor respond to a program attempt to improve
efficiency by introducing additional overheadl.

Thus, the Standard imposes a clear distinction between text streams, which must
be mapped to suit local custom, and binary streams, for which no mapping takes
place. Local custom on UNIX (and related) systems is of course to treat the two
sorts of streams identically, and nothing in the Standard requires any changes to
this practice.

Even the specification of binary streams requires some changes to accommodate
a wide range of systems. Because many systems do not keep track of the length of a
file to the nearest byte, an arbitrary number of characters may appear on the end of
a binary streamn directed to a file. The Standard cannot forbid this implementation,
but does require that this padding consist only of null characters. The alternative
would be to restrict C to producing binary files digestible only by other C programs;
this alternative runs counter to the spirit of €.

The set ol characters required to be preserved in text stream I/0 are those needed
for writing C programs; the intent is the Standard should permit a C translator to
be written in a maximally portable fashion. Centrol characters such as backspace
are not required for this purpose, so their handling in text streams is not mandated.

It was agreed that some minimum maximum line length must be mandated; 254
was chosen.

4.9.3 TFiles

The as if principle is once again invoked to define the nature of input and output
in terms of just two functions, fgetc and fputc. The actual primitives in a given
system may be quite different.

RATIONALE

92 Section 4. LIBRARY

Buffering, and unbuffering, is defined in a way suggesting the desired interactive
behavior; but an implementation may still be conforming even if delays (in a network
or terminal controller) prevent output from appearing in time. It is the intent that
matters here.

No constraints are imposed upon file names, except that they must be repre-
sentable as strings (with no embedded null characters).

4.9.4 Operations on files
4.9.4.1 The remove function

The Base Document provides the unlink system call to remove files. The UNIX-
specific definition of this function prompted the Committee to replace it with a
portable function,

4.9.4.2 The rename function

This function has been added to provide a system-independent atomic operation
to change the name of an existing file; the Base Document only provided the 1ink
system call, which gives the file a new name without removing the old one, and
which is extremely system-dependent.

The Committee considered a proposal that rename should quietly copy a file
if simple renaming couldn’t be performed in some context, but rejected this as
potentially too expensive at execution time.

rename is meant to give access to an underlying facility of the execution envi-
ronment’s operating system. When the new name is the name of an existing file,
some systems allow the renaming (and delete the old file or make it inaccessible
by that name), while others prohibit the operation. The effect of rename is thus
implementation-defined.

4.9.4.3 The tmpfile function

The tmpfile function is intended to allow users to create binary “scratch” files.
The as if principle implies that the information in such a file need never actually
be stored on a file-structured device.

The temporary file is created in binary update mode, because it will presumably
be first written and then read as transparently as possible. Trailing null-character
padding may cause problems for some existing programs.

4.9.4.4 The tmpnam function

This function allows for more control than tmpfile: a file can be opened in binary
mode or text mode, and files are not erased at completion.

There is always some time between the call to tmpnam and the use (in fopen) of
the returned name. Hence it is conceivable that in some implementations the name,
which named no file at the call to tmpnam, has been used as a filename by the time of

4.9. Input/Output <stdio.h> 93

the call to fopen. Implementations should devise name-generation strategies which
minimize this possibility, but users should allow for this possibility.

4.9.5 File access functions
4.9.5.1 The fclose function

On some operating systems it is difficult, or impossible, to create a file unless some-
thing is written to the file. A maximally portable program which relies on a file
being created must write something to the associated stream before closing it.

4.9.5.2 The fflush function

The fflush function ensures that output has been forced out of internal I/O buffers
for a specified stream. Occasionally, however, it is necessary to ensure that all output
is forced out, and the programmer may not conveniently be able to specify all
the currently-open streams (perhaps because some streams are manipulated within
library packages).® To provide an implementation-independent method of flushing
all output buffers, the Standard specifies that this is the result of calling fflush
with a NULL argument.

4.9.5.3 The fopen function

The b type modifier has been added to deal with the text/binary dichotomy (see
§4.9.2). Because of the limited ability to seek within text files (see §4.9.9.1), an
implementaticn is at liberty to treat the old update + modes as if b were also
specified. Table 4.1 tabulates the capabilities and actions associated with the various
specified mode string arguments to fopen.

Table 4.1: File and stream properties of fopen modes

| [z |wfa/xt[wt]as]

file must exist before open v Vv

old file contents discarded on open Vv Vv
stream can be read Vv NARARY
stream can be written VIiVIiIVIVIY
stream can be written only at end Vv v

Other specifications for files, such as record length and block size, are not speci-
fied in the Standard, due to their widely varying characteristics in different operating

®For instance, on a system (such as UNIX) which supports process forks, it is usually nacessary
to flush all output buffers just prior to the fork.

RATIONALE

94 Section 4. LIBRARY

environments. Changes to file access modes and buffer sizes may be specified us-
ing the setvbuf function. (See §4.9.5.6.) An implementation may choose to allow
additional file specifications as part of the mode string argument. For instance,

filel = fopen(filelname,"wb,reclen=80");

might be a reasonable way, on a system which provides record-oriented binary files,
for an implementation to allow a programmer to specify record length.

A change of input /output direction on an update file is only allowed following a
fsetpos, fseek, rewind, or fflush operation, since these are precisely the functions
which assure that the I/O buffer has been flushed.

