
SEE NOTICE ON INSIDE

PUB 160

ADOPTED FOR US" BY THE
FEDEFlAL GOVEF:NMENT

American National Standards Institute
1430 Broadv,'a}'

New York, New York
10018

...-....
!!!!!!!!!~.......~------------~
~IV."

for Information Systems ­

Programming Language
C

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal Information Process­
ing Standards Publication 160, C. For a complete list of the publications available in the Federallnforma­
tion Processing Standards Series, write to the Standards Processing Coordinator (ADP), National Institute
of Standards and Technology, Gaithersburg, MD 20899.

ANSI®
X3.159-1989

American National Standard
for Information Systems-

Programming Language ­
C

Secretariat

Computer and Business Equipment Manufacturers Association

Approved December 14, 1989

American National Standards Institute, Inc

Abstract

This standard specifies the form and establishes the interpretation of programs expressed in the program­
ming language C. Its purpose is to promote portability, reliability, maintainability, and efficient execution of
C language programs on a variety of computing systems.

Sections are included that detail the C language itself and the contents of the C-Ianguage execution
library. Appendixes summarize aspects of both of them, and enumerate factors that influence the por1abil­
jty of C programs.

Although this standard is intended to guide knowledgeable C-language programmers as well as imple­
mentators of C-Ianguage translation systems, the document itself is not designed to serve as a tutorial.

American
National
Standard

Published by

Approval of an American National Standard requires verification by ANSI that the
requirements for due process, consensus, and other criteria for approval have been met by
the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,
substantial agreement has been r(',ached by directly and materially affected interests.
Substantial agreement means much more than a simple majority, but not necessarily
unanimity. Consensus requires that all views and objections be considered, and that a
concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not
in any respect preclude anyone, whether he has approved the standards or not, from
manufacturing, marketing, purchasing, or using products, processes, or procedures not
conforming to the standards.

The American National Standards Institute does not develop standards and will in no
circumstances give an interpretation of any American National Standard. Moreover, no
person shall have the right or authority to issue an interpretation of an American National
Standard in the name of the American National Standards Institute. Requests for
interpretations should be addressed to the secretariat or sponsor whose name appears on
the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn
at any time. The procedures of the American National Standards Institute require that
action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of
American National Standards may receive current information On all standards by calling
or writing the American National Standards Institute.

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright © 1989 by American National Standards Institute
All rights reserved.

No part of this publication may be reproduced in any
form, in an electronic retrieval system or otherwise,
without prior written permission of the publisher.

Printed in the United States of America

BBIM491/50

Foreword (This Foreword is not part of American National Standard X3.159-1989.)

This standard specifies the syntax and semantics of programs written tn the C
programming language. It specifies the C program's interactions with the
execution environment via input and output data. It also specifies restrictions
and limits imposed upon conforming implementations of C language translators.

The standard was developed by the X3J II Technical Committee on the C
Programming Language under project 381-D by American National Standards
Committee on Computers and Information Processing (X3). SPARe document
number 83-079 describes the purpose of this project to "'provide an unambiguous
and machine-independent definition of the language c."
The need for a single clearly defined standard had arisen in the C community due
to a rapidly expanding use of the C programming language and the variety of
differing translator implementations that had been and were being developed.
The existence of similar but incompatible implementations was a serious problem
for program developers who wished to develop code that would compile and
execute as expected in several different environments.

Part of this problem could be traced to the fact that implementors did not have
an adequate definition of the C language upon which to base their
implementations. The de facto C programming language standard, The C
Programming Language by Brian W. Kernighan and Dennis M. Ritchie, is an
excellent book; however, it is not precise or complete enough to specify the C
language fully. In addition, the language has grovvn over years of use to

incorporate new ideas in programming and to address some of the weaknesses of
the original language.

American National Standard Programming Language C addresses the problems of
both the program developer and the translator implementor by specifying the C
language precisely.

The work of X3JlI began in the summer of 1993, based on the several
documents that were made available to the Committee (see 1.5, Base
Documents). The Committee divided the effort into three pieces: the
environment, the language, and the library. A complete specification in each of
these areas is necessary if truly portable programs are to be developed. Each of
these areas is addressed in the standard. The Committee evaluated many
proposals for additions, deletions, and changes to the base documents during its
deliberations. A concerted effort was made to codify existing practice wherever
unambiguous and consistent practice could be identiiied. However, where no
consistent practice could be identified, the Committee worked to establish clear
rules that were consistent with the overall flavor of the language.

This document was approved as an American National Standard by the American
National Standards Institute (ANSI) on December 14. 1989.

Suggestions for improvement of this standard are welcome. They should be sent
to the Computer and Business Equipment Manufacturers Association, 311 First
Street, N.W., Suite 500, Washington, DC 20001-2178.

The standard was processed and approved for submittal to ANSI by the
Accredited Standards Committee on Information Processing Systems, X3.
Committee approval of the standard does not necessarily imply that all members
voted for its approval. At the time that it approved this standard, the X3
Committee had the following members:

Richard Gibson. Chair
Donald C. Loughry. Vice-Chair
(Vacant), Administrative Secretary

Orgallicarioll RCl'rcscl1Ied
Allen-Bradley .

American Library Association
American Nuclear Society
AMP, Inc.

Apple Computer. Inc.

Association of the Institute

for Certification of Computer Professionals
AT&T .

Boeing Company
Compaq Computer Corporation

Control Data Corporation
CooperaTing Users of Burroughs Equipment

Dataproducts Corporation
Digital Equipment Computer Users Society

Digital Equipment Corporation

Eastman Kodak

Electronic Data Systems Corporation
GUIDE International

Hewlett-Packard
Honeywell Bull

IBM Corporation

IEEE Computer Society

Lawrence Berkeley Laboratory

MAP/TOP.
Moore Business Forms

National Communications System

National Institute of Standards and Technology

NCR Corporation

OMNICOM

Prime Computer. Inc.

Recognition Technology Use" Association
SHARE, Inc.

3M Company

Unisys .

U.S. Department of Defense

U.S. General Services Administration

US WEST

VIM

Nume 01' Rel'rcsellrari,·c
Ronald H. Reimer
Paul E. Peters
Geraldine C. Main

Edward R. Kelly
Ronald Lloyd (All)

Karen Higginbottom

Michael J. Lawler (Alt)

Thomas M. Kurihara
Thomas F. Frost
Paul D. Bartoli (All)

Paul W. Mercer
James L. Barnes

Ernest L. Fogle
Thomas Easterday
Donald Miller (All)

Charles D. Card
James R. Ebright

Gary S. Robinson
Delhert L. Shoemaker (All)

Gary Haines
James D. Converse (All)

Jerrold S. Foley
Frank Kirshenbaum
Jeffery Roherts (Alt)

Donald C. Loughry
David M. Taylor

Roben H. Follett
"'Iary Anne Gray (All)
Tom Hannon
Bob Pritchard (All)
David F. Stevens
Rohert L. Fink (Alt)

Michael Kaminski
Delmer H. Oddy

Dennis Bodson
Donald Wilson (All)

Raben E. Rountree
Michael D. Hogan (All)

Thomas W. Kern
A. R. Daniels (All)

Harold C. Folts
Cheryl C. Slobodian (Alt)
Thomas Connerty

Phillip Cieply (Alt)
Ilerherr F. Schantz

Thomas B. Steel Jr.
Gary Ainsworth (Alt)
Paul D. Jaimke

Marvin W. Bass
Steven P. Oksala (All)

William C. Rinehuls
Thomas M. Kurihara (Alt)

Dale O. Christensen

Larry L. Jackson (All)
Gary Dempsey

Susan Capraro (Aln
Chris Tanner
John Ulrich (All)

Organi::ation Represented

Wang Corporation

Winter~:reen Information Services

Xerox Corporation

Name of Represel1latil'e

J. J. Cinecoe
Sarah Wagner (All)

John L. Wheeler

Roy Pierce

Technical Committee X3J lion the C Programming Language had the following
members at the time they forwarded this document to X3 for processing as an
American National Standard:

Jim Brodie, Chair
Thomas Plum, Vice-Chair
P, 1. F'lauger, Secretary
P, 1. F'lauger, International Representative (previously: Steve Hersee)
Andrew Johnson, Vocabulary Representative
David F. Prosser, Draft Redactor (previously: Lawrence Rosier)
Randy Hudson, Rationale Redactor
Ralph Ryan; Ralph Phraner, Environment Subcommittee Chairs
Lawrence Rosier, Language Subcommittee Chair
P. 1. Plauger, Library Subcommittee Chair

Organi:ation Represented
AT&T

Alliant Computer Systems
Amdahl

American Cimftex .

Amoco Production Company

Analog Devices .

Apollo Computer

Apple Computer. Inc.
Arinc

Aspen Scientific
Bell Communications Research

Borland International

Boston Systems Office

COSMIC.

Charles River Data Systems
Chemical Abstracts Service

Chicago Research & Trading Group
Citibank
Cobra SlA
Cognos

Columbia U. Center for Computing

CompuDas
Computer Associates

Computer Innovations

Computrition
Concurrent Computer Corporation

Control Data. .

Corrnor<cnt Communications

Name of Represel1lati\'e
David F Prosser

Steven J. Adamski. X3H2 SQL liaison (All)

Kevin Brosnan
Neal Weidenhofer

Philip C. Steel
Eric McGlohon (Alt)

Tracy Pipkin
William Allen (All)

Stephen Kafka
Kevin Leary (All)
Gordon Sterling (All)

John Peyton
Elizabeth Crockett
Ed Wells

Tom Ketterhagen (All)
Vaughn Vernon

Craig Bordelon
Steve Carter (Alt)

William Puig (AIt)
Bob Jervis

Yom-Tov Meged
Rose Thomson (Alt)

Maurice Fathi
John Wu
Daniel Mickey

Thomas Mimlitch (All)

Alan Losoff
Edward Briggs

Firmo Freire
Jim Patterson

Bruce Tetelman

Terry Moore
Mark Barrenechea

George Eberhardt
Dave Neathery iAlt)

Joseph Bibbo
Steve Davies

Don Fosbury

George VandeBunte (Alt)
Lloyd Irons

Organization Represel1led

Cray Research

Custom Development Environments
DEC Professional

DECUS
Data General

Datapoint .
Data Systems Analysts

Delft Consulting
Digital Equipment Corporation

Digital Systems International, Inc.

EDS
EPI

Edinburgh Portable Compilers

Edison Design Group

Everest Solutions

Farance Inc.

Floradin
General Electri<: Infonnation Services

Gould CSD

HCR Corporation

Harris Computer Systems
Hewlell Packard

Honeywell Information Systems

IBM

Instruction Set

Intel

InterACT

Intermetrics
International Computers Ltd.

J. Brodie & Associates
Kendall Square Research

LSI Logic Europe Ltd.
Language Processors Inc.

Laurel Arts

Lawrence Livermore National Laboratory
Los Alamos National Laboratory

Modcomp
Masscomp

MetaLink .
MetaWare Incorporated

Microsoft.

Microware Systems
Minnesota Educational Computing

Mosaic Technologies

Name oj'Represelifati,·c
Tom 'v1acDonald
Lynne Johnson (Alt)

Dave Becker (All)

Jean Risley
Rex Jaeschkc

Mike Terrazas
'v1ichael Meissner

Mark Harris (All)

Leonard Ohmes
Jamc~. Stanley

Chaim Schaap
Randy Meyers

Art Bjork (All)
Lu Anne Van de Pas (AIr)

Glen W. Zorn

Ben Patel
Richard Relph
Graham Andrews
Colin 'v1cPhail (All)

J. Stephen Adamczyk
Eric Schwarz (Alt)

Dmitry Lenkov

Frank Farance
Peter Hayes (All)

Florin Jordan
Philip Provin

Mike Bennett
Liz Sanville (AIt)
Tina Aleksa (All)

Thomas Kelly
Paul Jackson (AIt)

Gary.Jeter
Sue Meloy

Walter Murray (All)
Larry Rosier (Alt)

Thomas E. Osten
David Kayden (All)
Shawn Elliotl

Larry Breed (..... Il)
Mel Goldberg (All)

Mike Banahan
Clark Nelson
Dan Lau (All)

.John Wolfe
Lillian Toll (All)

Randy Hudson

Keith Winter
Honey M. Schrecker (All)

.Jim Brodie
Jacklin Kotikian

W. Peter Hesse
John Kaminski

David Yost

Mike Bransteller
Bob Weaver

Lidia Eberhart

Patricia Jenkins
Dave Hinman (All)

\lichael Kearns
Tom Pennello

David F. Weil
\1itch Harder (All)

Kim Kempf
Shane McCarron

Bruce Olsen

OrganizatIOn Represented

Motorola
NCR

National Semiconductor

National Bureau of Standards
Naval Research Laboratory
Novell, Inc.

OCLC
Oaklimd University
Omnlware

Oracle Complex Systems
Oregon Software

Perennial .
Peritus International

Plum Hall

Prime Computer

Prismatics

Production Languages
Pugh Killeen
Purdue University

Pyramid Technology

Quantitative Technology Corp.

Que Corporation

Rabbit Software .

Rational Systems
Saber Software Inc.

Saks & Associates

SAS Institute

SORe
SEI Information Technology
SRI International
Sierra Systems

Southern Bell Telephone

Spruce Technology
Stellar Computer

Storage Technology Corp.
Sun Microsystems

Supercomputer Systems. Inc. .

Sydetech System Development Technologies. Inc.
Tandem

Tartan Laboratories
TauMetric

Tektronix.

Texas Instruments
Thinking Machines
Tokheim •

Name oj Representath'e

Michael Pawn
Rick Schubert
Brian JohnsC'n (All)

Joseph Mueller
Derek Godfrey (A Il)

Jim Upperman
James W. Williams

Tom Scribner
Doug Snapp (All)

Lisa Simon
Paul Amaranth
August R. Hlnsen

Michael Redrow
Carl Ellis

Barry Hedquist
Sassan Hazeghi
James Holmlund (All)

Thomas Plum
Christopher Skelly (Alt)

Andrew Johnson

Fran Litterio (All)
Daniel J. Conrad

David Fritz
Kenneth Pugh

Ed Ramsey
Stephen Rob,~rts (Alt)

Zona Walcott
George Basick (All)
Kevin Nolan
Robert Mueller (All)
Chris DeVoney

Jon Tulk

Terry Colligan
Samuel C. K,,,ndall

Stephen Kaufer (Alt)

Daniel Saks
Nancy Saks Ct\ll)
Oliver Bradley
Alan Beale (All)

Larry Jones
Donald Kossman
Kenneth Harrenstien
LaITy Rosent'lal

Phil Hempfner

Purshotam Rajani
Peter Darnell

Lee W. Cooprider (All)
Paul Gilmartin

Courtney Meissen
Alan Fargusson (All)

Steve Muchnick (All)

Chuck Rasbold
Kelly O'Hair (All)

Savu Savulescu
Henry Richardson
John M. Hau,;man (All)

Samuel Harbison

Michael S. Blll
Carl Sutton

Jim Besemer I All)

Reid Tatge
James Frankel

Ed Brower

Robert Mansfield (All)

Organicalion RC{lrnenled
Tymlabs

Unisys

University of Maryland

University of Michigan

University of Southern California CTC

University of Waterloo

US Anny BRL

VideoFinancial

Wang Labs

Watcom Systems

Whitesmiths, Ltd.

Wick Hill
Zehntel

Indin'dual Memhen
Jim Balter

Robert Bradbury

Edward Chin

Marc Cochran

Neil Daniels
Stephen Desoti

Michael Duffy

Phillip Escue

John Gidman

Ralph Phraner

D. Hugh Redelmeier

Arnold Davi Robhins

AI Stevens

Roger Wilks

Michael J. Young

A/(Jf1I(' ojR('prest'n(o.til'c

Monika Khushf

Morgan Jones (All)

Don Bixiei

Stew B:rrtels C",lt)

Glenda Ikrkheimer (AIt)

Annice Jackson (Altl

Fred B lc,n(k~r

Fred Schwar;

R .tordan Kreindler

\like Carmody

Douglas Gwyn, IEEE 1'10113 liaiSon

C Dale Pierce (AlII

John C. Black

.toseph Musacchm

Fred R(J.7akis (Altl

Fred Criggl~r

1', 1. Plaugn

Kim Leeper

\1ark Wittenherg

(~ontents
SECTION

1. Introduction
1.1 Purpose
1.2 Scope
1.3 References
1.4 Organization of the Document
1.5 Base Documents .
1.6 Definitions of Terms
1.7 Compliance
1.8 Future Directions

2. Environment
2. I Conceptual Models

2.1.1 Translation Environment
2.1.2 Execution Environments

2.2 Environmental Considerations
2.2.1 Character Sets .
2.2.2 Character Display Semantics
2.2.3 Signals and Interrupts
2.2.4 Environmental Limits

3. Language
3.1 Lexical Elements

3.1.1 Keywords
3.1.2 Identifiers
3.1.3 Constants
3.1.4 String Literals
3. I.5 Operators
3.1.6 Punctuators.
3.1.7 Header Names
3.1.1\ Preprocessing Numbers
3.1.9 Comments .