The Standard (§4.9.2) imposes the requirement that binary files not be trun-
cated when they are updated. This rule does not preclude an implementation from
supporting additional file types that do truncate when written to, even when they
are opened with the same sort of fopen call. Magnetic tape files are an example of
a file type that must be handled this way. (On most tape hardware it is impossible
to write to a tape without destroying immediately following data.) Hence tape files
are not “binary files” within the meaning of the Standard. A conforming hosted
implementation must provide (and document) at least one file type (on disk, most
likely) that behaves exactly as specified in the Standard.

4.9.5.4 The freopen function
4.9.5.5 The setbuf function

setbuf is subsumed by setvbuf, but has been retained for compatibility with old
code.

4.9.5.6 The setvbuf function

getvbuf has been adopted from UNIX System V, both to control the nature of
stream buffering and to specify the size of [/O buffers. An implementation is not
required to make actual use of a buffer provided for a stream, so a program must
never expect the bufler’s contents to reflect I/O operations. Further, the Standard
does not require that the requested buffering be implemented; it merely mandates a
standard mechanism for requesting whatever buffering services might be provided.

Although three types of buffering are defined, an implementation may choose
to make one or more of them equivalent. For example, a library may choose to
implement line-buffering for binary files as equivalent to unbuffered 1/0 or may
choose to always implement full-buffering as equivalent to line-buffering.

The gencral principle is to provide portable code with a means of requesting the
most appropriate popular buffering style, but not to require an implementation to
support these styles.

4.9. Input/Quiput <stdio.h> 95

4.9.6 Formatted input/output functions
4.9.6.1 The fprintf function

Use of the L modifier with floating conversions has been added to deal with formatted
output of the new type long double.

Note that the %X and %x formats expect a corresponding int argument; %1X or
%1x must be supplied with a long int argument.

The conversion specification %p has been added for pointer conversion, since
the size of a pointer is not necessarily the same as the size of an int. Because
an implementation may support more than one size of pointer, the corresponding
argument is expected to be a (void *) pointer.

The %n format has been added to permit ascertaining the number of characters
converted up to that point in the current invocation of the formatter.

Some pre-Standard implementations switch formats for g at an exponent of —3
instead of (the Standard’s) —4: existing code which requires the format switch at —3
will have to be changed.

Some existing implementations provide D and %0 as synonyms or replacements
for %14 and %lo. The Committee considered the latter notation preferable.

The Committee has reserved lower case conversion specifiers for future standard-
ization.

The use of leading zero in field widths to specify zero padding has been super-
seded by a precision field. The older mechanism has been retained.

Some implementations have provided the format %r as a means of indirectly
passing a variable-length argument list. The functions vfprintf, etc., are considered
to be a more controlled method of effecting this indirection, so %r was not adopted
in the Standard. (See §4.9.6.7.)

The printing formats for numbers is not entirely specified. The requirements
of the Standard are locse enough to allow implementations to handle such cases as
signed zero, not-a-number, and infinity in an appropriate fashion.

4.9.6.2 The fscanf function

The specification of fscanf is based in part on these principles:
» As soon as one specified conversion fails, the whole function invocation fails.

¢ One-character pushback is sufficient for the implementation of fscanf. Given
the invalid field “-.x”, the characters “~.” are not pushed back.

o If a “flawed field” is detected, no value is stored for the corresponding argu-
ment.

o The conversions performed by fscanf are compatible with those performed
by strtod and strtol.

RATIONALE

96 Section 4, LIBRARY

Input pointer conversion with %p has been added, although it is obviously risky,
for symmetry with fprintf. The %i format has been added to permit the scanner
to determine the radix of the number in the inputl stream; the %n format has been
added to make available the number of characters scanned thus far in the current
invocation of the scanner.

White space is now defined by the isspace function. (See §4.3.1.9.)

An implementation must not use the ungetec function to perform the necessary
one-character pushback. In particular, since the unmatched text is left “unread,”
the file position indicator as reported by the ftell function must be the position
of the character remaining to be read. Furthermore, if the unread characters were
themselves pushed back via ungetc calls, the pushback in fscanf must not affect
the push-back stack in ungetc. A scanf call that matches N characters from a
stream must leave the stream in the same state as if N consecutive getc calls had
been issued.

4.9.6.3 The printf function

See comments of section §4.9.6.1 above.

4.9.6.4 The scanf function

See comments in section §4.9.6.2 above.

4.9.6.5 ‘The sprintf function
See §4.9.6.1 for comments on output forinatting,.
In the interests of minimizing redundancy, sprintf has subsumed the older,
rather uncommon, ecvt, fcvt, and gevt.,
4.9.6.6 The sscanf function
The behavior of sscanf on encountering end of string has been clarified. See also
comments in section §4.9.6.2 above.
4.9.6.7 The vfprintf function
The functions viprintf, vprintf, and vsprintf have been adopted from UNIX
System V to facilitate writing special purpose formatted output functions.
4.9.6.8 The vprintf function
See §4.9.6.7.

4.9.6.9 The vsprintf function
See §41.9.6.7.

4.9. Input/Qutput <stdio.h> 97

4.9.7 Character input/output functions

4.9.7.1 The fgetc function

Because much existing code assumes that fgetc and fputc are the actual functions
equivalent to the macros getc and putc, the Standard requires that they not be
implemented as macros.

4.9.7.2 The fgets function

This function subsumes gets, which has no limit to prevent storage overwrite on
arbitrary input (see §4.9.7.7).