3.2 Conversions
3.2.1 Arithmetic Operands
3.2.2 Other Operands

3.3 Expressions
3.3.1 Primary Expressions
3.3.2 Postfix Operators
3.3.3 Unary Operators
3.3.4 Cast Operators .
3.3.5 Multiplicative Operators
3.3.6 Additive Operators
3.3.7 Bitwise Shift Operators
3.3.8 Relational Operators .
3.3.9 Equality Operators
3.3.10 Bitwise AND Operator
3.3.11 Bitwise Exclusive OR Operator
3.3.12 Bitwise Inclusive OR Operator
3.3.13 Logical AND Operator
3.3.14 Logical OR Operator .
3.3.15 Conditional Operator .
3.3.16 Assignment Operators
3.3.17 Comma Operator

3.4 Constant Expressions
3.5 Declarations

3.5.1 Storage-Class Specifiers

PAGE

1
1

1
2
2
2

2
4
5

6
6
6
7

1I
II
13
13
13

19
19
20
20
26
31
32
33
33
34
34
35
35
37
39
40
40
44
46
47
47
49
49
50
51
51
51
52
52
52
54
55
56
58
59

SECTION PAGE

3.5.2 Type Specifiers 59
3.5.3 Type Qualifiers 65
3.5.4 Declarators 66
3.5.5 Type Names 70
3.5.6 Type Definitions 71
3.5.7 Initialization 72

3.6 Statements 76
3.6.1 Labeled Statements 76
3.6.2 Compound Statement. or Block 76
3.6.3 Expression and Null Statements 77
3.6.4 Selection Statements 78
3.6.5 Iteration Statements 79
3.6.6 Jump Statements 80

3.7 External Definitions 82
3.7.1 Function Definitions 82
3.7.2 External Object Definitions 84

3.8 Preprocessing Directives 86
3.8.1 Conditional Inclusion 87
3.8.2 Source File Inclusion 88
3.8.3 Macro Replacement 90
3.8.4 Line Control 94
3.8.5 Error Directive 94

3.8.6 Pragma Directive 94
3.8.7 Null Directive 95
3.8.8 Predefined Macro Names 95

3.9 Future Language Directions 96

3.9.1 External Names 96
3.9.2 Character Escape Sequences 96
3.9.3 Storage-Class Specifiers 96
3.9.4 Function Declarators 96
3.9.5 Function Definitions 96
3.9.6 Array Parameters 96

4. Library 97
4.1 Introduction 97

4.1.1 Definitions of Terms 97
4.1.2 Standard Headers 97
4.1.3 Errors <errno . h> 98
4.1.4 Limits <float .h> and <limits .h> 99
4.1.5 Common Definitions <stddef . h> 99
4.1.6 Usc of Library Functions 100

4.2 Diagnostics <assert. h> 102
4.2.1 Program Diagnostics 102

4.3 Character Handling <ctype . h> 103
4.3.1 Character Testing Functions 103
4.3.2 Character Case Mapping Functions 105

4.4 Localization <locale. h> 107
4.4.1 Locale Control 108
4.4.2 Numeric Formatting Convention Inquiry 109

4.5 Mathematics <math. h> 112
4.5.1 Treatment of Error Conditions 112
4.5.2 Trigonometric Functions 112
4.5.3 Hyperbolic Functions 114

SECTION PAGE

4.504 Exponential and Logarithmic Functions 115
4.5.5 Power Functions 116

4.5.6 Nearest Integer, Absolute Value, and Remainder Functions 117
4.6 NonlocaIJumps<setjmp.h> 119

4.6.1 Save Calling Environment 119
4.6.2 Restore Calling Environment 120

4.7 Signal Handling <signal.h> 121
4.7.1 Specify Signal Handling. 121
4.7.2 Send Signal 122

4.8 Variable Arguments <stdarg. h> 123
4.8.1 Variable Argument List Access Macros 123

4.9 Input/Output <stdio. h> 125
4.9.1 Introduction 125
4.9.2 Streams . 126
4.9.3 Files. 127
4.904 Operations on Files 128
4.9.5 File Access Functions 129
4.9.6 Formatted Input/Output Functions 132
4.9.7 Character Input/Output Functions 142
4.9.8 Direct Input/Output Functions 145
4.9.9 File Positioning Functions 146
4.9.10 Error-Handling Functions 148

4.10 General Utilities <stdlib. h> 1SO
4.10.1 String Conversion Functions ISO
4.10.2 Pseudo-Random Sequence Generation Functions 154
4.10.3 Memory Management Functions 155
4.1004 Communication with the Environment 156
4.10.5 Searching and Sorting Utilities 158
4.10.6 Integer Arithmetic Functions 159
4.10.7 Multibyte Character Functions 160
4.10.8 Multibyte String Functions . 162

4.11 String Handling <string. h> 163
4.11. I String Function Conventions 163
4. 11.2 Copying Functions 163
4.11.3 Concatenation Functions 164
4.1 I A Comparison Functions 165
4.11.5 Search Functions . 166
4.11.6 Miscellaneous Functions 169

4.12 Date and Time <time. h> 171
4.12.1 Components of Time . 171
4.12.2 Time Manipulation Functions 171
4.12.3 Time Conversion Functions 173

4.13 Future Library Directions 177
4.13.1 Errors <errno. h> 177
4.13.2 Character Handling <ctype.h> 177
4.13.3 Localization <locale. h> . 177
4.13 A Mathematics <rnath . h> 177
4.13.5 Signal Handling <signal. h> 177
4.13.6 Input/Output <stdio.h> . 177
4.13.7 General Utilities <stdlib. h> 177
4.13.8 String Handling <string. h> 177

SECTION PAGE

A. Language Syntax Summary 178
A.I Lexical Grammar . 178
A.2 Phrase Structure Grammar 182
A.3 Preprocessing Directives 187

B. Sequence Points 189

e. Library Summary 190
e.1 Errors <errno . h> 190
e.2 Common Definitions <stddef . h> 190
e.3 Diagnostics <assert. h> 190
CA Character Handling <ctype. h> 190
e.5 Localization <locale. h> 190
e.6 Mathematics <math. h> 191
e.7 Nonlocal Jumps <set jmp. h> 191
e.8 Signal Handling <signal. h> 191
e.9 Variable Arguments <stdarg. h> 192
e.10 Input/Output <stdio . h> 192
e.11 General Utilities <stdlib. h> 194
e.12 String Handling <string. h> 195
e.13 Date and Time <time. h> 195

D. Implementation Limits 196

E. Common Warnings 198

F. Portability Issues 199
F.I Unspecified Behavior 199
F.2 Undefined Behavior 200
F.3 Implementation-Defined Behavior 204
FA Locale-Specific Behavior 207
F.5 Common Extensions 208

Index 210

American National Standard
for Information Systems-

Programming Language
C

1. Introduction
1.1 Purpose

This standard specifies the form and establishes the interpretation of programs written In the
C programming language. 1

5 1.2 Scope

This standard specifies:

• the repre~entation of C programs;

• the syntax and constraints of the C language;

• the semantic rules for interpreting C programs;

10 • the repre~entation of input data to be processed by C programs;

• the repre~entation of output data produced by C programs;

• the restrictions and limits imposed by a conforming implementation of C.

This standard does not specify:

• the mechanism by which C programs are transformed for use by a data-processing system:

15 • the mechanism by which C programs are invoked for use by a data-processing system:

• the mechanism by which input data are transformed for use by a C program:

• the mechanism by which output data are transformed after being produced by a C program:

• the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular proce;,sor;

20 all minimal requirements of a data-processing system that ts capable of supporting a
conforming implementation.

1. This standard is designed to promote the portability of C programs among a variety of data-processing systems.
It is intcnded for use by imp!cmentors and knowledgeable programmers. and is not a tutorial. It is
accompanied by a Rationale document that explains many of the decisions of the Technical Committee that
produced it.

1. AMERICAN NATIONAL STA:-JDARD X3.159-19X9 1.2

C Standard

1.3 References

Introduction

I. "The C Reference Manual"' by Dennis M. Ritchie. a version of which was published in
The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie. Prentice­
Hall. Inc .. (197S). Copyright owned by AT&T.

5 ") i9R4 11I.IT/groUP Sf(Jndard by the /usr/group Standards Committee. Santa Clara. California.
USA (November. 19S4).

3. A'\SI X3/TR-l-S2 (19S2). American National Dictional'\' Fir infrmnation Processing
Sntcms. Information Processing Systems Technical Report.

4. ISO 646: 19S3. injim/lOtion Processing - ISO 7-Rit Coded Character Set Fir infrlrmation
10 intcrc!wnge.

5. ANSI/IEEE 754-19R5. American National Standard fill Binary Floating-Point Arithmetic.

6. ISO 4217: 19S7. Codes Fir the Represel1tation 0/ Currencies and Funds.

1.4 Organization of the Document

This document is divided into four major sections:

15 I. this introduction;

2. the characteristics of environments that translate and execute C programs;

3. the language syntax. constraints. and semantics;

4. the library facilities.

Examples are provided to illustrate possible forms of the constructions described. Footnotes
20 are provided to emphasize consequences of the rules described in the section or elsewhere in the

standard. References are used to refer to other related sections. A set of appendixes summarizes

infonnation contained in the standard. The abstract, the foreword. the examples. the footnotes,
the references. and the appendixes are not part of the standard.

I.S Base Documents

25 The language section (Section 3) is derived from "The C Reference Manual" by Dennis M.
Ritchie. a version of which was published as Appendix A of The C Programming Language by
Brian W. Kernighan and Dennis M. Ritchie. Prentice-Hall. Inc.. 1975; copyright owned by
AT&T.

The library section (Section 4) is based on the i9R4 IlIsrlgroup Standard by the /usr/group
30 Standards Committee. Santa Clara. Cal ifornia. USA (November 14. 19S4).

1.6 Definitions of Terms

In this standard.. 'shall" is to be interpreted as a requirement on an implementation or on a
program; converscly, "shall not" is to be interpreted as a prohibition.

The following terms are used in this document:

35 • Alignment - a requirement Ihat objecls of a particular type be located on storage boundaries
with addresses thai are particular multiples of a byte address .

• Argument - an expression in the comma-separated li,t bounded by the parentheses in a

function call expression. or a sequence of preprocessing tokens in the comma-separated list
bounded by the parentheses in a function-like macro invocation. Also known as "actual

40 argument" or "actual parameter.··

• Bit - the unit of data storage in Ihe execution environmenl large enough to hold an object
that may have one of two values. It need not be possible to express the address of each

individual bit of an object.

1.3 A\1ERICA1\ NATIONAL STAS:DARD X3.159-1 %9 1.6

C Standard 3 Introduction

• Byte - the unit of data storage large enough to hold any member of the basic character set
of the execution environment. It shall be possible to express the address of each individual
byte of an object uniquely. A byte is composed of a contiguous sequence of bits, the number
of which is implementation-defined. The least significant bi.! is called the {ow-order bit: the

5 most significant bit is called the high-order bit.

• Character -- a bit representation that fits in a byte. The representation of each member of the
basic character set in both the source and execution environments shall fit in a byte.

• Constraints - syntactic and semantic restrictions by which the exposition of language
elements is to be interpreted.

10 • Diagnostic message - a message belonging to ,m implementation-defined subset of the
implementation's message output.

Forward references - references to later sections of the standard that contain additional
information relevant to this section.

• Implementation - a particular set of software, running in a particular translation environment
15 under particular control options, that perfonns translation of programs for, and supports

execution of functions in, a particular execution environment.

• Implementation-defined behavior - behavior, for a correct program construct and correct
data, that depends on the characteristics of the implementation and that each implementation
shall document.

20 • Implementation limits - restrictions imposed upon programs by the implementation.

• Locale-specific behavior - behavior that depends on local conventions of nationality, culture,
and language that each implementation shall document.

• Multibyte character - a sequence of one or more bytes representing a member of the
extended character set of either the source or the executlOn environment. The extended

25 character set is a superset of the basic character set.

Object - a region of data storage in the execution environment, the contents of which can
represent values. Except for bit-fields, objects are composed of contiguous sequences of one
or more bytes, the number, order. and encoding of which are either explicitly specified or
implementation-defined. When referenced, an object may be interpreted as having a particular

30 type; see 3.2.2.1.

• Parameter- an object declared as part of a function declaration or definition that acquires a
value on entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition. Also
known as "formal argument" or "fonnal parameter."

35 • Undefined behavior - behavior, upon use of a nonportable or erroneous program construct,
of erroneous data, or of indeterminately valued objects, for which the standard imposes no
requirements. Pennissible undefined behavior ranges from ignoring the situation completely
with unpredictable results, to behaving during translation or program execution II1 a
documented manner characteristic of the environment (with or without the issuance of a

40 diagnostic message), to terminating a translation or execution (with the issuance of a
diagnostic message).

If a "shall" or "shall not" requirement that appears olltside of a constraint is violated.
the behavior is undefined. Undefined behavior is otherwise indicated in this standard by the
words "undefined behavior" or by the omission of any explicit definition of behavior. There

45 is no difference in emphasis among these three; they all describe "behavior that is
undeti ned. ,.

• Unspecified behavior - behavior, for a correct program construct and correct data. for which
the standard explicitly imposes no requirements.

1.6 AMERICA:-.i NATIONAL STANDARD X3.1S'J-l'JX'J 1.6

C Standard 4 Introduction

Other tenns are defined at their first appearance, indicated by italic type. Terms explicitly

defined in this standard are not to be presumed to refer implicitly to similar temlS defined

elsewhere. Terms not defined in this standard are to be interpreted according to the AmcriUlIi
Natiollul Dictiollurr Fir Ilijimrwtioll Processing Srstems. Information Processing Systems

5 Technical Report ANSI X3;0'R-I-R2 (1982).

Examples

An example of unspecified behavior IS the order lt1 which the arguments to a function are

evaluated.

An example of undefined behavior is the behavior on integer overflow.

lOAn example of implementation-defined behavior is the propagation of the high-order bit when

a signed integer is shifted right.

An example of locale-specific behavior is whether the islower function returns true for

characters other than the 26 lowercase English letters.

Forward references: bitwise shift operators (3.3.7). expressions (3.3). function calls n.3.2.2),
15 the islower function (4.3.1.6). localization (4.4).

1.7 Compliance

A strictfr conjimning program shall use only those features of the language and library

specified in this standard. It shall not produce output dependent on any unspecified. undefined. or

implementation-defined behavior. and shall not exceed any minimum implementation limit.

20 The two fonTIS of conj"orming implementation are hosted and freestanding. A cOIl!iirming
hosted implemelltatioll shall accept any strictly conforming program. A conjiml1ing /i'eestandillg
implemelltatioll shall accept any strictly conforming program in which the use of the features

specified in the library section (Section 4) is confined to the contents of the standard headers

<float. h>. <limits. h>. <stdarg. h>. and <stddef. h>. A conforming implementation
25 may have extensions (including additional library functions). provided they do not alter the

behavior of any strictly conforming program."

A conjiml1ing program is one that is acceptable to a conforming implementation.1

An implementation shall be accompanied by a document that defines all implementation­

defined characteristics and all extensions.

30 Forward references: limits <float. h> and <limits. h> (4.104). variable arguments

<stdarg . h> (4.R). common definitions <stddef . h> (4.1.5).

) This implies that a conforming impleillentation reserves no identifiers other than those explicitly reserved in this
standard .

.1. Strictly conforming programs are intended to be maximally portable among conforming Implementations.
Conforming programs Illay depend upon nonportable features of a conforming implementation.

1.6 AMERICA[\; :"IATIONAL STANDARD X3.15'J-I'JX9 1.7

C Standard

1.8 Futun~ Directions

5 Introducrion

With the introduction of new devices and extended character sets, new features may be added
to the standard. Subsections in the language and library,cctions warn implementors and
programmers of usages which. though valid in themselves. may conftict with future additions.

5 Certain features are ohsolescem. which means that they may be considered for withdrawal in
future revisions of the standard. They are retained in the standard because of their widespread
use, but their use in new implementations (for implementation features) or new programs (~'or

language or library features) is discouraged.

Forward references: future language directions (3.9.9), future library directions (4.13).

1.8 AMERICAi\ NATlOI\AL STA!'<DARD X.i.159-19gl) 1.8

C Standard Environment

2. Environment
An implementation translates C source tiles and executes C programs in two data-processing­

system environments, which will be called the trailslatioil cill'iro/llJ/cnt and the C.reeillioil

Cill'irO!llllenl in this standard. Their characteristics define and constrain the results of executing

.'i conforming C programs constructed according to the syntactic and semantic rules for conforming

implementations.

Forward references: In the environment section (Section 2). only a few of many possible

forward references have been noted.

2.1 Conceptual Models

10 2.1.1 Translation Environment

2.1.1.1 Program Structure

A C program need not all be translated at the same timc. The text of the program is kept in

units called SOl/rcc files in this standard. A source file together with all the headers and source

tiles included via the preprocessing directive #include, less any source lines skipped by any of

15 the conditional inclusion preprocessing directives. is called a lranslalion IInit. Previously

translated translation units may be preserved individually or in libraries. The separatc translation

units of a program communicate hy (for example) calls to functions whose identifiers have

external linkage, manipulation of objects whose identifiers havc cxtcrnal linkage. or manipulation

of data files. Translation units may he separately translated and then later linked to producc an

20 executable program.

Forward references: conditional inclusion (3X 1), linkages of identifiers i 3. 1.2.21. source file

inclusion (3.8.2).

2.1.1.2 Translation Phases

The source tile is decomposed into prcprocessing tokens' and seljuences of white-space

characters (including comments). A source tile shall not end in a partial preprocessing

token or comment. Each comment is replaced by one space character. New-line characters

are retained. Whether each nonempty seljuence of white-space characters other than new­

line is retained or replaced by one space character is implementation-defined.

Preprocessing directives are executed and macro invocations are expanded. A #include
preprocessing directive causes the named header or sourcc file to he processed from phase

I through phase 4. recursively.

2.

30

3.

35

4.

The precedence among the syntax rules of translation is spccified hy the following phases.~

25 I. Physical source file characters are mapped to the source character set (introducing new-line

characters for end-of-line indicators) if necessary. Trigraph sequences arc replaced by

corresponding single-character internal representations.

Each instance of a new-line character and an immediately preceding backslash character is

deleted. splicing physical source lines to fonn logical source lines. A source file that is not

empty shall end in a new-line character, which shall not be immediately prcccded hy a

hackslash character.

4. Implementations must hehave as if these separate phases occur. even though many are typi~ally fllided tllgether
in practice.

'i. As descrihed in "'. I. the process of dividing a source tile's charactel"S into preprocessing tOKens is context­
dependent. For example. see the handling of < within a #include preprocessing direct\e.

A\lERICA"l NATIO"AL STANDA.RD x.'. I 'il)_lllSl) 2.1. 1.2

Environment 7 Conceptual Models

S. Each source character set member and escape sequence in character constants and string
literals is converted to a member of the execution character set.

6. Adjacent character string literal tokens are concatenated and adjacent wide string literal
tokens are concatenated.

5 7. White-space characters separating tokens are no longer significant. Each preprocessing
token is converted into a token. The resulting tokens are syntactically and semantically
analyzed and translated.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation.

10 All such translator output is collected into a program image which contains information
needed for execution in its execution environment.

Forward references: lexical elements (3.1), preprocessing directives (3.8), trigraph sequences
(2.2.1.1).

2.1.1.3 Diagnostics

15 A conforming implementation shall produce at least one diagnostic message (identified in an
implementation-defined manner) for every translation unit that contains a violation of any syntax
rule or constraint. Diagnostic messages need not be produced in other circumstances. 6

2.1.2 Execllltion Environments

Two execution environments are defined: ji-eestanding and hosted. In both cases, program
20 startup occurs when a designated C function is called by the execution environment. All objects

in static storage shall be initiali::ed (set to their initial values) before program startup. The
manner and timing of such initialization are otherwise unspecified. Program termination returns
control to the execution environment.

Forward references: initialization (3.5.7).

25 2.1.2.1 Freestanding Environment

In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program startup are
implementation-defined. There are otherwise no reserved external identifiers. Any library
facilities available to a freestanding program are implementation-defined.

30 The effect of program termination in a freestanding environment is implementatioH-defined.

2.1.2.2 Hosted Environment

A hosted environment need not be provided, but shall conform to the following specifications
if present.

2.1.2.2.1 ProJ~ram Startup

35 The function called at program startup is namt._ main. The implementation declares no
prototype for this function. It can be defined with no parameters:

int main(void) { /* ... */ }

or with two parameters (referred to here as argc and argv, though any names may be used, as
they are local to the function in which they are declared):

6. The intent is that en implementation should identify the nature of, and where possible localize, each violation.
Of course, an implementation is free to produce any number of diagnostics as long as a valid program is still
correctly translated. An implementation may also successfully translate an invalid program.

2.1.1.2 AMERICAN NATIONAL STANDARD X3.159-1989 2.1.2.2.1

Environment

int main(int arge, ehar *argv[]) { /* ... */ }

Concq)tual Mockls

If they are defined. the parameters to the main function shall ohey the following constraints:

• The value of arge shall be nonnegative.

• argv large] shall be a null pointer.

'i [f the value of arge is greater than rero. the array members argv [0] throui!h
argv [arge-l] inclusive shall contain pointers to strings. which are given implementation­

defined values by the host environment prior to program startup. The intent is to sLipply to
the program information determined prior to program startup from elsewhere in the hosted

environment. If the host environment is not capahle of supplying strings with letters in both
10 uppercase and lowercase. the implementation shall ensure that the strings are received in

lowercase.

• If the value of arge is greater than zero. the string pointed to by argv [0] represents the
program lIamc: argv [0] [0] shall be the null character if the program naITle is not available
from the host environment. [1' the value of arge is greater than one. the strings pointed to

l'i by argv [1] through argv [arge-l] represent the program !J(//WIICtcrl.

• The parameters arge and argv and the ·;trings pointed to by the argv array shall he
modifiable by the program. and retam their last-stored values between program startup and

program termination.

2.1.2.2.2 Program Execution

20 [n a hosted environment, a program mal LN' all the functions. macros. type definitions. and
objects described in the library section (Section 4).

2.1.2.2.3 Program Termination

A return from the initial call to the main function is equivalent to calling the exit function

with the value returned by the main function as its 'Irgument. [f the main function executes a
25 return that specifies no value. the tennination status returned to the host environment is

undefined.

Forward references: definition of terms (4.1.11. the exit function (4.10.4.3).

2.1.2.3 Program Execution

The semantic descriptions in this standard describe the behavior of an abstract machine in

30 which issues of optimization are irrelevant.

Accessing a volatile object. modifying an object. modifying a tile. or calling a function that

does any of those operations are all sidc CftC'ell .. which are changes in the state of the execution

environment. Evaluation of an expression may produce side effects. At certain specified points

in the execution sequence called SCi/IICIiCC !will!s. all side effects of previous evaluations shall be

35 complete and no side effects of subsequent evaluations shall have taken place.

[n the abstract machine. all expressions are evaluated as specified by the semantics. An actual

implementation need not evaluate part of an expression if it can deduce that its value is not used

and that no needed side effects arc produced (including any causcd hy calling CI function or

accessing a volatile object).

40 When the processing of the abstract machine is interrupted hy receipt of a signal. only the

values of objects as of the previous sequence point may he relied 011. Objech that Illay he

modified between the previous sequence point and the next sequence point need not have
received their correct values yet.

An instance of each object with autolllatic storage duration is associalecl with each entry into
45 its block. Such an object exists and retains its last-stored value dunng the exel'lliion of the block

and while the block is suspended (by a call of a t'unction or receipt of a signal).

2.1.2.2.1 A\lERIC;\\; NATIO""'L ST,'iDARD x, l'ilJ-llJ,l) .., 1.2.~

Environment 9 Conceptual Mojels

The least requirements on a conforming implementat ion are:

• At sequence points, volatile objects are stable in the sense that previous evaluations are
complete and subsequent evaluations have not yet occurred.

• At program termination. all data wrillen into files shall be identical to the result that execution
5 of the program according to the abstract semantics would have produced.

• The input and output dynamics of interactive devices shall take place as specified in 4.9.3.
The intent of these requirements is that unbuffered or line·buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

10 What constitutes an interactive device is implementation-dell ned.

More stnngent correspondences between abstract and actual semantics may be defined by
each implementation.

Examples

An implementation might define a one-to-one correspondence between abstract and actual
15 semantics: at every sequence point. the values of the actual objects would agree with those

specified by the abstract semantics. The keyword volatile would then be redundant.

Alternatively. an implementation might perform various optimizations within each translation
unit, such that the actual semantics would agree with the abstract semantics only when mak ing
function call~~ across translation unit boundaries. In such an implementation. at the time of each

20 function entry and function return where the calling function and the called function are in
different translation units, the values of all externally linked objects and of all objects accessible
via pointers therein would agree with the abstract semantics. Furthermore. at the time of each
such function entry the values of the parameters of the called function and of all objects
accessible via pointers therein would agree with the abstract semantics. In this type of

25 implementation. objects referred to by interrupt service routines activated by the signal
function would require explicit specification of volatile storage, as well as other
implementation-defined restrictions.

In executing the fragment

char el, c2;

30 /* ... */
c1 := c1 + c2;

the "integral promotions" require that the abstract machine promote the value of each variable to
int size and then add the two ints and truncate the sum. Provided the addition of two chars
can be done without creating an overflow exception, the actual execution need only produce the

35 same result, possibly omitting the promotions.

Similarly, in the fragment

float f1 I f2;
double d;

/* ... */
40 f1 :: f2 * d;

the multiplication may be executed using single-precision arithmetic if the implementation can
ascertain that the result would be the same as if it were executed using douhle-precision
arithmetic (for example. if d were replaced by the constant 2.0. which has type double).
Alternatively, an operation involving only ints or floats may be executed uSlllg double-

45 precision operations if neither range nor precision is lost therehy.

To illustrate the grouping behavior of expressions. in the following fragment

2.1.2.3 AMERICA" NATIO\;AL STA"iOARD X.'.15'!-1 ,)~l,l 2.1.:2.:\

Environment

int a, b;
/* ... * /
a = a + 32760 + b + 5;

10 Conceptu,l! Models

the expression statement behaves exactly the same as

5 a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these 0rerators. Thus. the result ul' the sum" (a +
32760)" is next added to b. and that result is then added to 5 which results in the value
assigned to a. On a machine in which overflows produce an exception and ill which the range 01
values representable by an int is [-3276S.+32767j. the implementation cannot rewrite this

10 expression as

a = ((a + b) + 32765);

since if the values for a and b were. respectively. - 32754 and - 15. the sum a + b would

produce an exception while the original expression would not: nor can the expn:ssiuII he re\\ril\el1

either as

15
or

a ((a + 32765) + b);

a = (a + (b + 32765»;

since the values for a and b might have been. respectively. 4 and -S or - 17 aIll! 12. However

on a machine in which overflows do not produce an exception and in which the results of
20 overflows are reversible. the above expression statemelll can bc rc'Writtcn by the implementatio!l

in any of the above ways because the same result will occur.

The grouping of an expression does not completely determine its evaluation. In the following

fragment

25

30

#include <stdio.h>
int sum;
char *p;
/* ... */
sum = sum * 10 - '0' + (*p++ = getchar(»;

the expression statement is grouped as if it were written as

sum = (((sum * 10) - , 0') + ((* (p++» = (getchar ()) ;

but the actual increment of p can occur at any time between the previous sequence point and thl'

next sequence point (the;). and the call to getchar can occur at any point prior to the need of

its returned value.

Forward references: compound statement. or block (3.6.2). expressions n.31. fi les (4.lJ.3!.
35 sequence points (3.3. 3.6). the signal function (4.7). type qualifiers (3.5 ..~).

2.1.2.3 A'VIERICA'\ '\ATIO'\AL STA\[)\I{D X.l.1 5LJ-ll)SLJ 2.1.2.3

Environment

2.2 Environmental Considerations

2.2.1 Character Sets

II Environmental Considerations

Two sets of characters and their associated collating sequences shall be defined: the set in
which source liles are written, and the set interpreted in the execution environment. The values

5 of the members of the execution character set are implementation-defined: any additional
members beyond those required by this section are locale-specific.

In a character constant or string literaL members of the execution character set shall be
represented by conesponding members of the source character set or by escape sequences
consisting of the backslash \ followed by one or more characters. A byte with all bits set to 0,

10 called the l1ul/ character, shall exist in the basic execution character set; it is used to terminate a
character string literal.

Both the basic source and basic execution character sets shall have at least the following
members: the 26 uppercase letters of the English alphabet

A B C D E F G H I J K L M

15 N 0 p Q R S T U V W X Y Z

the 26 lowercase letters of the English alphabet

a b c d e f g h i j k 1 m
n 0 p q r s t u v w x y z

the 10 decimal digits

20 0 1 2 3 4 5 6 7 8 9

the following 29 graphic characters

% & (* + /
< = > ? \ 1\

the space character, and control characters representing horizontal tab. vertical tab, and fOlm feed,
25 In both the source and execution basic character sets, the value of each character after 0 in th~

above list of decimal digits shall be one greater than the value of the previous. In source files.
there shall be some way of indicating the end of each line of text; this standard treats such an
end-of-Iine indicator as if it were a single new-line character. In (he execution character set. there
shall be control characters representing alert. backspace, carriage return, and new line. If any

30 other characters are encountered in a source file (except in a character constant, a string literaL a
header name, a comment, or a preprocessing token that is never converted to a IOken), the
behavior is undefined.

Forward refer,ences: character constants (3.1.3.4), preprocessing directives (3.8), string literal,

(3.1.4), comments (3.1.9).

35 2.2.1.1 Trigraph Sequences

All occurrences in a source file of the following sequences of three characters (called trigraph
sequences 7) are replaced with the corresponding single character.

7, The trigraph sequences enable the input uf characters that are not defined in the Invariant Code Set as described
in ISO 646:1983, which is a subset of the seven-bit ASCII code set.

2.2 AMERICAN NATIONAL STANDARD X3,t59-19S9 2,2.1.1

Environment

5

??= #
??([

??/ \
??) 1
??' "
??<
??'
??>
??-

12 Environmental Considerations

I() No other trigraph sequences exist. Each? that does not begin one of the trigraphs listed above
is not changed.

Example

The following source line

printf("Eh???/n") ;

15 becomes (after replacement of the trigraph sequence?? /)

printf ("Eh?\n") ;

2.2.1.2 Multibyte Characters

The source character set may contain multibyte characters. used to represent members of the
extended character set. The execution character set may also contain multibyte characters. which

20 need not have the same encoding as for the source character set. For both character sets. the

following shall hold:

• The single-byte characters defined in 2.2.1 shall be present.

• The presence. meaning. and representation of any additional members is locale-specific.

• A multibyte character may have a state-depcndcnt encoding. wherein each sequence of
25 multibyte characters begins in an initial shifi starc and enters other implementation-defined

shifi states when specific multi byte characters are encountered in the sequence. While in the

initial shift state. all single-byte characters retain their usual interpretation and do not alter the
shift state. The interpretation for subsequent bytes in the sequence is a function of the current

shift state.

30 • A byte with all bits zero shall be interpreted as a null character independent of shift state.

• A byte with all bits zero shall not occur in the second or subsequent bytes of a multibyte

character.

For the source character set. the following shall hold:

• A comment. string literal. character constant. or header name shall begin and cnd in the initial

35 shift state.

• A comment. string literal. character constant. or header name shall consist of a sequence of
valid multi byte characters.

2.2.1.1 AMERICAN :\ATIONAL STANDARD X~i~l)-tl)s9 2.2.1.2

Environment

2.2.2 Character Display Semantics

Environmental Considerations

The actil'e position is that location on a display device where the next character output by th'2
fputc function would appear. The intent of writing a printable character (as defined by th,?
isprint function) to a display device is to display a graphic representation of that charactcr at

5 the active position and then advance the active position to the next position on the current line.
The direction of writing is l(lCale-specific, If the active position is at thc final position of a line
(if there is one), the behavior is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution character set

are intended to produce actions on display devices as follows:

10 \a (alert) Produces an audible or visible alert. The active position shall not be changed,

\b (hackspace) Moves the active position to the previous position on the current line. If the
active position is at the initial position of a line, the behavior is unspecified.

\f <form fced) Moves the active position to the initial position at the start of the next logical
page.

15 \n (new line) Moves the active position to the initial position of the next line.

\r (carriage refilm) Moves the active position to the initial position of the current line.

\ t (!Iori:ontal fah) Moves the active position to the next horizontal tabulation position on the

current line. If the active position is at or past the last defined horizontal tabulation position.
the behavior is unspecified.

20 \ v (l'ertical tah) Moves the activc position to the iEitial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position. the
behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which
can be stored in a single char object. The external representations in a text file need not be

25 identical to the internal representations. and are outside the scope of this standard.

Forward references: the fputc function (4.9.7.3). the isprint function (4.3.1.7).

2.2.3 Signals and Interrupts

Functions shall bc implcmcnted such that they may be interrupted at any time by a signaL or
may be called by a signal handler. or both. with no alteration to earlier. but still active.

30 invocations' control flow (after the interruption), function return values. or objects with automatic

storage duration. All such objects shall be maintained outside the fill/ction i/!lage (the
instructions that comprise the executable representation of a function) on a per-invocation basis.

The functions in the standard library are not guaranteed to be reentrant and may modify
objects with static storage duration.

35 2.2.4 Environmental Limits

Both the translation and execution environments constrain the implementation of language
translators and libraries. The following summarizes the environmental limits on a conforming
implementation.

2.2.4.1 Translation Limits

40 The implementation shall be able to translate and execute at least one program that contains
at least one instance of everyone of the following limits: s

R. Implementations should avoid imposing lixed translation limits whenever po>sibk.

2.2.2 AMERICA1\' :\AT10NAL STA'\iDARD X.'.1.'il)-19~9 2,2.4.1

EnvIronment 14 Environmental Considerations

• 15 nesting levels of compound statements. Iteration control structures. and selection control
structures

• X nesting levels of conditional inclusion

• 12 pointer, array. and function declarators (in any combinations) modifying an arithmetic. a
5 structure. a union. or an incomplete type in a declaration

• 31 nesting levels of parenthesized declarators within a full declarator

• 32 nesting levels of parenthesized expressions within a full expression

• 31 significant initial characters in an internal identifier or a macro name

• 6 significant initial characters in an external identifier

10 • 5 II external identifiers in one translation unit

• 127 identifiers with block scope declared in one block

• 1024 macro identifiers simultaneously defined in one translation unit

• 31 parameters in one function definition

• 31 arguments in one function call

15 • 31 parameters in one macro definition

• 31 arguments in one macro invocation

• 509 characters in a logical source line

• 509 characters in a character string literal or wide string literal (after concatenation)

• 32767 bytes in an object (in a hosted environment only)

20 • f\ nesting levels for #included files

• 257 case labels for a switch statement (excluding those for any nested switch
statements)

• 127 members in a single structure or union

• 127 enumeration constants in a single enumeration

25 • IS levels of nested structure or union definitions in a single struct-declaration-list

2.2.4.2 Numerical Limits

A conforming implementation shall document all the limits specified 111 this section. which
shall be specified in the headers <limits. h> and <float. h>.

2.2.4.2.1 Sizes of Integral Types <limits. h>

30 The values given below shall be replaced by constant expressions suitable for use in #if
preprocessing directives. Moreover. except for CHAR_BIT and MB_LEN_MAX. the following
shall be replaced by expressions that have the same type as would an expression that is an object
of the corresponding type converted according to the integral promotions. Their implementation­
defined values shall be equal or greater in magnitude (absolute value) to those shown. with the

35 same sign.

• number of bits for smallest object that is not a bit-field (byte)
CHAR BIT 8

• minimum value for an object of type signed char
SCHAR MIN -127

40 • maximum value for an object of type signed char
SCHAR MAX +127

2.2.4.1 A",IERICAi' NATI01\AL STAI\DARD X.l.1 59-1 YIN 2.2.4.2.1

Env ironment 15 Environmental Considerations

• maximulTI valuc for an objcct of type unsigned char
UCHAR !1AX 255

• minimum valuc for an object of type char
CHAR MIN .ICC hc/o\1'

5 • maxilTlun~ value for an object of type char
CHAR MJ!~ sec he/Oil'

• maximum number of bytes in a multi byte character, for any supported locale
ME LEN MAX 1

• minimum value for an object of type short int
10 SHRT MIN -32767

• maximum valuc for an object of type short int
SHRT ~.~ +32767

• maximum value for an objcct of type unsigned short int
USHRT ~lAX 65535

15 • minimum valuc for an object of type int
INT MIN -32767

• maximum value for an object of type int
INT ~ +32767

• maximum value for an object of typc unsigned int
20 UINT MAX 65535

• minimum value for an object of type long int
LONG MIN -2147483647

• maximum value for an object of type long int
LONG MAX +2147483647

25 • maximum value for an objcct of type unsigned long int:
ULONG MAX 4294967295

If the val ue of an object of type char is treated as a signed integer when used in an
expression, th,o valuc of CHAR_MIN shall be the same as that of SCHAR_MIN and the value of
CHAR MAX shall be the same as that of SCHAR MAX. Otherwise, the value of CHAR MIN shall

30 be 0 ,~d thc valuc of CHAR ~ shall be the sa~le as that of UCHAR ~.t) -

2.2.4.2.2 Characteristics of Floating Types <float. h>

The characteristics of floating types are defined in terms of a model that describes a
representation of tloating-point numhcrs and values that provide information about an
implemcntatioil's floating-point arithmetic. III The following parameters are used to define the

35 model for each floating-point type:

9. See 3.1.2.5,
J() The floating-point Ilwdel is intended to clarify the de\criptioll of cach floating-point characteristic and does not

rcquire the !loating·point arithmetic of the implementatioll to bc identical.