4.9.7.3 The fputc function

See §4.9.7.1.

4.9.7.4 The fputs function
4.9.7.5 The getc function

getc and putc have often been implemented as unsafe macros, since it is difficult in
such a macro to touch the stream argument only once. Since this danger is common
in prior art, these two functions are explicitly permitted to evaluate stream more
than once.

4.9.7.6 The getchar function

4.9.7.7 The gets function

See §4.9.7.2.

4.9.7.8 The putc function
See §4.9.7.5.

4.9.7.9 The putchar function

4.9.7.10 The puts function

puts(s) is not exactly equivalent to fputs(stdout,s); puts also writes a new line
after the argument string. This incompatibility reflects existing practice.

4.9.7.11 The ungetc function

The Base Document requires that at least one character be read before ungetc is
called, in certain implementation-specific cases. The Committee has removed this
requirement, thus obliging a FILE structure to have room to store one character of

RATIONALE

a8 Section 4. LIBRARY

pushback regardless of the state of the buffer; it felt that this degree of generality
makes clearer the ways in which the function may be used.

It is permissible to push back a different character than that which was read;
this accords with common existing practice. The last-in, first-out nature of ungetc
has been clarified.

ungetc is typically used to handle algorithms, such as tokenization, which involve
one-character lookahead in text files. fseek and ftell are used for random access,
typically in binary files. So that these disparate file-handling disciplines are not
unnecessarily linked, the value of a text file's file position indicator immediately
after ungetc has been specified as indeterminate.

Existing practice relies on two different models of the effect of ungetc. One
model can be characterized as writing the pushed-back character “on top of” the
previous character. This model implies an implementation in which the pushed-
back characters are stored within the file buffer and bookkeeping is performed by
setting the file position indicator to the previous character position. {(Care must be
taken in this model to recover the averwritten character values when the pushed-
back characters are discarded as a result of other operations on the stream.} The
other model can be characterized as pushing the character “between” the current
character and the previous character. This implies an implementation in which the
pushed-back characters are specially buflered (within the FILE structure, say) and
accounted for by a flag or count. In this model it is natural not to move the file
position indicator. The indeterminacy of the file position indicator while pushed-
back characters exist accommodates both models.

Mandating cither model (by specifying the effect of ungetc on a text file’s file
position indicator) creates problems with implementations that have assumed the
other model. Requiring the file position indicator not to change after ungetc would
necessitate changes in programs which combine random access and tokenization on
text files, and rely on the file position indicator marking the end of a token even
after pushback. Requiring the file position indicator to back up would create severe
implemcntation problems in certain environments, since in some file organizations
it can be impossible to find the previous input character position without having
read the file sequentially to the point in question.®

4.9.8 Direct input/output functions
4.9.8.1 The fread function

size.t is the appropriate type both for an object size and for an array bound (see

®Consider, for instance, a sequential file of variable-length records in which a line is represcnted
as a count field followed by the characters in the line. The file position indicator must encode a
character position as the position of the count field plus an offset into the line; from the position of
the count field and the length of the line, the next count field can be found. Insufficient information
is available for finding the previous count field, so backing up from the first character of a line
necessitates, in the general case, a sequential read from the start of the file.

4.9. Input/QOutput <stdio.h> 99

§3.3.3.4), so this is the type of size and nelem.

4.9.8.2 The furite function

See §4.9.8.1.

4.9.9 File positioning functions

4.9.9.1 The fgetpos function

fgetpos and fsetpos have heen added to allow random access operations on files
which are too large to handle with f£seek and ftell.

4.9.9,2 The fseek function

Whereas a binary file can be treated as an ordered sequence of bytes, counting from
zero, a text file need not map one-to-one to its internal representation (see §4.9.2).
Thus, only seeks to an earlier reported position are permitted for text files. The
need to encode both record position and position within a record in a long value
may constrain the size of text files upon which fseek-ftell can be used to be
considerably smaller than the size of binary files.

Given these restrictions, the Committee still felt that this function has enough
utility, and is used in sufficient existing code, to warrant its retention in the Stan-
dard. fgetpos and fsetpos have been added to deal with files which are too large
to handle with fseek and ftell.

The fseek function will reset the end-of-file flag for the stream; the error flag is
not changed unless an error occurs, when it will be set.

4.9.9.3 The fsetpos function
4.9.9.4 The ftell function

ftell can fail for at least two reasons:

¢ the stream is associated with a terminal, or some other file type for which file
position tndicator is meaningless; or

¢ the file may be positioned at a location not representable in a long int.

Thus a method for £tell to report failure has been specified.
See also §4.9.9.1,

4,9.9.5 The rewind function

Resetting the end-ol-file and error indicators was added to the specification of
rewind to make the specification more logically consistent.

RATIONALE

100 Section 4. LIBRARY

4.9.10 Error-handling functions
4.9.10.1 The clearerr function
4.9.10.2 The feof function
4.9.10.3 The ferror function
4.9.10.4 The perror function

At various times, the Committee considered providing a form of perror that delivers
up an error string version of errno without performing any output. It ultimately de-
cided to provide this capability in a separate function, strerror. (Sce §4.11.6.1).

4.10 General Utilities
<stdlib.h>

The header <stdlib.h> was invented by the Committee to hold an assortment of
functions that were otherwise homeless.