2.2.4,2.1 NvlERICA\i '\ATlO\iAI. ST-\"WARD XU5Y·llJX9 2.2.4.2.2

Envi rLJI1ment 16 Environmental Considerations

II
('

sign (±I i
base or radix of exponent representation (an integer> I)

exponent (an integer between a minimum (' 111111 amI a maximum (' 11"")

precision (the number of base-II digits in the significandl
nonnegative integers less than II (the ,ignificand digits)

A normalized jjoating-point number .\ (II> Otf .\ etc 0) is defined by the following model:

I'

.r = s x h" x L /; x h- I
, ('1111'1 <; C <; ('11""

i=]

Of the values in the <float .h> header. FLT_RADIX shall be a constant expression ,uitahle

for u,e in #if prepnKes'ing directives: all other values need not be constant expressions. All

10 except FLT_RADIX and FLT_ROUNDS havc separate names for all three floating-point type,.

The noating-point model representation is provided for all values except FLT_ROUNDS.

The rounding mode for noating-point addition is characterized by the value of FLT ROUNDS:

IS

-1

o
1

2

3

incletel1l1 inablc

toward zero

to nearest

toward positive infinity

toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

The ,'alue, given in the following list shall be replaced by implementation-defined expression,
20 that shall be elJual or greater in magnitude (absolute value) to those shown, with the same sign:

• radix of exponent representation, II
FLT RADIX 2

• number of base-FLT_RADIX digits in the floating-point signitic<lnd. p

FLT MANT DIG
- -

25 DBL MANT DIG- -
LDBL MANT DIG

• number of decimal digits. if, such that any noating-point number with (/ decimal digit, can be

rounded into a noating-point number with Ii radix h digits and back again without change to

the q decimal digits. l' I J I if h is a power of 10
[/) - I) x 10£111 11 + 1 '

~ -' lO otherWise

30 FLT DIG 6

DBL DIG 10
LDBL DIG 10

• mlilimum negative integer ,uch that FLT RADIX rai,ecl to that power mlllus IS a

normalized noating-point number. ('111111

35 FLT MIN EXP

DBL MIN EXP

LDBL MIN EXP

40

• minimum negative integer "ueh

noating-point number". I
! loglllil

FLT MIN 10 EXP- --
DBL MIN 10 EXP

- --
LDBL MIN 10 EXP

that 10 raised to that power is in the range of normalized

I l
-37

·-37
·-37

2.2.4.2.2 \xlLRIC\J\ :\ATIO:\.\L ST.\:\D,\RD x.' I ~<J-I <JX<J 2.2.4.2.2

Environment 17 Environmental COllsideratiolls

• maximum integer such that FLT_RADIX raised to that power minus I is a representable finite
floating-point number. (' Ill'"

FLT MAX EXP
DBL MAX EXP

5 LDBL MAX EXP

10

• maximum integer such

floating-point numbers,

FLT MAX 10 EXP
- ---

DBL MAX 10 EXP
- ---

LDBL MAX 10 EXP

that 10 raised to that power

IIog [(I « 1 - h -/') x h" '"'')J
+37
+37
+37

is in the range of representable finite

The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or greater than those shown:

• maximum representable finite floating-point number. (I - h-/') X h""'''

15
FLT MAX
DBL MAX
LDBL MAX

1E+37
1E+37
1E+37

The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or less than those shown:

• the difference between 1.0 and the least value greater than I,n that is representable in the
20 given floating point type. h 1-1'

FLT EPSILON
DBL EPSILON
LDBL EPSILON

1E-5
1E-9
1E-9

• minimum normalized positive tioating-point number. h' "",-[

25 FLT MIN
DBL MIN
LDBL MIN

Examples

1E-37
1E-37
1E-37

The following describes an artificial floating-point representation that meets the m111l111U11'1
30 requirements of the standard, and the appropriate values in a <float. h> header for type

float:

35

40

6

.\ == S X 16' x L ./k x 16-4

4 ~ 1

FLT RADIX
FLT MANT DIG- -
FLT EPSILON
FLT DIG
FLT MIN EXP
FLT MIN
FLT MIN 10 EXP- --
FLT MAX EXP
FLT MAX
FLT MAX 10 EXP

-31 S; (' S; +32

16
6

9.53674316E-07F
6

-31
2,93873588E-39F

-38
+32

3,40282347E+38F
+38

2,2.4.2.2 AMERICA'" 'iATIO:--JAL STA'WARD X'.15Y-19X'! 2.2.4,2.2

Environment 18 Environmental Considerations

The following describes floating-point representations that also meet the re4uirements for

single-precision and double-precision normalized numbers in ANSI/IEEE 754-1985, II and the

appropriate values in a <float. h> header for types float and double:

5

24

' .. - 2" "'!' T''\1 - S X x ~ . , x ~ ,
, ~I

'13
. - 'Ie "'!' 2-''\d - S X ~ X ~ . , X ,

,~I

-125 S c S +128

-1021 S c S + I024

FLT RADIX 2
FLT MANT DIG 24- -
FLT EPSILON 1.19209290E-07F
FLT DIG 6

10 FLT MIN EXP -125
FLT MIN 1.17549435E-38F
FLT MIN 10 EXP -37- --
FLT MAX EXP +128
FLT MAX 3.40282347E+38F

15 FLT MAX 10 EXP +38
DBL MANT DIG 53
DBL EPSILON 2.2204460492503131E-16
DBL DIG 15
DBL MIN EXP -1021

20 DBL MIN 2.2250738585072014E-308
DBL MIN 10 EXP -307- --
DBL MAX EXP +1024
DBL MAX 1.7976931348623157E+308
DBL MAX 10 EXP +308

25 Forward references: conditional inclusion (.3.8.1).

II. The floating-point model in that standard sums powers of h from zero. so the values of the exponent limits are
one less than shown here.

2.2.4.2.2 AMERICAN I\ATIONAL STANDARD X3.1 'i9·[9X') 2.2.4.2.2

C Standard

3. Language

19 Language

In the syntax notation used in the language section I Section 3), syntactic categories

(nonterminals) are indicated by ilalic type, and literal words and character set members
(terminals) by bold type. A colon (.) following a nontcrminal introduces its definition.

5 Alternative definitions are listed on separate lines, except when prefaced by the words "one of."
An optional symbol is indicated by the subscript "opt," so that

{e.xpression }
opt

indicates an optional expression enclosed in braces.

3.1 Lexical Elements

10 Syntax

token'

15

20

25

keyword

idenlifier

conslanl

sIring-Ii Ie ra I

operator

Pllllcillillor

prepl ocessil/g-Ioken.­

header-name

idel/lifier

/1p -111111 I heI'

('ha ra('ler-('(i/lslaIII

siring -IileI'll I

operalor

pul/elualor

each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a

keyword, an identifier. a constant, a string literal, an operator, or a punctuator.

30 Semantics

A loken is the minimal lexical element of the language in translation phases 7 and 8. The

categories of tokens are: kenl'ords. idelllifiers, COl/slanls, siring /ilewls, operalors. and
puneluators. A preprocessing loken is the minimal lexical element of the language in translation

phases 3 through 6. The categories of preprocessing token are: header l/ames. idenlifien,

35 preprocessing numbers, chaWeler COl/slaWS, string literals, operators, punelualors, and single

non-white-space characters that do not lexically match the other preprocessing token categories.
If a I or a " character matches the last category, the behavior is undefined. Preprocessing tokens

can be separated by Ij·hile SIWCC: this consists of comments (described later), or]j'hile-space
characlers (space, horizontal tab. new-line, vertical tab, and fornl-feed), or both. As described in

40 3.8, in certain circumstances during translation phase 4, white space (or the absence thereof)
serves as more than preprocessing token separation. Whit,: space may appear within a

preprocessing token only as part of a header name or between the quotation characters in a
character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character. the ne)(t

45 preprocessing token is the longest sequence of characters that could constitute a preprocessll1g
token.

3. A\lEkICAN NATIONAL STANDARD X.\.15l)-1 \'Sl) 3.1

Language

Examples

20

The program fragment lEx is parsed as a preprocessing number token (one that i, nOl a valid
floating or integer constant token). even though a parse as the pair uf preprocessing token, 1 and
Ex might produce a valid expression (for example. if Ex welT a macro delined as +1,.

:) Similarly. the program fragment 1E1 is parsed as a preprocessing number (one that is ,(valid
tloating constant token). whether or not E is a macro name.

The program fragment x+++++y i~, parsed as x ++ ++ + y. which violates a constraint on
increment operators. even though the parse x ++ + ++ y might yield a correct e.xpression.

Forward references: character constants U.l.3AL comments U.I.<J). exprcssions eLI). lloatin!2
10 constants (3.1.3.1). header names (.I.I.7L macro replacement U.1'\ ..I), postfix increment and

decrement operators (3.3.2.4). prelix increment and decrement operator, L~.3 ..i.I). preprocessing
directives (3,1'\). preprocessing numbers (3.1.1'\). string literals (.1.1 A).

3.1.1 Keywords

Syntax

15

20

ke\,\j'(Jri/: one of
auto
break
case
char
const
continue
default
do

Semantics

double
else
enum
extern
float
for
goto
if

int
long
regist;er
return
short
signed
sizeof
static:

struct
switch
typedef
union
unsigned
void
volat;ile
while

25 The above tokens (emirely in lowercase) are resencd (in translation phases 7 ,mel 1'\) for LhC

as keywords. and shall not be used otherwise.

3.1.2 Identifiers

Syntax

30

35

idelllijicr:
/lo/ldigit
idc/ltijier /lo/ldigit
idc/ltifier digit

lIo/ldigit: one of
a b c d e f g h i j k 1 m

n 0 p q r s t: u v w x y z

A B C D E F G H I J K L M

N 0 p Q R S T a v w x y z

dig it. one of
012 3 4 5 6 7 8 9

40 Description

An identifier is a sequence of nondigit characters (including the underscore and the
lowercase and uppercase letters) and digits. The first character shall be a nondigit character.

Constraints

In translation phases 7 and X. an identil1er shall 110t con"j,t of the same sequence of c!1,trdck'I'
~:) as a keyword.

3.1 A\1ERICA'\\iATIO,\;\L STA,\[)ARD :\.1.1 :"). I 'ii,'; ,,1.2

Language

Semantics

21 Lexical Elements

An identifier denotes an object. a function, or one of the following entItles that will be

described later: a tag or a member of a structure, union, or enumeration; a typedef name: a label
name; a macro name; or a macro parameter. A member ot' an enumeration is called an

5 c/lumcratio/l (,o/lstant. Macro names and macro parameters are not considered further here,
because prior to the semantic phase of program translation any occurrences of macro names in
the source tile are replaced by the preprocessing token sequences that constitute their macro
definitions,

There is no specific limit on the maximum length of an identirier.

10 Implementation Limits

The implementation shall treat at least the first -' I character~i of an intcrnal /lamc (a macro
name or an identifier that does not have external linkage) as signihcant. Corresponding lowercase
and uppercase letters are different. The implementation may further restrict the significance of an
cxternal lIame (an identifier that has external linkage) to six characters and may ignore

15 distinctions of alphabetical case for such names. Ie These limitations on identifiers are all
implementation -defined.

Any identifiers that differ in a significant character are different identifiers. If two identifiers
differ in a nonsignificant character. the behavior is undefined.

Forward references: linkages of identifiers (3.1.2.2), macro replacement (3.8.3).

20 3.1.2.1 SCOpt'S of Identifiers

An identifier is \'isihle (i.e .. can be used) only within a region of program text called its
sCllpe. There are four kinds of scopes: function, file, block, and function prototype. (A /ill1ctioll
protonpe is a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that has /illlctio/l scope. It can be used (in a gato
25 statement) anywhere in the function in which it appears, and is declared implicitly by its syntactic

appearance (foliowed by a : and a statement). Label names shall be unique within a function.

Every other identifier has scope detennined by the placement of its declaration (in a declarator
or type specifier). If the declarator or type specifier that declares the identifier appears outside of
any block or li,t of parameters, the identifier has file scope, which terminates at the end of the

30 translation unit. If the declarator or type specifier that declare~ the identifier appears inside a
block or within the list of parameter declarations in a function definition. the identifier has h!oc);
scope, which terminates at the } that closes the associated block. If the declarator or type
specifier that declares the identifier appears within the list of parameter declarations in a function
prototype (not part of a function definition), the identifier has fll/lction protot\'pc sCllpe, which

35 terminates at the end of the function declarator. If an outer declaration of a lexicallv identical
identifier exists in the same name space, it is hidden until the current scope tenninates, after
which it again becomes visible.

Two identiflel:S have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of the

40 tag in a type specifier that declares the tag. Each enumeration constant has scope that begins just
after the appearance of its defining enumerator in an enumerator list. Any other identifier has
scope that begins just after the completion of its declarator.

12. See "future language directions" 13.9.1).

3.1.2 AMERICAN NATIONAL STANDARD X3.! :i9-19g9 3.1.2.1

Language Lexical Elements

Forward references: compound statement, or block (3.6.2), declarations (3.5), enumeration
specifiers (3.5.2.2), function calls (3.3.2.2), function declarators (including prototypes) (3.5.4.31.
function definitions (3.7.1), the goto statement (3.6.6.1 J. labeled statements (3.6.1!, name spaces
of identifiers (3.1.2.3), scope of macro definitions (3.fU.5), source file inclusion (3X2), lags

5 (3.5.2.3), type specifiers (3.5.2).

3.1.2.2 Linkages of Identifiers

An identifier declared in different scopes or in the same scope more than once can be made to
refer to the same object or function by a process called linkage. There are three kinds of linkage:

external, internal, and none.

lOIn the set of translation units and libraries that constitutes an entire program, each instance of
a particular identifier with external linkcige denotes the qme object or function. Within one
translation unit. each instance of an identifier with intemul linkage denotes the same object or
function. Identifiers with no linkage denote unique entities.

If the declaration of a file scope identifier for an object or a function contains the storage­
15 class specifier static, the identifier has internal linkage. 13

If the declaration of an identifier for an object or a function contains the storage-class
specifier extern, the identifier has the same linkage as any visible declaration of the identifier
with file scope. If there is no visible declaration with file scope. the identifier has external

linkage.

20 If the declaration of an identiher for a function has no storage-class specifier. its linkage is

determined exactly as if it were declared with the storage-class specifier extern. If the
declaration of an identifier for an object has file scope and no storage-class specifler. its linkage i.'i
external.

The following identifiers have no linkage: an identifier declared to be anything other than an
25 object or a function: an identifier declared to be a function parameter: a block scope identifier for

an object declared without the storage-class specifler extern.

If, within a translation unit, the same identiher appears with both internal and external

linkage, the behavior is undeflned.

Forward references: compound statement, or block (3.6.2), declarations (3.5). expressions (3.3),
30 external definitions (3.7).

3.1.2.3 Name Spaces of Identifiers

If more than one declaration of a particular identifier i:, visible at any point in a translation
unit, the syntactic context disambiguates uses that refer to different entities. Thus. there :Ire

separate name spaces for various categories of identifiers, as follows:

35 • lahel names (disambiguated by the syntax of the label declaration and use):

• the tags of structures, unions, and enumerations (disambiguated by following any l-l of the

keywords struct, union, or enum);

• the memhers of structures or unions: each structure or ulllon has a separate name space for its

members (disambiguated by the type of the expression used to access the member via the .
40 or -> operator):

13. A function declaration can only contain the storage-class specifier static if il is al file scope: sec 3.5.1.

l·t There is only one name space for lags even though lhree are possible.

3.1.2.1 AMERICAN NATIONAL STANDARD X3.1 59-1 <jg9 3.1.2 ..1

Language 23 Lexical Elemems

• all other identifiers, called ordinary identifiers (declared in ordinary declarators or as

enumeration constants).

Forward references: enumeration specifiers (3.5.2.2), labeled statements (3.6.1), structure and
union specifier; (3.5.2.1). structure and union members (3.3.2.3), tags (3.5.2.3).

5 3.1.2.4 Storage Durations of Objects

An object has a storage duration that determines its lifetime. There are two storage
durations: static and automatic.

An object whose identifier is declared with external or internal linkage, or with the storage-­
class specifier static has static storage duration. For such an object, storage is reserved and

10 its stored value is initialized only once. prior to program startup. The object exists and retains its
last-stored value throughout the execution of the entire program. I:;

An object whose identifier is declared with no linkage and 'Without the storage-class specifier

static has automatic storage duration. Storage is guaranteed to be reserved for a new
instance of such an object on each normal entry into the block with which it is associated, or on

15 a jump from outside the block to a labeled statement in the block or in an enclosed block. If an
initialization is specified for the value stored in the object, it is performed on each nonnal entry.
but not if the block is entered by a jump to a labeled statement. Storage for the object is no
longer guaranteed to be reserved when execution of the block ,':~nds in any way. (Entering an
enclosed block suspends but does not end execution of the enclosing block. Calling a function

20 suspends but does not end execution of the block containing the call.) The value of a pointer that
referred to an object with automatic storage duration that is no longer guaranteed to be reserved
is indeterminate.

Forward references: compound statement, or block (3.6.2), function calls (3.3.2.2), initialization
(3.5.7).

25 3.1.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the
type of the expression used to access it. (An identifier declared to be an object is the simplest
such expression: the type is specified in the declaration of the identifier.) Types are partitioned
into object types (types that describe objects), jilllction types (types that describe functions). ancl

30 incomplete types (types that describe objects but lack information needed to determine their
sizes).

An object declared as type char is large enough to store any member of the basic execution

character set. If a member of the required source character set enumerated in 2.2.1 is stored in a
char object. its value is guaranteed to be positive. If other quantities are stored ill a char

35 object, the behavior is implementation-defined: the values are treated as either signed or
nonnegative integers.

There are four signed imeger types, designated as signed char, short into into and
long into (The signed integer and other types may be designated in several additional ways. as
described in 3.5,2.)

40 An object declared as type signed char occupies the same amount of storage as a "plain"
char object. A "plain" int object has the natural size suggested by the architecture of the
execution environment (large enough to contain any value in the range INT_MIN to INT_MAX
as defined in the header <limits. h». In the list of signed integer types above. the range of
values of each type is a subrange of the values of the next type in the list.

15. In the case of a volatile object. the last store may not be explicit in the progr;lm.

3.1.2.3 AMERICAN NATIONAL STANDARD X3,159-19S9 3.1.2.5

Language Le\ical Elements

For each of the signed integer types, there i' a conesponding (but different) IIl1si"!,lIed illle"!,cl'

tlPC (designated with the Kcyword unsigned) that uses the same amount of storage (including
sign information) and has the same alignment requiremcnts. The range of nonnegative values of
a .signed integer type is it subrange of the corresponding unsigned integer type. and the

5 representation of the same value in each type is the same. I
(' A computation involving unsigncd

operands can never overflow. because a result that canll0t be represented by the r'esulting
unsigned integer type is reduced modulo thc number that is one greater than the largest valuc that
can be represented by the resultll1g unsigned integer Iype.

There are three .flOUlillg 1.1'/)('.1. designated as float. double. and long double. The SL't
I iJ of values of the type float is a subset of the sel of vailucs of the type double: the set or

values of the type double is a subsct of the set of \:dues of the type long double.

The type char, the signed and unsigned intcger types, and the floating types arc collectivcl:,
called the husic 1.1'/)('\. Even if the implementation delines IwO or more basic types to have thl'
same representation. they are neverlheless differelll types.

) 'i The three typcs char. signed char, and unsigned char arc collectively called the
cIlUJ'uC!(,J' typcs.

An ('1If1I1/('mtioll comprises a set or named integer constant valucs. Each distinct enumeration
constitutes a different CllfllI/cJ"(I!l'i1 l.I'pe.

The void type comprises an empty set of values: it is an incomplete type that Gill not he
~() completed.

Any number of c!cJ'il'C'd t.l'/WI can be constrLlct,~d from the object, function. and incomplete
types. as follows:

• An (I/"I"UY tyPC describes a contiguously allocated nonel11pty set of ohjects \vith a particul~lr

member object type. called the clelllell! tlPC .17 Array types arc characteri/ed by their element
25 type and by the number of elements in the array. An array type is said to be derived from ih

element type. and if ih elemcnt type is T, the array type is sometimes called "array of r.··
The construction of an array type from an clement type is called "array type derivation."

• A stl"/lclflle type describes a sequentially allocated nonernpty set of memher ohjects. each of
which has an optionally specified name and possibly distinct type.

:m • A /llIioll tyPC describes an overlapping nonempty set of member objects. each of \\ hich ha" an
optionally specitied name and possibly distinct type.

• A jilllelioll tlpe describes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A function type
is said to be derived from its return type, and if its return type is T. the function type is

Y; sometimes called "function returning r." The construction of a function type from a return
type is called "function type derivation."

• A poillter type may be derived from a function type. an object type. or an incomplete type.
called the J'e!i'lellced tlpe. A pointer type describe" an object whose value provides a
reference to an entity of the referenced type. A pointer type derived from the referenced type

40 r is sometimes called "pointer to T." The construction of a pointer type from a rctcrenced
type is called "pointer type derivation."

16. The ,~1I11C reprc>entation and alignment requirements ,u"<,: mcant to imply inlerchangeahilnv as arguments 1(\
runctions. return valucs from functions. and members of unions.

tc. Since object types do nol include incomplete types. an array or incomplctc t\ pe l'annot he l·onstructcd.

3.1.2.5

Language 25 LexIcal Elements

These methods of constructing derived types can be applied recursively.

The type char. the signed and unsigned integer types. and the enumerated types me
collectively called integra! typcs. The representations of lt1tegral types shall define values by w,e

of a pure binary numeration system. IS The representations of floating types are unspecified.

5 Integral and floating types are collectively called al"ithl7lclic types. Arithmetic types and

pointer types are collectively called scalar ty!)('\. Array and stru~·ture types are collectively called
aggregate tyPCS .19

An array tlipe of unknown size is an incomplete type. It is completed. for an identifier of th]t

type. by specifying the size in a later declaration (with internal or external linkage). A structure

10 or union type of unknown content (as described in 3.5.2.3, is an incomplete type. It IS

completed. for all declarations of that type. by declaring the same structure or union rag with its

defining content later in the same scope.

Array. function. and pointer types are collectively called deri\'ed declarator types. A.
dec/arator type dcrimtion from a type T is the construction of CI derived declarator type from T

15 by the application of an array-type. a function-type. or a pointer-type derivation to T.

A type is characterized by its type ('ategory. which is either the outermost derivation of a
derived type (as noted above in the construction of derived typ.~s). or the type itself if the type

consists of no derived types.

Any type so far mentioned is an /IIu/ualified type. Each unqualified type has three

20 corresponding qualified \'ersio/ls of its type: 211 a cOl/st-qualifled version. a \'o/ati/e-qualijied

version. and a version having both qualifications. The qualified or unqualified versions of a type

are distinct types that belong to the same type category and have the same representation and
alignment requirements. ln A derived type is not qualified by the qualifiers (if any) of the type

from which it is derived.

25 A pointer to void shall have the same representation and alignment requirements as a pointer
to a character type. Similarly. pointers to qualified or unqualified versions of compatible types
shall have the same representation and alignment requirements. In Pointers to other types need not

have the same representation or alignment requirements.

Examples

30 The type designated as "float *" has type "pointer to float." Its type category is

pointer. not a 110ating type, The const-qualitied version of this type is designated as "float *
const" whereas the type designated as "const float *" is not a qualified type - its type
is . 'pointer to const-qualitied float" and is a pointer to a quali ried type.

Finally. the type designated as "struct tag (*[5]) (float)" has type "array of

35 pointer to function returning struct tag." The array has length five and the function has a

single parameter of type float. Its type category is array.

Forward references: character constants (3,1.3.4). compatible type and composite type (3.1.2.6).
declarations (3.5 J. tags (3.5.2.3). type qualifiers (3.5.3 J.

I S. A positional representation for integers that uses the binary digits 0 and I. in which the values represented by
sucecssive bits are addilive. begin with I. and are multiplied by successive integral powers of 2. except perhap.'
the bit with the highest position. (Adapted from the Alllerica// Narili//ill Diclio//ilr\' flU I//!imllillio// Pmccs.li//~

Sr,\{('III.1.)

19. Note that aggregate type docs not include union type because an object with union type can only contain one
mcmber at a time.

20. Sec 3.5.3 regarding qualit1ed array and function types.

3.1.2.5 AMERIC;\\ NATIONAL STANDARD X3, J 59- I 9Wi 3.1.2.5

Language 26 Lexical Elements

3.1.2.6 Compatible Type and Composite Type

Two types have ('ompatihlc type if their types are the same. Additional rules for determining
whether two types are compatible are described in 3.5.2 for type specifiers. in 3.5.3 for type

qualifiers. and in 3.5.4 for declarators. 21 Moreover. two structure. union. or enumeration types
5 declared in separate translation units arc compatible if they have the same number of members.

the same member names, and compatible member types; for two structures. the members shall be
in the same order: for two structures or unions. the bit-fields shall have the same widths: for two

enumerations, the members shall have the same values.

Ail declarations that refer to the same object or function shall have compatible type;

10 otherwise. the behavior is undefined.

A composifc type can be constructed from two types that are compatible; it IS a type that is

compatible with both of the two types and satisfies the following conditions:

o [1' one type is an amty of known size, the composite type is an array of that size.

o [f only one type is a function type with a parameter type list (a function prototype). the
15 composite type is a function prototype with the parameter type list.

o [f both types are function types with parameter type lists. the type of each parameter in the

composite parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with external or internal linkage declared in the same scope as another
20 declaration for that identifier. the type of the identifier becomes the composite type.

Example

Given the following two 11k scope declarations:

int f(int (*)(), double (*)[3]);
int f (int (*) (char *), double (*) []) ;

25 The resulting composite type for the function is:

int f (int (*) (char *), double (*) [3]) ;

Forward references: declarators (3.5.4), enumeration specifiers (3.5.2.2). structure and UI1lon
specifiers (3.5.2.1). type definitions (3.5.6), type qualifiers (3.5.3), type specifiers (3.5.2).

3.1.3 Constants

30 Syntax

('ol/sfal/t:

ffoa f i I/g -('Ol/sla1/ f

imeger-('ol/sta I/t

e11 limera t iOI/ -('Ol/sla1/ t

('//(/ra('fer-I'onsfa /1 f

Constraints

The value of a constant shall be in the range of representable values for its type.

2 t. Two types need not he identical to he compatihle.

3.1.2.6 AMERICAN NATIONAL STANDARD X:1.I),)·1 ')X') 3.1.3

Language

Semantics

27 Lexical Elements

5

10

Each constant has a type, determined by its form and value, as detailed later.

3.1.3.1 Floating Constants

Syntax

.floallng-constant:

l i-actiona /-constanr ex!Jonent-!Jart jfoatin~-S/ltji'xopt ,.. opt
di oit-sequence eX!JOnenf-!Jarr floati/1 o-suf'f,x

" . ,'JJ' Opl

ji"a(·tio/1a /-COIlstant:
di "{it-sequence . digit-sequence, opt
digit-sequence

15

exponent-parr:
e si"{/1, opt
E si"{/1, opt

sign: one of

+

digit-sequence
digit-sequence

20

digit-sequence:
digit
digit-sequence digit

.floating-suffix: one of
f 1 F L

Description

A floating constant has a significand parr that may be followed by an expo/1ent parr and a
suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a period (.). followed by a digit

25 sequence representing the fraction part. The components of the exponent part are an e or E
followed by an exponent consisting of an optionally signed digit sequence. Either the whole­
number part or the fraction part shall be present; either the period or the exponent part shall be
present.

Semantics

30 The significand part is interpreted as a decimal rational number; the digit sequence in the
exponent part is interpreted as a decimal integer. The exponent indicates the power of 10 by
which the significand part is to be scaled. If the scaled value is in the range of representable
values (for its type) the result is either the nearest representable value, or the larger or smaller
representable value immediately adjacent to the nearest representable value. chosen in an

35 implementation-defined manner.

An unsuffixed floating constant has type double. If suffixed by the letter f or F, it has type
float. If suffixed by the letter 1 or L, it has type long double.

3.1.3.2 Inte~:er Constants

Syntax

40

3.1.3

integer-constant:
deci /1/(/ / -CO/1stant inte ~cr-.wffi·x

, J. opt
octa /-constanr intel;er-S/lf'fix

, J opt
he.mdeciilia /-('mlstant i lite"{er-suffix, opt

AMERICAN NATIONAL STANDARD X3.159-1989 3.1.3.2

Language

10

15

20

25

del 'ill/(/ I-('Oil stall t:

II0 II:(' l"IHIigit
decimal-colistant digit

octaI-COil sta 11 t:

o
octal-colistant octal-digit

hexadecimaI -('onstant:

Ox hexadecimal-digit
OX he,\CIdecimal-digit
!wradc('imal-conslant !wwdc('/mal-dig it

non:ero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
a 1 2 3 4 5 6 .,

hexadecimal-dig it" one of
a 1 2 3 4 5 6 ., 8 9
a b c d e f

A B C D E F

ill teger-suffix:

ul1si (]ned-sumr Ion ~ -suffix
., .. '" UP!

Ionl; -,Iutfi',r unsi l; lied-suffir. , , • .. UP!

ulisigncd-suffix' one of
u U

long-suffix: one of
1 L

Lexical Elements

Description

An integer constant begins with a digit. but has no period or exponent part. [t may have a
prefix that specifies its base and a suffix that specities ih type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits.
30 An octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0

through 7 only. A hexadecimal constant consists of the prefix Ox or ox followed by a sequence
of the decimal digits and the letters a (or A) through f (or F) with values 10 through 15
respectively.

Semantics

35 The value of a decimal constant is computed base]0; that of an octal constant. hase ~: that 01'

a hexadecimal constant, base 16. The lexically first digit is the most signitkant.

The type of an integer constant is the first of the corresponding list in which its value can bl~

represented. Unsuffixed decimal: into long into unsigned long int: unsuffixed octal or
hexadecimal: into unsigned into long into unsigned long int: suffixed by the letter

40 u or U: unsigned into unsigned long int: suffixed by the letter 1 or L: long into
unsigned long int: suffixed by both the letters u or U and 1 or L: unsigned long into

30 I 0302 AMERICAN 'SJATIONAL STA:'oID RD X.1.1'i'!-I'!X'!

Language

3.1.3.3 Enumeration Constants

Syntax

1'1111 IIII' ral i01/ -i 'OIlSrall r:

idcllrifier

) Semantics

An identifier declared as an enumeration constant has type int,

Forward references: enumeration specifiers (.1.5.2.2).

3.1.3.4 Character Constants

Syntax

Lexical Elements

10

15

20

i' Iza /'(1('rcr-i 'Oil sW IIr:

, c-char-SCi/IICIICC'

L' c-c!lar-sl'q111'111'1"

1'-(1/11 r-scq III'111'1':

c-char

1'-c!wr-sciIIlCIICC c-char

c-char:

any member of the source character set except
the single-quote' . backslash \. or new-line character

eSia/lc-seqIlelli 'C

cscal;(' SCqIlCIICC:

sin/pIC-CSi 'a/lc-scqllCIii 'C

i)('ra I-CSt 'apc-sCiIIIC1/('1'

Iwwdci 'illlal-cs('apc-scqIII' I/CC

25

si1/11)1('-C,I('apc-sciIIIC /I('I':

\' \" \?
\a \b \f

one of

\\
\n \r \t \v

30

ocla I· cscape-scqIIC IICC:

\ ocral-digir

\ ocwl-digir oerol-digir

\ ocwl-digil ocral-digir ocrol-digir

Izc.radci 'iII/a I-cscape- sCilllCIICC:

\x hc.radccill/ol-digir

Ilc.radci 'i/lI1/ 1-1'scopc-scqllc1/1'1' Iwradc(' ill/I/ I-dig i I

Description

35 An integel character constant is a sequence of one or more multibyte characters enclosed in
single-quotes. as in r x r or r ab'. A wide character constant is the same. except prefixed by the

letter L. With a few exceptions detailed later, the elements of the sequence are any members of
the source character set: they are mapped in an implementation-defined manner to members of the

execution character set.

40 The single-quote ' . the double-quote ". the questiOlH11ark ? the backslash \. and arbitrary

integral values. are representable according (0 the following table of escape sequences:

3.1 ..1.3 AMERICA:" :",ATIO'JAL STANDARD X3,I)LJ-l'iX'i 3.1.3.4

Language

S

single-quote '
double-quote "
question-mark ?

backslash \
octal integer
hexadecimal integer

30

\'
\"
\?
\\
\octill digits
\xhewdccil7wl digit.I

Lnical Elements

The douhle-quote " and question-mark ? are representahle either by themselves or by the

escape sequences \" and \?, respectively, but the single-quote ' and the hackslash \ shall be
represented, respectively, by the escape sequences \' and \ \.

10 The octal digits that follow the backslash in an octal e~,cape seljuence are taken to be part of
the construction of a single character for an integer character constant or of a single wide

character for a wide character constant. The numerical value of the octal integer so formed
specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape

1S sequence are taken to be part of the construction of a single character for an integer charactcr
constant or of a single wide character for a wide character constant. The numerical value of the

hexadecimal integer so formed specifics the value of the desired character m wide character.

Each octal or hexadecimal escape sequence is the longest seljuence of charactcrs that can

constitute the escape seljuence.

20 In addition. certain nongraphic characters are representable by escape sequences consisting of
the backslash \ followed by a lowercase letter: \a, \b, \ f. \n. \r. \ t. and \ v.-" If any other

escape sequence is encountered, the behavior is undefined.-"

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of representable

2S values for the type unsigned char for an integer character constant. or the unsigned type
corresponding to wchar_ t for a wide character constant.

Semantics

An integer character constant has type into The value of an integer character constant
containing a single character that maps into a member of the basic execution character set is the

30 numerical value of the representation of the mapped character interpreted as an integer. The
value of an integer character constant containing more than one character. or containing a

character or escape seljuence not represented in the basic execution character set. is
implementation-defined. If an integer character constant contains a single character or escape

seljuence, its value is the one that results when an object with type char \\ hose val ue is that of

35 the single character or escape seljuence is converted to type into

A wide character constant has type wchar_ t, an integral type defined in the <stddef . h>
header. The value of a wide character constant containing a single multibyte character that maps

into a member of the extended execution character set is the \1'idc character (code) corresponding
to that multibyte character, as defined by the mbtowc function, with an implementation-defined

40 current locale. The value of a wide character constant containing more than one lIlultibyte

character. or containing a l11ultibyte character or escape sequence not represented in the extended

execution character set. is implementation-defined.

11 The semantics of these characters were discu,sed in 2.2.2.
~:;. See "future language directions" 13.9.2).

3.1.3.4 AMERICAN "ATtONAL STA:\DARD XJ.I ~')] liS') 3.13.4

Language

Examples

31 Lexical Elements

The construction ' \ 0' is commonly used to represent the nJIl character.

Consider implementations that use two's-complement representation for integers and eight bits
for objects that have type char. In an implementation in which type char has the same range

5 of values as signed char. the integer character constant ' \xFF' has the value - L if type

char has the same range of values as unsigned char. the character constant' \xFF' has the
value +255 .

Even if eight bits are used for objects that have type char. the construction ' \x123'
specifies an integer character constant containing only one ehac-acter. (The value of this singe-

10 character integer character constant is implementation-defined and violates the above constraint.)

To specify an integer character constant containing the two characters whose values are Ox12
and ' 3', the construction ' \0223' may bc used. since a hexadecimal escape sequence is
terminated only by a nonhexadecimal character. (The value of this two-character integer
character com.tant is implementation-defined also.)

15 Even if 12 or more bits are used for objects that have type wchar_ t. the construction
L' \ 1234' specifies the implementation-defined value that results from the combination of the
values 0123 and ' 4' .

Forward references: characters and integers (3.2.1.1) common definitions <stddef. h>
(4.1.5). the mbtowc function (4.10.7.2).

20 3.1.4 String Literals

Syntax

25

30

srrillg-!irera!:

"s-char-scqllcllcc "
opt

L" s-char-scqllcllcc "
opt

s-c'har-scqllcllcc:

s-char

s-char-scqllcllcc s-char

s-char:

any member of the source character set except
the double-quote". backslash \. or new-line character

cscapc-scqIlCII('C

Description

A character string literal is a sequence of zero or more multibyte characters enclosed 111

double-quotes, as in "xyz". A wide string literal is the same. except prefixed by the letter L.

35 The same considerations apply to each element of the sequence in a character string literal or
a wide string literal as if it were in an integer character constmt or a wide character constant.
except that the single-quote' is representable either by itself or by the escape sequence \, . but
the double-quote " shall be represented by the escape sequence \".