4.10.1 String conversion functions

4.10.1.1 The atof function

atof, atoi, and atol are subsumed by strtod and strtol, but have been retained
because they are used extensively in existing code. They are less reliable, but may
be faster if the argument is known to be in a valid range.

4.10.1.2 The atoi function

See §4.10.1.1.

4.10.1.3 The atol function

See §4.10.1.1.

4,10.1.4 The strtod function

strtod and strtol have been adopted (from UNIX System V) because they offer
more contral over the conversion process, and because they are required nof to
produce unexpected results on overflow during conversion.

4.10.1.5 The strtol function

Sce §4.10.1.4.

4.10. General Utilities <stdlib.h> 101

4,10.1.6 The strtoul function

strtoul was introduced by the Committee to provide a facility like strtol for
unsigned long values. Simply using strtol in such cases could result in overflow
upon conversion.

4.10.2 Pseudo-random sequence generation functions
4.10.2.1 The rand function

The Committee decided that an implementation should be allowed to provide a rand
function which generates the hest random sequence possible in that implementation,
and therefore mandated no standard algorithm. It recognized the value, however,
of being able to generate the same pseudo-random sequence in different implemen-
tations, and so it has published as an example in the Standard an algorithm that
generates the same pseudo-random sequence in any conforming implementation,
given the same seed.

4.10.2.2 The srand function
4.10.3 Memory management functions

The treatment of null pointers and 0-length allocation requests in the definition of
these functions was in part guided by a desire to support this paradigm:

0BJ * p; /+ pointer to a variable list of 0BJ’s */

/* initial allocation */
p = (OBJ *) callec(0, sizeof(QGBJ));
Jx ... %/

/* reallocations until size settles */

while(/* 1list changes size to c */) {
p = (0BJ *) realloc((void #)p, c*sizeof(0BJ));
/*x ... *x/f

¥

This coding style, not necessarily endorsed by the Committee, is reported to be in
widespread use.

Some implementations have returned non-null values for allocation requests of
0 bytes. Although this strategy has the theoretical advantage of distinguishing be-
tween “nothing” and “zero” (an unallocated pointer vs. a pointer to zero-length
space), it has the more compelling theoretical disadvantage of requiring the concept
of a zero-length object. Since such objects cannot be declared, the only way they
could come into existence would be through such allocation requests. The Com-
mittee has decided not to accept the idea of zero-length objects. The allocation

RATIONALE

102 Section 4. LIBRARY

functions may therefore return a null pointer for an allocation request of zero bytes.
Note that this treatment does not preclude the paradigm outlined above.

QUIET CHANGE

A program which relies on size-0 allocation requests returning a non-null
pointer will behave differently.

Some implementations provide a function (often calied alloca) which allocates the
requested object from automatic storage; the object is automatically freed when the
calling function exits. Such a function is not efficiently implementable in a variety
of environments, so it was not adopted in the Standard.

4.10.3.1 The calloc function

Both nelem and elsize must be of type size_t, for reasons similar to those for
fread (see §4.9.8.1).
If a scalar with all bits zero is not interpreted as a zero value by an implemen-

tation, then calloc may have astonishing results in existing programs transported
there.

4.10.3.2 The free function

The Standard makes clear that a program may only free that which has been al-
located, that an allocation may only be freed once, and that a region may not be
accessed once it is freed. Some implementations allow more dangerous license. The
null pointer is specified as a valid argument to this function to reduce the need for
special-case coding.

4.10.3.3 The malloc function

4.10.3.4 The realloc function

A null first argument is permissible. If the first argument is not null, and the second
argument is 0, then the call frees the memory pointed to by the first argument, and
a null argument may be returned; this specification is consistent with the policy of
not allowing zero-size objects.

4.10.4 Communication with the environment

4,10.4.1 The abort function

The Committee vacillated over whether a call to abort should return if the signal
SIGABRT is caught or ignored. To minimize astonishment, the final decision was that
abort never returns.

4.10. General Utilities <stdlib.h> 103

4.10.4.2 The atexit function

atexit provides a program with a convenient way to clean up the environment
before it exits. It is adapted from the Whitesmiths C run-time library function
onexit.

A suggested alternative was to use the SIGTERM facility of the signal/raise ma-
chinery, but that would not give the last-in first-out stacking of multiple functions
so useful with atexit.

It is the responsibility of the library to maintain the chain of registered functions
so that they are invoked in the correct sequence upon program exit.

4.10.4.3 The exit function

The argument to exit is a status indication returned to the invoking environment.
In the UNIX operating system, a value of 0 is the successful return code from a
program. As usage of C has spread beyond UNIX, exit(0) has often been retained
as an idiom indicating successful termination, even on operating systems with dif-
ferent systems of return codes. This usage is thus recognized as standard. There
has never been a portable way of indicating a non-successful termination, since the
arguments to exit are then implementation-defined. The macro EXIT_FAILURE has
been added to provide such a capability. (EXIT.SUCCESS has been added as well.)

Aside from calls explicitly coded by a programmer, exit is invoked on return
from main. Thus in at least this case, the body of exit cannot assume the existence
of any objects with automatic storage duration (except those declared in exit).

4.10.4.4 The getenv function

The definition of getenv is designed to accommodate both implementations that
have all in-memory read-only environment strings and those that may have to read
an environment string into a static buffer. Hence the pointer returned by the getenv
function points to a string not modifiable by the caller. If an attempt is made to
change this string, the behavior of future calls to getenv is undefined.

A corresponding putenv function was omitted {rom the Standard, since its util-
ity outside a multi-process environment is questionable. and since its definition is
properly the domain of an operating system standard.

4.10.4.5 The system function

The system function allows a program to suspend its execution temporarily in order
to run another program to completion.

Information may be passed to the called program in three ways: through
command-line argument strings, through the environment, and (most portably)
through data files. Defore calling the system function, the calling program should
close all such data files.

RATIONALE

104 Section 4. LIBRARY

Information may be returned from the called program in two ways: through
the implementation-defined return value (in many implementations, the termina-
tion status code which is the argument to the exit function is returned by the
implementation to the caller as the value returned by the system function), and
(most portably) through data files.

If the environment is interactive, information may also be exchanged with users
of interactive devices.

Some implementations offer built-in programs called “commands” (for example,
“date”) which may provide useful information to an application program via the
system function. The Standard does not attempt to characterize such commands,
and their use is not portable.

On the other hand, the use of the system function is portable, provided the
implementation supports the capability. The Standard permits the application to
ascertain this by calling the system function with a null pointer argument. Whether
more levels of nesting are supported can also be ascertained this way; assuming more
than one such level is obviously dangerous.

4.10.5 Searching and sorting utilities
4.10.5.1 The bsearch function

4.10.5.2 The gsort function

4.10.6 Integer arithmetic functions

abs was moved from <math.h> as it was the only function in that library which did
not involve double arithmetic. Some programs have included <math.h> solely to
gain access to abs, but in some implementations this results in unused floating-point
run-time routines becoming part of the translated program.

4.10.6.1 The abs function

The Committee rejected proposals to add an absolute value operator to the language.
An implementation can provide a built-in function for efficiency.

4.10.6.2 The div function

div and 1div provide a well-specified semantics for signed integral division and
remainder operations. The semantics were adopted to be the same asin FORTRAN.
Since these functions return both the quotient and the remainder, they also serve as
a convenient way of efficiently modelling underlying hardware that computes both
results as part of the same operation. Table 4.2 summarizes the semantics of these
functions.

Divide-by-zero is described as undefined behavior rather than as setting errno to
EDCM. The program can as easily check for a zero divisor before a division as for an
error code afterwards, and the adopted scheme reduces the burden on the function.

4.11. STRING HANDLING <string.h> 105

Table 4.2: Results of div and 1div

[numer | denom || quot | rem |

7 3 2 1
-7 3 -2 -1
7 -3 -2 1
-7 -3 2| -1

4.10.6.3 The labs function

4.10.6.4 The 1ldiv function

4.10.7 Multibyte character functions

See §2.2.1.2 for an overall discussion of multibyte character representations and wide
characters.

4.10.7.1 The mblen function

4.10.7.2 The mbtowc function

4.10.7.3 The wctomd function

4.10.8 Multibyte string functions

See §2.2.1.2 for an overall discussion of multibyte character representations and wide
characters.

4.10.8.1 The mbstowecs function

4.10.8.2 The wcstombs function

4.11 STRING HANDLING
<string.h>

The Committee felt that the functions in this section were all excellent candidates
for replacement by high-performance built-in operations. Hence many simple func-
tions have been retained, and several added, just to leave the door open for better
implementations of these common operations.

The Standard reserves function names beginning with str or mem for possible
future use.

4.11.1 String function conventions

memcpy, memset, memcmp, and memchr have been adopted from several existing im-
plementations. The general goal was to provide equivalent capabilities for three

RATIONALE

106 Section 4. LIBRARY

types of byte sequences:
e null-terminated strings (str-),
¢ null-terminated strings with a maximum length {strn-), and

o transparent data of specified length (mem-).

4.11.2 Copying functions

A block copy routine should be “right”: it should work correctly even if the blocks
being copied overlap. Otherwise it is more difficult to correctly code such overlapping
copy operations, and portability suffers because the optimal C-coded algorithm on
one machine may be horribly slow on another.

A block copy routine should be “fast”: it should be implementable as a few inline
instructions which take maximum advantage of any block copy provisions of the
hardware. Checking lor overlapping copies produces too much code for convenient
inlining in many implementations. The programmer knows in a greal many cases
that the two blocks cannot possibly overlap, so the space and time overhead are for
naught.

These arguments are contradictory but each is compelling. Therefore the Stan-
dard mandates two block copy functions: memmove is required to work correctly
even if the source and destination overlap, while memcpy can presume nonoverlap-
ping operands and be optimized accordingly.

4.11.2.1 The memcpy function
4.11.2.2 The memmove function
4.11.2.3 The strcpy function

4.11.2.4 The strncpy function

strncpy was initially introduced into the C library to deal with fixed-length name
fields in structures such as directory entries. Such fields are not used in the same
way as strings: the trailing null is unnecessary for a maximum-ifength ficld, and set-
ting trailing bytes for shorter names to null assures efficient field-wise comparisons.
strncpy is not by origin a “bounded strcpy,” and the Committee has preferred to
recognize existing practice rather than alter the function to better suit it to such
use.

4.11.3 Concatenation functions
4.11.3.1 The strcat function

4.11.3.2 The strncat function

Note that this function may add n+1 characters to the string.

4.11. STRING HANDLING <string.h> 107

4.11.4 Comparison functions
4.11.4.1 The memcmp function

See §4.11.1.