Semantics

40 In translation phase 6. the multibyte character sequence~. specified by any sequence of
adjacent character string literal tokens. or adjacent wide string literal tokens. arc concatenated into
a single multibyte character sequence. If a character string literal tokcn is adjacent to a wide
string literal token. the behavior is undefined.

3.1.3.4 AMERICAN NATIONAL STANDARD X~.15g-I()R9 3.1.4

Language Lexical Elements

In translation phase 7. a byte or code of value zero is appended to each multibyte char~lcter

sequence that results from a string literal or literals. cl The tllultibyte character sequence is then
used to initialize an array of static storage duration and length just suflicient to contain the
sequence. For character string literals. the array elements have type char. and arc initialized

.'i with the individual bytes of the multibyte character sCl.juence: for wide string literals. the array
elements have type wchar_ t. and are initialized with the sequence of wide characters
corresponding to the multibyte character sequence.

Identical string literals of either form need not be distinct. If the program attempts to modify
a string literal of either form. the behavior is undefined.

10 Example

This pair of adjacent character string literals

"\x12" 113"

produces a single character string literal containing the two characters whose values are \x12
and' 3' . because escape sequences arc converted into single members of the execution character

15 set just prior to adjacent string: literal concatenation.

Forward references: common definitions <stddef. h> (4.1 ..").

3.1.5 Operators

S~ntax

1 I&&
sizeof

>= !=<=

->
+
< >

)

& *
« »

[

++
1 %
?

= *= 1= %= += -= «= »= &= A= 1=
##

opera/or: one of
20

Constraints

The operators []. (). and ? : shall occur in pairs. possibly separated by expressions. The
operators # and ## shall occur in macm-defining preprocessing directives only.

Semantics

30 An operator specifies an operation to be perfonl1ed (an emilla/io/l) that yields a value. or
yields a designator. or produces a side effect. or a combination thereof. An II/J(,j"(Jlld is an entity
on which an operator acts.

Forward references: expressions (3.3). macro replacement (3.~.3).

2-1. A character strint! literal need not he a strin~ (see 4.1 I). hecause a null character may he emhedded ill it h\· a
\ 0 escape seq uel~cc. ~

:UA

Language

3.1.6 Punctuators

Syntax

/Jllllcluaror: one of

5 Constraints

*

33

= #

Lcxical Elemcnts

The punctuators [], (), and { } shall occur (after translation phase 4) in pairs, possibly
separated by expressions, declarations, or statements. The punctuator # shall occur i11

preprocessing directives only.

Semantics

lOA punctuator is a symbol that has independent syntactic and semantic significance but does
not specify an operation to be perfonned that yields a valuc, Dcpcnding on context, the same
symbol may abo represent an operator or part of an operator.

Forward references: expressions (3,3), declarations (3.5), preprocesslllg directives CUll,
statements (3.6),

15 3.1.7 Header Names

Syntax

hcadcr-/WIlIC:

<h-char-scq IICII('C>

" q-char-sci/IICIICC"

20

25

30

h-char-scqIlCII('C:

h-char

h-char-scqllcllcc h-char

h-char.

any member of the source character set except
thc new-line character and>

q-char-scqllcllcc:

q-char

q-char-scqllcllcc q-clwr

q-char:

any member of the source character set except
the new-line character and"

Constraints

Header name preprocessll1g tokens shall only appear within a #include preprocessing
directive.

35 Semantics

The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 3X2.

If the characters I, \, ", or /* occur in the sequencc betw,:~en the < and> delimiters, the
behavior is undefined. Similarly, if the characters I, \, or /* occur in the sequence between the

40 "delimiters, the behavior is undefinedY

25, Thus, sequences of characters that resemhle escape sequences cause undefined hehavior.

3,1,6 A\1ERICAN NATIONAL STA"iDARD X_~_15l)-Il):,l) 3.1.7

Language

Example

The following sCljuence of characters:

Ox3<1/a.h>le2
#include <l/a.h>
#define const.member@$

34 Lexical Elements

10

15

20

forms the following seljuence of preprocessing tokens (with each individual preprocessing token
delimited by a { on the left and a } on the right).

{Ox3H<Hl}{/Ha}{. }{h}{>}{le2]
{#}{include} {<l/a.h>}
{#}{ define} {const H .){member }{@}{$}

Forward references: source file inclusion (3.8.2).

3.1.8 Preprocessing Numbers

Syntax

fifi-II/lIlI her:

digit

. digit

fifi-lIl1l11her digit

fifi-lIl1l11her lIillldigit
fifi-lIlllllher e sigll

fiP-IIIIlJlhcr E sigll

p/Hlllmhcr

Description

A preprocessing number begins with a digit optionally preceded by a period (.) and may be
followed hy letters. underscores. digits. periods. and e+. e-. E+. or E- character seljuences.

2') Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

A preprocessing number does not have type or a value: it acquires both after a successful
conversion (as part of translation phase 7) to a floating constant token or an integer constant
token .

.~() 3.1.9 Comments

Except within a character constant. a string literal. or a comment. the characters 1* introduce
a comment. The contents of a comment are examined only to identify multi byte characters and
to lind the characters *1 that terminate it. 26

2(" Thus. comments do not nest.

3. \.7 A\1ERICA"i NATIO'\AL STANDARD X.1.15l)-Il)~l) 3.1.t)

Language

3.2 Conversions

35 Conversions

Several operators convert operand values from one type to another automatically. This
section specifies the result required from such an implicit conl'ersion. as well as those that result
from a cast operation (an e.vplicit cOII\'CI'sion). The list in 3.2 1.5 summarizes the conversions

5 performed by most ordinary operators: it is supplemented as required by the discussion of each
operator in 3.3.

Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (3.3.4).

10 3.2.1 Arithmetic Operands

3.2.1.1 Characters and Integers

A char. a short into or an int bit-field. or their signed or unsigned varieties. or an
enumeration type. may be used in an expression wherever an int or unsigned int may be
used. If an int can represent all values of the original type. the value is converted to an int:

15 otherwise. it is converted to an unsigned into These are called the integral promotions.n
All other arithmetic types are unchanged by the integral promotions.

The integral promotions preserve value including sign. As discussed earlier. whether a
. 'plain" char is treated as signed is implementation-defined.

Forward refenmces: enumeration specifiers (3.5.2.2). structure and union specifiers (3.5.2.1).

20 3.2.1.2 Signed and Unsigned Integers

When a vai ue with integral type is converted to another integral type. if the value can be
represented by the new type. its value is unchanged.

When a signed integer is converted to an unsigned integer with equal or greater siLeo if the
value of the signed integer is nonnegative, its value is unchanged. Otherwise: if the unsigned

25 integer has gre,lter size. the signed integer is first promoted to the signed integer corresponding to

the unsigned integer; the value is converted to unsigned by adding to it one greater than the
largest number that can be represented in the unsigned integer type. 2S

When a value with integral type is demoted to an unsigned integer with smaller size. the
result is the nonnegative remainder on division by the number one greater than the largest

30 unsigned numb<.::r that can be represented in the type with smaller size. When a value with
integral type is demoted to a signed integer with smaller size, or an unsigned integer is converted
to its corresponding signed integer, if the value cannot be represented the result i~

implementation-defined.

27. The integral promotions are applied only as part of the usual arithmetic conversions. to certain argument
expressions, to the operands of the unary +, -, and - operators, and to both operands of the shi ft operators, as
specified by their respective sections.

28. In a two's-compleillent representation. there is no actual change in the bit pattern except filling the high-order
bits with copies of th" sign hit if the unsigned integer has greater size.

3.2 AMERICA".; NATIONAL STA'\OARO X".J5L)-I9HlJ 3.2.1.2

Language

3.2.1.3 Floating and Integral

36 c(j!1\ ,_' 1\ 111I \\

When a value of floating type i, converted to intcg,al t\IJL'_ the fractional pan is di',C<lldcd_ if
the value of the integral part cannot be ncpresentcc! by the integral t>pe_ the beha\il)j I'

undefi nelL ''I

5 \Vhen a value of integral type is comerted tel floatln,:: t).lx'. if the !,due hi'in!' C(Hr'nle\!' :n

the range of values that can be represented but Cilnnot he r<cpresL'nted eXilclly_ the result j, ,'ilhcr
the neare\l higher 01 nearest lower value. chosen in an implcmcntation-dcfined malilicr-

3.2.104 Floating Types

Vvhen a float is prornoted to double or lon~r double. or :1 doub1"" " prol'lOkd 10

10 long double. its value is unchanged.

When a double is demoted to float or (I long double to double or float:. it in,'

\'alue being converted is outside the range of values Ihat call he lepn'scnh'cL the hL'ha\jol i...
undefined, If the value being converted is in the rallge of valul"; that C,1n h,' reprcsc'nll:d hi:i

cannot be represented exactly_ the result is either the nearest higher or :1\:lrest 100\cI \ rdue_
15 chosen in an implementation-defined manner,

3.2.1.5 Usual Al'ithmetic Conversions

rvlany binary operators that expect operands of alIlhllit'li, t) pe cause cOllversions ami 'i,'ld
result types in a similar way_ The purpose is to yield a common type. which is abo the 1)I'L' 01

the result. This pattern is called the III/hi! ilril!li/leii(COi!\"!'lioll.\:

~O First. if either operand has type long double. (he oiher oper;md is con\ertec! to long'
double,

Othenl isc if either operand has type double, 11',,: otlK'r opcLirHI is cOIl'·nl\'c! tn double,

Otherwise, if either operand hrb type floa.t, the other operand is Ctlli\e'iwd !O fLoat

Otherwise. the integral promotions are performed on hoth operrinds, Then the l'editH'I;1i"
2'\ rules an2 applied:

If either operand has type unsigned long int, the other operClnd lS:on"'rtecl to
unsigned long int_

JO

Otherwise. if one operand has type long int and the other h;,,, I'pe unsig-ned
int, if a long int can represent alf \alues of an unsigned int_ the oj'eJ;mcl of
type unsigned int is converted 1'0 lonc;r in't: if a long int (iilln()! Icpresi.'I,l
all the values of an unsigned into both opcrands rin: cOllverkd to uns igned
long int_

Otherwise. if either operand has type long into the Ulher operall,1 i' eOiih'lkd L:

long int,

Otherwise_ if either operand has type unsigned int. tlw olhn 0PI'lClilll 1'­

clJnverted to unsigned int,

Otherwise. both operands have type int..

The values of floating operands and of the :-,:sulh Of I1lJ(lting e.\pr',:,sions ill!!) ill llpr"'l'([kd
in greater precision and range than that required hy the t,pc: lil\: l'-pes are not ch:lI1)':cd

20, The rell1aindering operation perf'lI'il,ed when a I',!lue of illlq,ral i> pe :, c,)li\crlLd tu UIlSiUkd ["pc' liec,i oIl11 "_

perfOrtl1ed when "l value of nOal1l1~ type i-.; converted [p UI1\iplll'd tYl1l:. Th!l~. !ill' rdl\;l:' \)(rnn:.dlk J1q;tl,n~

values i, (- I.Ut\lJl'_MAX+ I),

~Il. The ca~t and a~q,:!nn1enl 0lx:rator...; sldl lnust pcrfonn their "'T'!-'cili..'d \'1:'11" '.T\II\Jl', c!c:',(.'ilh'd 1. ~

J.~.l'-+,

J_2.1_3 ,\\ItRICX\ ~v\TlO\A[. ST\'\!A!-:U X',l-,l) lli,l)

Language 37 Conversions

3.2.2 Other' Operands

3.2.2.1 Lvalues and Function Designators

An Indlle is an expression (with an object type or an incomplete type other than void) that
desIgnates an obiect. '1 When an object is said to have a particular type. the type is specified by

5 the Ivalue used to designate the object. A /llodi/iahle Imille is an Ivalue that does not have array
type. does not have an incomplete type. does not have a const-qualitied type. and if it is a
structure or union. docs not have any member (including. r,~cursively. any member of all
contained structures or unions) with a const-qualified type.

Except when it is the operand of the sizeof operator. the unary & operator. the ++ operator.
10 the -- operator. or the len operand of the . operator or an assignment operator. an Ivalue that

does not have array type is converted to the value stored in the designated object (and is no
longer an Ivalue). If the Ivalue has qualified type. the value has the unqualified version of the
type of the Ivalue: otherwise. the value has the type of the Ivalue. If the Ivalue has an Incomplek
type and does not have array type. the behavior is undetined.

15 Except when it is the operand of the sizeof operator 01 the unary & operator. or is ..I

character string literal used to initialize an array of character type. or is a wide string literal used
to initialize an array with element type compatible with wchar_1:. an Ivalue that has type "array
of type" is converted to an expression that has type "pointer Ie> t\I)1'" that points to the initial
clement of the :.may object and is not an Ivalue.

:20 A li/lle/ioll desigllil/or is an expression that has funetioll type. Except when it is the operand
of the sizeof operator'2 or the unary & operator. a function designator with type "function
returning typ1''' is converted to an expression that has type "poinler to function returning t\Fe."

Forward refer'ences: address and indirection operators (3.3.3.2'. assignment operators (3.3.16).
common definitions <stddef. h> H.I.5). initialization (3.5.7). postfix increment and decrement

25 operators (3.3.2.4). prefix increment and decrement operators (.1..13.1). the sizeof operator
(.1.3.3.4). structure and union memhers (3.3.2.3).

3.2.2.2 void

The (nonexistent) value of a \'(lid 1'.lpressio/l (an expre"sioll that has type void) .,hall not be
used III any w~y. and implicit or explicit conversions (except to void) shall not be applied to

30 such an expression. If an expression of any other type occurs in a context where a void
expression is required. its value or designator is discarded. U\ void expression is evaluated 1'0'
ils side effects.)

3.2.2.3 Pointers

A pointer to void may be converted to or from a poilller to any incomplete or object type .
.is A pointer to any incomplete or object type may be converted to a pointer to void and back

again: the result shall compare equal to the original pointer.

For any qualifier q. a pointer to a nOIHI-qualified type may be converted 10 a pointer to the
ii-qualified version of the type: the values stored in the original and converted pointers shall
compare equaL

q The name "Ivalue" comes originally from the assignment npression El = E2. in \\hich the left operand El
musl be a (moditiabk) l\'alue. It is perhaps betIC I' considered as representing an object "locator value." Whal
is sometimes called "r\'alue" is in this standard described as the "\alue of ,n expression."

An ob\ious example of an Ivalue is an identilier of an object. As a further \~xamplc. If E i.s a unary expression
that is a pointer to an obiect. *E is an Ivalue that designates the ohject to \It- ieh E points.

'2. Because thi, convel SIDn does not occur. the operand oC the sizeof operatoi remains a function deSignator and
violates the eonstrainl in 3.3.3.-\.

_~.2.1.5 ,\MIRICX\ '\XItO'\AL STA\DARD X, i'iLl 1%') .1.2.2.3

Language 38 Conversions

An integral constant expression with the value 0, or such an expression cast to type void *,
IS called a 11/1/1 poil1ter constant .3.; If a null pointer constant is assigned to or compared for
equality to a pointer, the constant is converted to a pointer of that type. Such a pointer. calleel a
111//1 poillter, is guaranteed to compare unequal to a pointer to any object or function.

S Two null pointers, converted through possibly different seljuences of casts to pointer types,
shall compare eljuaL

Forward references: cast operators (3,3.4), equality operators (3.3.9), simple assignment
(3.3,16.1).

.n. The macro NULL is defined in <stddef. h> as a null pointer constant: see 4.1.5.

3.2,2.3 AMERICAN NATIONAL STANDARD X3.159-19R9 3.2.2.3

Language

3.3 Expressiions

39 Expressions

An expression is a sequence of operators and operands that specifies computation of a value,
or that designates an object or a function, or that generates side effects, or that performs a
combination thereof.

5 Between the previous and next sequence point an object shall have its stored value modified
at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed
only to determine the value to be stored.34

Except as indicated by the syntax35 or otherwise specified later (for the function-call operator
(), &&, I I, ?:, and comma operators), the order of evaluation of subexpressions and the order

10 in which side effects take place are both unspecified.

Some operators (the unary operator -, and the binary operators «, », &, ", and I,
collectively described as bitwise operators) shall have operands that have integral type. These
operators return values that depend on the internal representations of integers, and thus have
implementation-defined aspects for signed types.

15 If an exception occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable valm~s for its type), the behavior is
undefined.

An object shall have its stored value accessed only by an Ivalue that has one of the following
types: 36

20 • the declared type of the object,

• a qualified version of the declared type of the object,

• a type that is the signed or unsigned type corresponding to the declared type of the object,

• a type that is the signed or unsigned type corresponding to a qualified version of the declared
type of the object,

25 • an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

• a character type.

34. This paragraph renders undefined statement expressions such as

i = ++i + 1;

while allowing

i = i + J.;

35. The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the
order of the major subsections of this section, highest precedence first. Thus, for example, the expressions
allowed as the operands of the binary + operator (3.3.6) shall be those expressions defined in 3.3.1 through
3.3.6. The exceptions are cast expressions (3.3.4) as operands of unary operators (3.3.3), and an operand
contained between any of the following pairs of operators: grouping parentheses () (3.3.1), subscripting
brackets [l (3.3.2.1), function-call parentheses () (3.3.2.2), and the conditional operator?: (3.3.15).

Within each major subsection, the operators have the same precedence. Left- or right-associativity is indicated
in each subsection by the syntax for the expressions discussed therein.

36. The intent of this list is to specify those circumstances in which an object mayor may not be aliased.

3.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.3

Language

3.3.1 Primary Expressions

Syntax

40 Expressions

5

primarv-expression:
identifier
constant
string-literal
(expression)

Semantics

An identifier is a primary expression, provided it has been declared as designating an object
10 (in which case it is an lvalue) or a function (in which case it is a function designator).

A constant is a primary expression. Its type depends on its form and value, as detailed In

3.1.3.

A string literal is a primary expression. It is an lvalue with type as detailed in 3.1.4.

A parenthesized expression is a primary expression. Its type and value are identical to those
15 of the unparenthesized expression. It is an Ivalue, a function designator, or a void expression if

the unparenthesized expression is. respectively, an Ivalue, a function designator, or a void
expression.

20

25

30

Forward references: declarations (3.5).