4.11.4.2 The strcmp function
4.11.4.3 The strcoll function

strcoll and strxfrm provide for locale-specific string sorting. strcoll is intended
for applications in which the number of comparisons is small; strxfrm is more
appropriate when items are to be compated a number of times — the cost of trans-
formation is then only paid once.

4.11.4.4 The strncmp function
4.11.4.5 The strxfrm function

See §4.11.4.3.

4.11.5 Secarch functions
4.11.5.1 The memchr function

See §4.11.1.

4.11.5.2 The strchr function
4.11.5.3 The strcspn function
4.11.5.4 The strpbrk function
4.11.5.5 The strrchr function
4.11.5.6 The strspn function
4.11.5.7 The strstr function

The strstr function is an invention of the Committee. It is included as a hook for
efficient substring algorithms, or for built-in substring instructions.

4.11.5.8 The strtok function

This function has been included to provide a convenient solution to many simple
problems of lexical analysis, such as scanning command line arguments.

RATIONALE

108 Section 4. LIBRARY

4.11.6 Miscellaneous functions
4,11.6.1 The memset function

See §4.11.1, and §4.10.3.1.

4.11.6.2 The strerror function

This function is a descendant of perror (see §4.9.10.4). It is defined such that it
can return a pointer to an in-memory read-only string, or can copy a string into a
static buffer on each call.

4.11.6.3 The strlen function

This function is now specified as returning a value of type size t. (See §3.3.3.4.)

4.12 DATE AND TIME
<time.h>

4.12.1 Components of time

The types clock.t and time t are arithmetic because values of these types must,
in accordance with existing practice, on occasion be compared with —1 (a “den’t-
know” indication) suitably cast. No arithmetic properties of these types are defined
by the Standard, however, in order to allow implementations the maximum flexi-
bility in choosing ranges, precisions, and representations most appropriate to their
intended application. The representation nced not be a count of some basic unit;
an implementation might conceivably represent different components of a temporal
value as subfields of an integral type.

Many C environments do not support the Base Document library concepts of
daylight savings or time zones. Both notions are defined geographically and politi-
cally, and thus may require more knowledge about the real world than an implemen-
tation can support. Hence the Standard specifies the date and time functions such
that information about DST and time zones is not required. The Base Document
function tzset, which would require dealing with time zones, has been excluded
altogether. An implementation reports that information about DST is not available
by setting the tm_isdst field in a broken-down time to a negative value. An imple-
merntation may return a null pointer from a call 1o gmtime il information about the
displacement between Universal Time (née GMT) and local time is not available.

4.12.2 Time manipulation functions
4.,12.2.1 The clock function

The function is intended for measuring intervals of execution time, in whatever units
an implementation desires. The conilicting goals of high resolution, long interval

4.12. DATE AND TIME <time.h> 109

capacity, and low timer overhead must be balanced carefully in the light of this
intended use.

4.12.2.2 The difftime function

difftime is an invention of the Committee. It is provided so that an implementation
can store an indication of the date/time value in the most efficient format possible
and still provide a method of calculating the difference between two times.

4,12.2.3 The mktime function

mktime was invented by the Committee to complete the set of time functions. With
this function it becomes possible to perform portable calculations involving clock
times and broken-down times.

The rules on the ranges of the fields within the *timeptr record are crafted to
permit useful arithmetic to be done. For instance, here is a paradigm for continuing
some loop for an hour:

#include <time.h>

struct tm when;
time_t now;
time_t deadline;
/¥ ... %/

now = time(0);

when = *localtime(&now);

when.tm_hour += 1; /* result is in the range [1,24] =/
deadline = mktime(&when);

printf("Loop will finish: %s\n", asctime(&when));
while { difftime(deadline,time(0)) > 0) whatever();

The specification of mktime guarantees that the addition to the tm_hour field pro-
duces the correct result even when the new value of tm hour is 24, ie., a value
outside the range ever returned by a library function in a struct tm object.

One of the reasons for adding this function is to replace the capability to do
such arithmetic which is lost when a programmer cannot depend on time_t being
an integral multiple of some known time unit.

Several readers of earlier versions of this Rationale have pointed out apparent
problems in this example if now is just before a transition into or out of daylight
savings time. However, when.tm_isdst indicates what sort of time was the basis of
the calculation. Implementors, take heed. If this field is set to —1 on input, one
truly ambiguous case involves the transition out of daylight savings time. As DST
is currently legislated in the USA, the hour 0100-0159 occurs twice, first as DST
and then as standard time. Hence an unlabeled 0130 on this date is problematic.

RATIONALE

110 Section 4. LIBRARY

An implementation may choose to take this as DST or standard time, marking its
decision in the tm.isdst fleld. It may also legitimately take this as invalid input
(and return (time_t)(-1)).

4.12,2.4 The time function

Since no measure is given for how precise an implementation’s best approzimation
to the current time must be, an implementation could always return the same date,
instead of a more honest —1. This is, of course, not the intent.

4.12.3 Time conversion functions
4.12.3.1 The asctime function

Although the name of this function suggests a conflict with the principle of removing
ASCII dependencies from the Standard, the name has been retained due to prior art.
For the same reason of existing practice, a proposal to remove the newline character
from the string format was not adopted. Proposals to allow for the use of languages
other than English in naming weckdays and months met with objections on grounds
of prior art, and on grounds that a truly international version of this function was
difficult to specify: three-letter abbreviation of weekday and month names is not
universally conventional, for instance. The strftime function (§4.12.3.5) provides
appropriate facilities for locale-specific date and time strings.

4.12.3.2 The ctims function
4.12.3.3 The gmtime function

This function has been retained, despite objections that GMT — that is, Coor-
dinated Universal Time (UTC) ~— is not available in some implementations, since
UTC is a useful and widespread standard represcntation of time. If UTC is not
available, a null pointer may be returned,

4.12.3.4 The localtime function
4.12.3.5 The strftime function

strftime provides a way of formatting the date and time in the appropriate locale-
specific fashion, using the %c, %x, and %X format specifiers. More generally, it allows
the programmer to tailor whatever date and time format is appropriate for a given
application. The facility is based on the UNIX system date command. See §4.4 for
further discussion of locale specification.

For the field controlled by %P, an implementation may wish te provide special
symbols to mark noon and midnight.

4.13. Future library directions

4.13 Future library directions

4.13.1 Errors <errno.h>

4.13.2 Character handling <ctype.h>
4.13.3 Localization <locale.h>
4.13.4 Mathematics <math.h>

4.13.5 Signal handling <signal.h>
4.13.8 Input/output <stdio.h>
4.13.7 General utilities <stdlib.h>
4.13.8 String handling <string.h>

111

RATIONALE

Section 5

APPENDICES

Most of the material in the appendices is not new. It is simply a summary of
information in the Standard, collated for the convenience of users of the Standard.

New (advisory) information is found in Appendix E (Common Warnings) and
in Appendix F.5 (Common Extensions). The section on common extensions is pro-
vided in part to give programmers even further information which may be useful in
avoiding features of local dialects of C.

113

Index

1984 /usr/group Standard, 5, 71

abort function, 76, 102

abs function, 104

abstract machine, 12, 13

Ada programming language, 13

agreement point, 12, 38

aliasing, 39

alignment, 5

alloca function, nonstandard, 102

ANSI X3.64 character set standard,
30

ANSI X3L2 Committee (Codes and
Character Sets), 16

argc and argv parameters to main
function, 11

argument promotion, 41

as if principle, 9, 10, 13, 36, 39, 60,
91, 92

ASCII character code, 13, 14, 16, 30,
76, 78, 110

asctime function, 110

asm keyword, nonstandard, 19

assert macro, 76

<assert.h> header, 76

associativity, 38

atan2 function, 82

atexit function, 11, 86, 103

atof function, 100

atoi function, 100

atol function, 100

Backus-Naur Form, 19
benign redefinition, 64
binary numeration systems, 27, 43

bit, 5

115

bit fields, 51
break keyword, 60
byte, 5, 44

C++ programming language, 54, 55

calloc function, 102

case ranges, 59

cfree function, 102

clock function, 108

clock_t type, 108

codeset, 14, 78

collating sequence, 14

comments, 33

common extension, 19, 23, 31, 113

common storage, 23

compatible types, 28, 54

compliance, 6

composite type, 28, 54

concatenation, 31

conforming implementation,
freestanding, 7

conforming implementation, hosted, 7

conforming program, 3

const keyword, 19

constant expressions, 49

constraint error, 43

continue keyword, 60

control character, 77

conversions, 34

cross-compilation, 9, 28, 50, 74

<ctype.h> header, 76

curses screen-handling package,
nonstandard, 71

data abstraction, 43
__DATE_ macro, 68

DEC PDP-11, 2

decimal-point character, 71

declarations, 30

defined preprocessing operator, 49,
62

diagunostics, 3, 10, 35, 65, 68

difftime function, 109

div function, 45, 104

domain error, 81

EBCDIC character set, 16, 30, 78
#elif preprocessing directive, §2
#else preprocessing directive, 62
#endif preprocessing directive, 62
entry keyword, nonstandard, 19
enum keyword, 19, 51
cnumncrations, 27, 29, 50

EOF macro, 77

errno macro, 73, 81, 100
<errno.h> header, 73

erroneous program, 10

#error preprocessing directive, 68
executahle program, 9

exit function, 11, 103, 104
expression, ambiguous, 48
expression, sequenced, 48
expression, unsequenced, 48
expressions, 38

external identifiers, 20

external linkage, 9

fclose function, 88

fflush function, 93, 94
fgetc function, 91, 97
fgetpos function, 99

fgets function, 97

__FILE_ macro, 68

file pointer, 88

file position indicator, 91, 99
FILE type, 97

FILENAME_MAX macro, 89
<float.h> header, 18, 73, 74
fmod function, 45, 84

fopen function, 88, 93

INDEX

fortran keyword, nonstandard, 19

FORTRAN programming language,
23, 54, 104

FORTRAN-to-C translation, 18, 39,
81

fputc function, 91

fread function, 88, 98

frexp function, 83

fscanf function, 95

fseak function, 88, 91, 94, 99

fsetpes function, 94

ftell function, 91

full expression, 12

function definition, 60

function prototypes, 55

function, pure, 48

future directions, 69

fwrite function, 88

getc function, 75, 97

getenv function, 103

gmtime function, 108, 110

goto keyword, 58

Gray code, 27

Greenwich Mean Time (GMT), 110
grouping, 38

header names, 33
hosted environment, 11
HUGE_VAL macro, 81

TEEE 1003 portable operating system
interface standardization
committee, 5, 87, 88