3.3.2 Postfix Operators

Syntax

postfix-expression:
primary-e.rpression
postjix-npression [e.rpression]
postfix-expression (an;ument-expression-list), opr
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-e.rpression

argument-e.rpression-list:
assignment-e~rpression
argument-expression-list , assignment-expression

3.3.2.1 Array Subscripting

Constraints

One of the expressions shall have type "pointer to object type," the other expression shall
35 have integral type, and the result has type "type."

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted
designation of an element of an array object. The definition of the subscript operator [] is that
El [E2] is identical to (* (El+ (E2))). Because of the conversion rules that apply to the

40 binary + operator, if El is an array object (equivalently, a pointer to the initial element of an
array object) and E2 is an integer, El [E2] designates the E2-th element of El (counting from
zero).

Successive subscript operators designate an element of a multidimensional array object. If E
IS an n-dimensional array (11:2:2) with dimensions ixjx ... xk, then E (used as other than an

45 lvalue) is converted to a pointer to an (11-1)-dimensional array with dimensions jX '" xk. If the
unary * operator is applied to this pointer explicitly, or implicitly as a result of subscripting. the

3.3.1 AMERICAN NATIONAL STANDARD X3.159-19R9 3.3.2.1

Language 41 Expressions

result is the pointed-to (n-I)-dimensional array, which itself is converted into a pointer if used as
other than an lvalue. It follows from this that arrays are stored in row-major order (last subscript
varies fastest).

Example

5 Consider the array object defined by the declaration

intx [3] [5] ;

Here x is a 3>(5 array of ints; more precisely, x is an array (If three element objects, each (If
which is an array of five ints. In the expression x [i], which is equivalent to (* (x+ (i))),

x is first converted to a pointer to the initial array of five ints. Then i is adjusted according to
10 the type of x, which conceptually entails multiplying i by the size of the object to which the

pointer points, namely an array of five int objects. The results are added and indirection is
applied to yield an array of five ints. When used in the expression x [i] [j]. that in turn is
converted to a pointer to the first of the ints, so x [i] [j] yields an into

Forward references: additive operators (3.3.6), address and indirection operators (3.3.3.2), array
15 declarators (3.5 .4.2).

3.3.2.2 Function Calls

Constraints

The expression that denotes the called function37 shall have type pointer to function returning
void or returning an object type other than an array type.

20 If the expression that denotes the called function has a type that includes a prototype. the
number of arguments shall agree with the number of parameters. Each argument shall have ,j

type such that its value may be assigned to an object with the unqualified version of the type of
its corresponding parameter.

Semantics

25 A postfix expression followed by parentheses () contall1l1lg a possibly empty. comma-
separated list of expressions is a function call. The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

If the expression that precedes the parenthesized argument list in a function call consists
solely of an identifier, and if no declaration is visible for this identifier. the identifier is implicitly

30 declared exactly as if, in the innermost block containing the function call. the declaration

extern int identifier () ;

appeared. 3R

An argument may be an expression of any object type. In preparing for the call to a function.
the arguments are evaluated, and each parameter is assigned the value of the correspondinf:

35 argument. 39 The value of the function call expression is specified in 3.6.6.4.

37. Most often. this is the result of converting an identifier that is a function deSignator.
38. That is. an identifier with block scope declared to have external linkage with type function without parameter

information and returning an into If in fact it is not defined as having type "function returning int." the
behavior is undefined.

39. A function may change the values of its parameters. but these change~. cannot affect the values of the
arguments. On the other hand. it is possible to pass a pointer to an object. and the function may change the
value of the object pointed to. A parameter declared to have array Ot' function type is converted to a parameter
with a pointer type a:; described in 3.7.1.

3.3.2.1 AMERICAN NATIONAL STANDARD X3.1 :;9-1989 3.3.2.2

Language -I~

If the expression that denotes the called lunction llcl'; a type that does not IIlcludc a protl)\Vlll'.
the integral promotions are performed on each argument ami ;11")2Ul1lenh that hale type float :Irc'
promoted to double. These arc called the de/ill'ir Urt;liillClir (milliol/O!!'. If the number of
arguments does not agree with the numher o! parameters. the be'l1m ior is undelJlled. II' the

:" function is defined with a type that docs 1l0l Illclude ,I prowtype. ami the typc" of the argUi1ll'nrs
after promotion arc not compatible with those of the paralllelers alkr promotion. thc h"ha\ior is
undefined. It the function is defined with a typ,,; Ihat includes a protutype. and thl' types of thc
arguments after promotion are not compatible with the type~; of the paramekrs. or i! the prototype
ends with an ellipsis (, ...). the behavior is undefined.

10 If the expression that denotes the c;tIlcd function JLlS a ty pe that includes a prolOly pc. thc
arguments are implicitly converted. as if by assignl1l,,~nL to the types o! the corresponding
parameters. The e!lipsi, notation ill a fUllction pmtmype declarator causes argument ty pc
conversion to stop after the last declared parametn. The default argullll'nt promotions are
performed on trailing arguments. If the functilln is dClinecl with :t type that is not compatible

I:" with the type (of the expression) pointed to by the cvprl:"ion t!J,d dellote:, the c~dled ['ulietiun, t!Je
behavior is undefined.

"io other conversions are performed implicitly: in particular, the number and typl" of
arguments arc not compared with those of the parameter, 111 d function definition that docs IWi

include a function prototype declarator.

20 The order of evaluation of the function designator the :\Ii!ulll<~nh. ,md suixxpressiol1s 1'. ithin
the argulllcnh i, un,pcciticcL but there' is a ',equcnce point helul'e the aetual cali.

Recursive function calls shall be permitted. both direct'" and indirectly through any Ch:liil of
othcr functions,

Example

2:" In the function call

(*pf[fl()]) (f2(), f3() + f4()

the functions fL f2. f3. and f4 ma\ be called in ,IllY onler. All side effects shall he
completed before the function pointed to by pf [fl ()] is entered.

Forward references: function declarators (including prototypes) (3.5.·L~), fundion definitions
30 n.7 . 1J. the return statement (3.6.6.4 L simple assignment I'U. 16. I).

3.3.2.3 Structure and Union Members

Constraints

The first operand of the , operator shall have a qualified or unqualilied structure or union
type, and the second operand shall name a member of that type.

3:" The lirst operand of the -> operator shall have tHJt "poinlcr to ljualitied)f unqualified
structure" or "pointer to qualiticd or unqualified union:' and the se('Dnd o(lCfand shall nam,,' a
member of the type pointed to.

Semantics

A postfix expression followed by a dot, and an identilier designate, a memher of a SlilictLlI\.'
40 or lInion object. The valuc is that or the namcd mcmher. amI is an ivaluc if the tirst C\IJrcs'lon

is an Ivalue, If the tirst expression has qualiticd typ~, the result has the ,o-qualilicd versilln of
the type of the designatcd mcmber .

.\3.2.~ AiVlF.R.iCA!\ \,'TIO\".!. ..,1 A\DAt{l) X.' "~I, I%li

Language -1-3 Expressions

A postfix expression followed by an arrow -> and an identifier designates a member of a

structure or union object. The value is that of the named member of the object to which the fir,t

expres,ion points. an'd is an Ivalue,411 If the first expression is a pointer to' a qualified type. tl-e

result has the ,o-qualitied version of the type of the designated member.

5 With one exception. if a member of a union object is accessed after a value has been stored in

a different member of the object. the behavior is implemcntation-detined.41 One special

guarantee is made in order to simplify the use of unions: If a union contains several structures

that share a common initial sequence (see helow). and if the un on object currently contains olle

of these struclures. it is permitted to inspect the COllllllon initial part of allY of them. Two

10 structures share a cO/llmol/ il/irial sCC/llmec if corresponding memhers have compatible types (and.

for bit-fields. the same widths) for a sequence of one or more inil ial nH:mhers.

Examples

If f is a function returning a structure or union. and x is a member of that structure or union.

f () . x is a valid postfix expression but is nol an Ivalue.

15 The followlllg is a valid fragment:

union

20

25

struct {
int

} n;

struct {
int
int

} ni;
struct {

int
double

} nf;

alltypes;

type;
intnode;

type;
doublenode;

]0

} u;

u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... * /
if (u.n.alltypes == 1)

/* ... */ sin (u.nf.doublenode) /* ... */

Forward references: address and indirection operators (3.3.3.2). structure and union specifiers

35 (3.5.2.1).

3.3.2.4 Postfiix Increment and Decrement Operatm"s

Constraints

The operand of the postfix increment or decrement operator shall have qualified or unqualified

scalar type and shall be a modifiable Ivalue.

--10. If &E is a valid pointer expression (\\here & is the "address-of" operator. which generates a pointer to its
operand). the expression (&E)->MOS is [he same as E.MOS .

.+1. The "byte orders" for scalar typcs arc imisihlc 1O isolated programs that Jo not indulge in type punning (fer
example. by assigning to one mcmber of a uIlioIl and inspecting the storag,: by accessing another member the.!
is an appropriate Iv sized arrav or charactcr tvpe J. hut must he accounted for when conforminl! to external Iv
imposed storagc L-tyouls. - - , .

3.3.2 ..1 A\1FRICA:\ :\ATtO:\,\L STX'JDARD X.I.I ';'1-] 'IX'I 3.3.2.4

Language

Semantics

44 Expressions

The result of the posttix ++ operator is the value of the operand. After the result is obtained.
the value of the operand is incremented. (That is, the value I of the appropriate type is added to
it.) See the discussions of additive operators and compound assignment for information on

5 constraints. types. and conversions and the effects of operations on pointers. The side effect of
updating the stored value of the operand shall occur between the previous and the next sequence

point.

The posttix -- operator is analogous to the posttix ++ operator, except that the value of the
operand is decremented (that is, the value I of the appropriate type is subtracted from it).

10 Forward references: additive operators (3.3.6). compound assignment (3.3.16.2).

3.3.3 Unary Operators

Syntax

15

20

11/ Ia IT e.\jJress /Ii II:

postfi.\-e.rpression

++ IIIwry-cxprcssio/l

-- IInar,v-c,\jJrcssio/l

IIlla rv-opcratlir cast-expressio/l

sizeof lInarv-expressioll

sizeof (tvpc-/lame

llI1arV-operator: one of

& * +

3.3.3.1 Prefix Increment and Decrement Operators

Constraints

The operand of the prefix increment or decrement operator shall have qualified or unqualified
25 scalar type and shall be a moditiable Ivalue.

Semantics

The value of the operand of the prefix ++ operator is incremented. The result is the new
value of the operand after incrementation. The expression ++E is equivalent to (E+=l). See

the discussions of additive operators and compound assignment for information on constraints.
30 types, side effects. and conversions and the effects of operations on pointers,

The prefix -- operator is analogous to the prefix ++ operator. except that the value of the
operand is decremented.

Forward references: additive operators (3,3.6). compound assignment (3.3.16.2).

3.3.3.2 Address and Indirection Operators

35 Constraints

The operand of the unary & operator shall be either a function designator or an Ivalue that

designates an object that is not a bit-field and is not declared with the register storage-class

speci fier.

The operand of the unary * operator shall have pointer type.

40 Semantics

The result of the unary & (address-of) operator is a pointer to the object or function
designated by its operand. If the operand has type" tvpe." the result has type "pointer to (...'Pc.··

The unary * operator denotes indirection. If the operand points to a function. the result is a
function designator; if it points to an object. the result is an Ivalue designating the object. If the

3.3.2.4 AMERICAi' NATIOi'AL STANDARD X~,I59-1989 3.3.3.2

Language 45 Expressions

operand has type "pointer to type," the result has type "type." If an invalid value has been
assigned to the pointer, the behavior of the unary * operator is undefined.42

Forward refer,ences: storage-class specifiers (3.5.1), structure and union specifiers (3.5.2.1).

3.3.3.3 Unary Arithmetic Operators

5 Constraints

The operand of the unary + or - operator shall have arithmetic type: of the - operator,
integral type; of the ! operator, scalar type.

Semantics

The result of the unary + operator is the value of its operand. The integral promotion IS

10 performed on the operand, and the result has the promoted type.

The result of the unary - operator is the negative of its operand. The integral promotion is
performed on the operand, and the result has the promoted type.

The result of the - operator is the bitwise complement of its operand (that is, each bit in the
result is set if and only if the corresponding bit in the converted operand is not set). The integral

15 promotion is performed on the operand, and the result has the promoted type. The expression -E
is equivalent to (ULONG_MAX-E) if E is promoted to type unsigned long, to

(UINT_MAX-E:) if E is promoted to type unsigned into (The constants ULONG_MAX and
UINT_MAX are defined in the header <limits. h>.)

The result of the logical negation operator ! is 0 if the value of its operand compares unequal
20 to 0, 1 if the value of its operand compares equal to O. The result has type into The expression

!E is equivalent to (O==E).

Forward refen~nces: limits <float. h> and <limits. h> (4.1.4).

3.3.3.4 The s:izeof Operator

Constraints

25 The sizee,f operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type. or to an lvalue that designates a bit-·
field object.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an expression
30 or the parenthesized name of a type. The size is determined from the type of the operand, which

is not itself evaluated. The result is an integer constant.

When applied to an operand that has type char, unsigned char, or signed char, (or a
qualified version thereof) the result is I. When applied to an operand that has array type, the
result is the total number of bytes in the array.4J When applied to an operand that has structure

35 or union type, the result is the total number of bytes in such all object, including internal and
trailing padding.

42. It is always true that if E is a function designator or an lvalue that is a valid operand of the unary & operator,
*&E is a function designator or an lvalue equal to E. If *p is an lvalue and T is the name of an object pointer
type. the cast expres"ion * (T) P is an lvalue that has a type compatible with that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an addres"
inappropriately aligned for the type of object pointed to, and the address of an object that has automatic storage
duration when execution of the block with which the object is associated has terminated.

43. When applied to a parameter declared to have array or function type. the sizeof operator yields the size of
the pointer obtained by converting as in 3.2.2. I: see 3.7.1.

3.3.3.2 AMERICAN NATIONAL STANDARD X3.J59·1989 3.3.3.4

Language 46 Expressions

The value of the result is implementation-defined, and its type (an unsigned integral type) is
size t defined in the <stddef . h> header.

Examples

A principal use of the sizeof operator is in communication with routines such as storage
5 allocators and I/O systems. A storage-allocation function might accept a size (in bytes) of an

object to allocate and return a pointer to void. For example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The implementation of the alloc function should ensure that its return value is aligned suitably
10 for conversion to a pointer to double.

Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[O]

Forward references: common definitions <stddef . h> (4.1.5), declarations (3.5), structure and
union specifiers (3.5.2.1), type names (3.5.5).

15 3.3.4 Cast Operators

Syntax

cast-expression:
unary-expression
(type-name) cast-expression

20 Constraints

Unless the type name specifies void type, the type name shall specify qualified or unqualified
scalar type and the operand shall have scalar type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to
25 the named type. This construction is called a cast .44 A cast that specifies no conversion has no

effect on the type or value of an expression.

Conversions that involve pointers (other than as permitted by the constraints of 3.3.16.1) shall
be specified by means of an explicit cast; they have implementation-defined and undefined
aspects:

30 A pointer may be converted to an integral type. The size of integer required and the result
are implementation-defined. If the space provided is not long enough, the behavior is
undefined.

An arbitrary integer may be converted to a pointer. The result is implementation­
defined.45

35 A pointer to an object or incomplete type may be converted to a pointer to a different
object type or a different incomplete type. The resulting pointer might not be valid if it is
improperly aligned for the type pointed to. It is guaranteed, however, that a pointer to an
object of a given alignment may be converted to a pointer to an object of the same

44. A cast does not yield an lvalue. Thus, a cast to a qualified type has the same effect as a cast to the unqualified
version of the type.

45. The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be
consistent with the addressing structure of the execution environment.

3.3.3.4 AMERICAN NATIONAL STANDARD X3. 15'1-1 '1~'1 3.3.4

Language 47 Expressions

alignment or a less strict alignment and back again; the result shall compare equal to the
original pointer. (An object that has character type has the lea~t strict alignment.)

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted

5 pointer is used to call a function that has a type that is not compatible with the type of the
called function, the behavior is undefined.

Forward ref(~rences: equality operators (3.3.9), function declarators (including prototypes)
(3.5.4.3), simple assignment (3.3.16.1), type names (3.5.5).

3.3.5 Multiiplicative Operators

10 Syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression I cast-expression

15 multiplicative-expression % cast-expression

Constraints

Each of the operands shall have arithmetic type. The operands of the % operator shall have
integral type.

Semantics

20 The usual arithmetic conversions are performed on the operands.

The result of the binary * operator is the product of the operands.

The result of the I operator is the quotient from the division of the first operand by the
second; the result of the % operator is the remainder. In both operations, if the value of the
second operand is zero, the behavior is undefined.

25 When integers are divided and the division is inexact, if both operands are positive the result
of the I operator is the largest integer less than the algebrai<.: quotient and the result of the %

operator is positive. If either operand is negative, whether the result of the I operator is the
largest integer less than or equal to the algebraic quotient or tht: smallest integer greater than or
equal to the algebraic quotient is implementation-defined, as is the sign of the result of the %

30 operator. If the quotient alb is representable, the expression (a/b) *b + a%b shall equal a.

3.3.6 Additive Operators

Syntax

35

additive-e.xpression:
multiplicative-eJ.,pression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an object type and the other shall have integral type. (Incrementing is equivalent to

40 adding 1.)

For subtraction, one of the following shall hold:

• both operands have arithmetic type;

• both operands are pointers to qualified or unqualified versions of compatible object types; or

3.3.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.6

Language 4H [xpres',;,'!!"

• the left operand is a pointer to an object type and the right operand has inteiCr,t1 t\j1c,
(Decrementing is equivalent to suhtraetiniC 1,)

Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performer! Ili1

5 them.

The result of the binary + operator is the sum of the operands.

The result of the binary - operator is the difference resulting from the;ubtraction (II ~lie

second operand from the first.

For the purposes of these operator'" a pointer to a nonarray object beklves the sallie :h ;.

10 pointer to the first clement of au array of length olle with the type of the objeTt a, ih eleill',lll

type.