IEEE 754 floating point standard, 18,
g1

TEEY P854 floating point
standardization committea,
74, 81, 83, 84

#if preprocessing directive, 9, 50

implementation-defined behavior, 6,
30, 51, 81, 83, 87, 90, 92

#include preprocessing directive, 63

infinity, 95

integral constant expression, 50

INDEX

integral promotions, 34, 55

interactive devices, 13

interleaving, 38

International Standards Organization
(1S0), 14

internationalization, 110

isascii function, 76

ISO 646, 14

isspace function, 77, 96

jmp.buf type, 84

Kernighan, Brian, 3
kill function, 87

labels, 58

ldexp function, 83

ldiv function, 45, 104

lexical elements, 19

libraries, 9

<limits.h> header, 17, 73

_-LINE.. macro, 68

linkage, 21, 23

linked, 9

locale, 77

localeconv function, 80

<locale.h> header, 78

locale-specific behavior, 77, 79, 80,
107

log function, 83

long double type, 27, 28, 51, 95

longjmp function, 17, 85

lvalue, 6, 36, 39, 42, 43, 49

Ivalue, modifiable, 36

machine generation of C, 10, 50, 54,
58

main function, 11

manifest constant, 81

mantissa, 18

matherr function, nonstandard, 81

<math.h> header, 80, 104

memchr function, 105

memcmp function, 103

memcpy function, 105, 106

117

memmove function, 106

nemset function, 105

mktime function, 109

modf function, 83

multibyte characters, 6, 15, 105
multi-processing, 87

name space, 21
new-line, 16
not-a-number, 95

NULL macro, 47, 74

null pointer constant, 74

object, 5, 6

obsolescent features, 20, 50, 69
offsetof macro, 55, 74
ones-complement arithmetic, 18
onexit function, 103
optimization, 51

order of evaluation, 38

Pascal programming language, 27, 59

perror function, 100, 108

phases of translation, 9, 10

pointer subtraction, 46

pointers, invalid, 37

POSIX portable operating system
interface standard, IEEE, 5,
87

#pragma preprocessing directive, 68

precedence, operator, 38

preprocessing, 9, 10, 19, 31, 32, 33,
61, 74, 75

primary expression, 40

printf function, 27, 75, 87

printing character, 77

program startup, 11, 50

prototype, function, 60, 69

ptrdiff_t type, 44, 46, 74

putc function, 75, 97

puts function, 97

quality of implementation, 11

quiet change, 3, 15, 19, 21, 22, 29, 30,
32, 33, 36, 46, 50, 52, 58, 59,
61, 66, 102

RATIONALE

118

raise function, 87

rand function, 101

range error, 82

register keyword, 51
remove function, 92
rename function, 92
repertoire, character set, 14
rewind, 94, 99

Ritchie, Dennis M., 5, 23

safe evaluation, 75

same type, 28

scanf function, 75, 87

scope, lexical, 21

sequence points, 12, 38

gsetbuf function, 91, 94

setjmp function, 85

<setjmp.h> header, 84

setlocale function, 77, 80

setvbuf function, 89, 91, 94

side effect, 48

SIGABRT macro, 102

sig_atomic_t type, 17

SIGILL macro, 87

signal function, 13, 16, 17, 24, 74,
86, 102, 103

<signal.h> header, 17, 86

signed keyword, 19, 51

significand, 18

sign-magnitude representation, 18

SIGTERM macro, 103

sizeof keyword, 5, 44, 45, 50

size_t type, 44, 74, 98, 102, 108

source file, 9

spirit of C, 47

sprintf function, 80

sscanf function, 96

statements, 58

static initializers, H0

<stdarg.h> header, 87

__STDC__ macro, 68

<stddef.h> header, 44, 46, 74

<stdio.h> header, 88, 89

<stdlib.h> header, 100

INDEX

storage duration, 21
strecoll function, 107
streams, 90

streams, binary, 91

streams, text, 91

gtrerror function, 100, 108
strftime function, 110
strictly conforming program, 3, 6, 11
<string.h> header, 105
stringizing, 65

strlen function, 108
strncat function, 106
strncpy function, 106
strstr function, 107
strtod function, 100
strtok function, 107
strtol function, 100
struclure types, 51

strxfrm function, 107
system function, 103

tags, 50

time function, 110

--TIME_. macro, 68
<time.h> header, 108
time_t type, 108

tm_isdst field, 108

tmpfile function, 92
tmpnam function, 92

token pasting, 32, 66
trigraph sequences, 14
twos-complement representation, 26
type modifier, 54

typedef keyword, 54, 57, 60

#undef preprocessing directive, 75, 87

undefined behavior, 6, 11, 13, 22, 26,
30, 42, 45, 87, 88, 103, 104

ungetc function, 96, 97

UNIX operating system, 2, 35, 63, 71,
81, 86, B7, B8, 90, 92, 93, 96

unlink function, 92

unsigned preserving, 34

unspecified behavior, 6, 68

INDEX

fusr/group (UNIX system users
group), 71

va_arg macro, 87

va_list type, 87

value preserving, 34
<varargs.h> header, 87
va.start macro, 87

VAX/VMS operating system, 81
viprintf function, 95, 96

void * type, 26, 37, 45, 47, 48, 95
void keyword, 19, 51

volatile keyword, 19

vprintf function, 96

vsprintf function, 96

wchar_t type, 74
white space, 19

wide characters, 30, 32
widened types, 75

119

RATIONALE