When an expression that Ius integral type is added to or subtracted from it pointer. the re'·lIlt

has the type of the pointer operand. If the pointer operand points to an clemen! of an ana:

object. and the array is large enough. the result points to an clement offse! from the original

15 element such that the difference of the subscnpts of the resulting and original array elements

equals the integral cxpression. In other words. if the expre';,ion P points t(1 the i -th e1CnF'!11 of

an array object. the expressions (P) +N (equivalently. N+ (P)) and (P) -N (where N lia', lhe

value II) point to. respectively. the i+/I-th and i'-/l"th clements of thc array object. provided tlley

exist. Moreover. if the expression P points to the last element of an array object. the expre'·',lon

20 (P) +1 points one past the last element of the array object. and if the expression Q pc,inls (I'll:

past the last element of an array object. the expression (Q) -1 points to the last element 01 the

array object. If both the pointer operand and the result point to elements of the same arra:

object. or one past the last element of the array object. the evaluation shall no! produce an

overftow: otherwise. the behavior is undefined. Unless both the pointer operand and the re"uit

25 point to elements of the same array object. or the pointer operand points one past the last eIClIlCIl!

of an array object and the result points to an element of the same array object. the behavim is

undefined if the result is used as an operand of the unary * oflerator.

When two pointers to clements or the same array object are subtracted. the result is {he

difference of the subscript!-. of the two array elements. The size of the re'.ull is implementatiun

30 defined. and its type (a signed integral type) is ptrdiff_t defined in the <stddef. h> he;j(.1er.

As with any other arithmetic overflow. if the result docs not tit in the space provided. the

behavior is undefined. In other words. if the expressions P and Q point to. respectively. the Ith

and .i-th elemcnts of an array object. the expression (P) - (Q) has the value i-j provided the

value fits in an object of type ptrdiff_t. Moreover. if the exprcssion P points either to ;lll

35 element of an array object or one past the last element of an array object. and the expres:;ion Q

points to the last clement of the same array object. the expression «Q) +1) - (P) has the san1t.'

value as «Q) - (P)) +1 and as _. (P) - «Q) +1)). and has the value zero if the expression P

points onc past the last element of the alTay object. even though the expression (Q) +1 docs not

point to an element of the array object. LJ nle'S both pointers point to elemente: of the same :.Irr::y
40 object. or one past the last clcmcnt of the :Irray ohject. lhe hehavior is undefined:I!,

46. Another way to approach pointer arithmetic is tust to convert the pointer(s) to charactcr pointer(si: In Ihi,
scheme the integral exprcssion added to or subtracted fmm the converted pointer is tirst multiplied by the: "i/c'
of the object originally pointcd to. and the n:sulting. poil'ler is convcrted back to thc' ori~inal t\pc. POll)(}['1:('1

subtraction. the result of thc diffcrence bctwcl'n Ihe character p(linters is similarly di\lded by llie' sl/e d :h .
obicct originally pointed lo,

When viewcd in this way. an implcmcnlation necd only provide onc extra hy tc (which may overlap anothcl
object in the program) just after the cnd of the ohjccl: in order to satisfy the "one past the last ,'lcmcI1t"
requirements.

3.3.6 AMERICA" ",\TIOf\AL ST ,\NDARD X,; i 'il},! l)K9

Language 49 Expressions

5

Forward references: common definitions <stddef . h> (4,1.~1 l,

3.3.7 Bitwise Shift Operators

Syntax

shifi -eypression:

additil'e-npressiml

shifi-expressiml « additi\'e-c,lpressiol/

shifi-npressiol/ » addiri\'e-npressiol/

Constraints

Each of the operands shall have integral type.

10 Semantics

The integral promotions are perfom1ed on each of the operands. The type of the result is that
of the promoled left operand. If the value of the right operand is negative or is greater than or

equal to the width in bits of the promoted left operand. the behavior is undcflned.

The result of El « E2 is El left-shifted E2 bit positions: vacated bits are filled with zeros.

IS If El has an unsigned type. the value of the result is El multplied by the quantity. 2 raised to
the power E2. reduced modulo ULONG_MAX+l if El has type unsigned long. UINT_MAX+l
otherwise. (The constant~; ULONG MAX and UIN~r MAX are detined 111 the header
<limits. h>. l

The result of El » E2 is El right-shifted E2 bit positions. If El has an unsigned type or if

20 El has a signed type and a nonnegative value. the value of th,:~ result is the integral part of the
quotient of E:L divided by the quantity. 2 raised to the power E:2. If El has a signed type anc' a
negative value. the resulting value is implementation-dell lied.

3.3.8 Relaltional Operators

S.mtax

25

30

l'e Iarllll/a I-C\pressiol/:
shifi -('.Ipress i0/1

relutimwl-expl'essiol/ < shift-elpression
relational-expression> shift-expresslol/

reiationale\pressilJll <= shift-e.lpression
relatil)na{·l'.\l'ression >= shiji-e.lpressilill

Constraints

One of the following shall hold:

• both operands have arithmetiC type:

• both operands are pointers to qualified or unqualified versions of compatible object types: or

35 • both operands are pointers to qualified or unqualified versions of compatible incomplete types.

Semantics

If both of the operands have arithmetic type. the usual arithmetic conversions are performed.

For the purposes of these operators. a pointer to a nonarray object behaves the same as a

pointer to the first element of an arrayal' length one with the type of the object as its element
40 type.

When two pointers are compared. the result depends on the relative locations in the address

space of the objects pointed to. If the objects pointed to are members of the sam~ aggregate
object, pointel's to structure members declared later compare higher than pointers to members

declared earli,~r in the structure. and pointers to array elements with larger subscript values

3.3.6 AMERIC;\1\ NAnONAL STANDARD ;,:~.I)<)-1 9:\9 3.3.8

Language 50 Expressions

compare higher than pointers to elements of the same array with lower subscript values. All
pointers to members of the same union object compare equal. If the objects pointed to are not

members of the same aggregate or union object, the result is undefined. with the following
exception. If the expression P points to an element of an array object and the expression Q

5 points to the last element of the same array object, the pointer expression Q+1 compares higher
than P, even though Q+1 does not point to an element of the array object.

If two pointers to object or incomplete types both point to the same object. or both point one
past the last element of the same array object, they compare equal. If two pointers to object or
incomplete types compare equal, both point to the same object. or both point one past the last

10 element of the same array object.47

Each of the operators < (less than). > (greater than), <= (less than or eljual to). and >=
(greater than or eljual to) shall yield I if the specified relation is true and 0 if it is false.-ls The
result has type into

3.3.9 Equality Operators

15 Syntax

equalitv-e.tpressio/1 :
relatio/1al-expressiO/1
equality-expression == relational-expression
equality-expression ! = relatio/1al-expressir!ll

20 Constraints

One of the following shall hold:

• both operands have arithmetic type:

• both operands are pointers to qualified or unljualified versions of compatible types:

• one operand is a pointer to an object or incomplete type and the other is a pointer to a
25 qualified or unqualified version of void: or

• one operand is a pointer and the other is a null pointer constant.

Semantics

The == (equal to) and the ! = (not eljual to) operators are analogous to the relational
operators except for their lower precedence.49 Where the operands have types and values suitable

30 for the relational operators, the semantics detailed in 3.3.8 apply.

If two pointers to object or incomplete types are both null pointers, they compare equal. If

two pointers to object or incomplete types compare eljua!. they both are null pointers. or both
point to the same object, or both point one past the last element of the same array object. If two

pointers to function types are both null pointers or both point to the same function, they compare
35 equal. If two pointers to function types compare equal. either both are null pointers. or both

point to the same function. If one of the operands is a pointer to an object or incomplete type
and the other has type pointer to a qualified or unqualified version of void. the pointer to an
object or incomplete type is converted to the type of the other operand.

47. If invalid prior pointer operations, such as accesses outside array bounds. produced undefined behavior, the
effect of subsequent comparisons is undefined.

48. The expression a<b<c is not interpreted as in ordinary mathemallcs. As the syntax indicates. it means
(a<b) <c; in other words, "if a is less than b compare I to c: otherwise. compare 0 to c."

49. Because of the precedences. a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

:1.3.8 AMERICAN NATIONAL STAI\;DARD X3.1.'9-llJX9 3.3.9

Language

3.3.10 Bitwise AND Operator

Syntax

51 Expressions

5

AND-expression:
equality-expression
AND-expression & equality-expression

Constraints

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

10 The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the
result is set if and only if each of the corresponding bits in the converted operands is set).

3.3.11 Bitwise Exclusive OR Operator

Syntax

15
exclusive-OR-expression:

AND-expression
exclusive-OR-expression " AND-expression

Constraints

Each of the operands shall have integral type.

Semantics

20 The usual arithmetic conversions are performed on the operands.

The result of the " operator is the bitwise exclusive OR of the operands (that is, each bit in
the result is set if and only if exactly one of the corresponding bits in the converted operands is
set).

3.3.12 Bitwise Inclusive OR Operator

25 Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression I exclusive-OR-expression

Constraints

30 Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the I operator is the bitwise inclusive OR of the operands (that is, each bit in
the result is set if and only if at least one of the corresponding bits in the converted operands is

35 set).

3.3.10 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.12

Language

3.3.13 Logical AND Operator

Syntax

52 Expressions

5

logical-AND-expression:
inclusive-DR-expression
logical-AND-expression && inclusive-DR-expression

Constraints

Each of the operands shall have scalar type.

Semantics

The && operator shall yield I if both of its operands compare unequal to 0; otherwise, it
10 yields 0. The result has type into

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; there
is a sequence point after the evaluation of the first operand. If the first operand compares equal
to 0, the second operand is not evaluated.

3.3.14 Logical OR Operator

15 Syntax

logical-DR -expression:
logical-AND-expression
logical-DR-expression I I logical-AND-expression

Constraints

20 Each of the operands shall have scalar type.

Semantics

The I I operator shall yield I if either of its operands compare unequal to 0; otherwise. it
yields O. The result has type into

Unlike the bitwise I operator, the I I operator guarantees left-to-right evaluation; there is a
25 sequence point after the evaluation of the first operand. If the first operand compares unequal to

0, the second operand is not evaluated.

3.3.15 Conditional Operator

Syntax

30
conditional-expression:

logical-DR -expression
logical-DR-expression ? expression conditional-e.\pression

Constraints

The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

35 • both operands have arithmetic type;

• both operands have compatible structure or union types;

• both operands have void type;

• both operands are pointers to qualified or unqualified versions of compatible types;

• one operand is a pointer and the other is a null pointer constant; or

40 one operand is a pointer to an object or incomplete type and the other IS a pointer to a
qualified or unqualified version of void.

3.3.13 AMERICAN r\ATlONAL STANDARD X3.I:59-I989 3.3.15

Language

Semantics

53 Expressions

The first operand is evaluated; there is a sequence point after its evaluation. The secord
operand is evaluated only if the first compares unequal to 0; the third operand is evaluated only if
the first compares equal to 0; the value of the second or third operand (whichever is evaluated) is

5 the result. 50

If both the second and third operands have arithmetic type, the usual arithmetic conversions
are performed to bring them to a common type and the result has that type. If both the operands
have structure or union type, the result has that type. If both operands have void type, the result
has void type.

10 If both the second and third operands are pointers or one i,. a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the
types pointed-to by both operands. Furthermore, if both operands are pointers to compatible
types or differently qualified versions of a compatible type, the result has the composite type: if
one operand is a null pointer constant, the result has the type of the other operand: otherwise. one

15 operand is a pointer to void or a qualified version of void, in which case the other operand is
converted to type pointer to void, and the result has that type.

Examples

The common type that results when the second and third operands are pointers is determined
in two independent stages. The appropriate qualifiers, for example. do not depend on whether the

20 two pointers have compatible types.

Given the declarations

25

30

3S

cons1: void *c_vp;
void *vp;
cons1: int *c_ip;
vola1:ile int *v_ip;
int '~ip;

cons1: char * c_ cp;

the third column in the following table is the common type that is the result of a conditiona I
expression in which the first two columns are the second and third operands (in either order):

c_vp c_ip const void *
v_ip 0 volatile int *
c_ip v_ip const volatile int *
vp c_cp const void *
ip c_ip const int *
vp ip void *

50. A conditional expression does not yield an Ivalue.

3.3.15 AMERICAN NATIONAL STANDARD X3.159-19g9 3.3.15

Language

3.3.16 Assignment Operators

Syntax

54

(ISS ig IlmeIll-c. \pressi011:

I 'OIlilif ilma I-e.'pre I'sil!ll

11110rv-expressiOil (ls.lig Ilnw11 f -O/lera II II" (IS I ig 11meIll-expressi011

(lSSi/-!IlIllCllf-Operafor: one of

= *= 1= %= +=

Constraints

«= »= &= A= 1=

An assignment operator shall have a modifiable Ivalue as its left operand.

10 Semantics

An assignment operator store~ a value in the object designated by rhe left operand. An
assignment expression has the value of the left operand ancr the a~~ignl1lenl, but is not an Ivaluc.

The type of an assignment expression is the type of the left operand unless the left operand has
qualified type. in which case it is the unqualitied version or the type of the left operand. The

15 side effect of updating the stored value of the left operand shall occur between the previous and

the next sequence point.

The order of evaluation of the operands is unspecified.

3.3.16.1 Simple Assignment

Constraints

20 One of the following shall hold:'l

• the left operand has qualified or unqualified arithmetic type and the right has arithmetic type:

• the left operand has a qualified or unqualified venion of a structure or union type compatible
with the type of the right:

• both operands are pointers to qualified or unqualitied versions of compatible typcs. and the

25 type pointed to by the left has all the qualifiers of the type pointed to by the right:

• one operand is a pointer to an object or incomplete type and the other is a pointer to a

qualified or unqualified version of void. and the type pointed to by the left has all the

qualifiers of the type pointed to hy the right: or

• the left operand is a pointer and the right is a null pointer constant.

30 Semantics

In silll/l/e assigllment (=). the value of the right operand is converted to the type of the

assignment expre.ssion and replaces the value stored in the object designated hy the left operand.

If the value being stored in an object is accessed from another object that overlaps in any way

the storage of the Iirst object. then the overlap shall be exact and the two object~ ~hall have

35 qualified or unqualified versions of a compatible type: otherWise. the behavior is undefined.

:; I. The asymmetric appearance of these constraints with re\pect to Iype ljualitiers i, due to the conversioll
(specilied in 3.2.2.1) that changes Ivalues to "the valuc of thc exprcossion" which rcmovcs any typc ljualifil'rs
from the type catcgory of the exprcssion.

3.3.16 :\\lERICA'\ 'iATIONAL STA"iDARD XI.! 'i l)_ t9S9 3.3.16.1

Language

Example

In the program fragment

55 Expressions

int f(void);
chalr c;

5 /* */
/* */ «c = fO) == -1) /* ... */

the int value returned by the function may be truncated wh,~n stored in the char. and then

converted back to int width prior to the comparison. In an implementation in which "plain"
char has the same range of values as unsigned char (and char is narrower than int), the

10 result of the conversion cannot be negative, so the operands of the comparison can never compare

equal. Therefore. for full portability, the variable c should be declared as into

3.3.16.2 Compound Assignment

Constraints

For the operators += and -= only. either the left operand shall be a pointer to an object type
15 and the right shall have integral type, or the left operand shall have qualified or unqualified

arithmetic type and the right shall have arithmetic type.

For the other operators. each operand shall have arithmetic type consistent with those allowed

by the corresponding binary operator.

Semantics

20 A compound assignmenr of the form E1 op = E2 differs from the simple assignment

expression El = E1 op (E2) only in that the lvalue El is evaluated only once.

3.3.17 Comma Operator

Syntax

25
expressioll :

assig11mI'llt-e.rpressiOil
expressioll , assiglllJle/lt-e.\pressio/l

Semantics

The left operand of a comma operator is evaluated as a void expression: there is a sequence
point after its evaluation. Then the right operand is evaluated; the result has its type and value. 'i'-'

30 Example

As indicated by the syntax, in contexts where a comma is a Dunctuator (in lists of arguments

to functions and lists of initializers) the comma operator as described in this section cannot

appear. On the other hand, it can be used within a parenthesized expression or within the second

expression of a conditional operator in such contexts. In the function call

35 f (a, (t=3, t+2), c)

the function has three arguments. the second of which has the value 5.

Forward references: initialization (3.5.7).

52. A comma operator docs not yield all Ivalue.

3.3.16.1 Al\lERICAN \iATIONAL STANDARD X3159-19?:9 .3.3.17

Language

3.4 Constant Expressions

Syntax

COIISIii III-npressioll:
(.(II/diIi lilla !-cxprcssi1111

56 Constant Expressions

5 Description

A conslulll e.\pression can be evaluated during translation rather than runtime. and
accordingly may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment. increment. decrement. function-call. or

10 comma operators. except when they are contained within the operand of a s izeof operator."·l

Each constant expression shall evaluate to a constant that is in the range of representable

values for its type.

Semantics

An expression that evaluates to a constant is required in several contexts."4 If a floating

15 expression is evaluated in the translation environment. the arithmetic precision and range shall be
at least as great as if the expression were being evaluated in the execution environment.

An illlegliJ! cOllslall1 expressioll shall have integral type and shall only have operands that are
integer constants. enumeration constants. character constants. sizeof expressions. and floating

constants that are the immediate operands of casts. Cast operators in an integral constant
20 expression shall only convert arithmetic types to integral types. except as part of an operand to

the s i zeof operator.

More latitude is permitted for constant expressions in initializers. Such a constant expression

shall evaluate to one of the following:

• an arithmetic constant expression.

25 • a null pointer constant.

• an addre" constant. or

• an addre,s constant for an object type plus or minus an integral constant expression.

An arilhmelic cOllslunl expressioll shall have arithmetic type and shall only have operands
that are integer constants. floating constants. enumeration constants. character constants. and

30 sizeof expressions. Cast operators in an arithmetic constant expression shall only convert

arithmetic types to arithmetic types. except as part of an operand to the sizeof operator.

An address cOI1Sliill/ is a pointer to an lvalue designating an object of static storage duration.

or to a function designator; it shall be created explicitly, using the unary & operator, or implicitly.

by the use of an expression of array or function type. The array-subscript [l and member-access

35 . and -> operators, the address & and indirection * unary operators. and pointer casts may be
used in the creation of an address constant, but the value of an object shall not be accessed by

usc of these operators.

'i.'. The operand of a sizeof operator is not evaluated (.LI.3.4J, and thu, any operator in 3.3 may be used.
'i-l. An integral conqant expre,sion mu,t be used to specify the size of a bit-field member of a structure. the value

of an enumeration constant. the size of an array, or the value of a case constant. Further constraints that
appl) to the integral constant expressions used in· conditional-inclusion preprocessing dircctives arc discllssed in
3.S.1.

,\'V1ERICAr\ "iATIO"iAL STA"lDARD X3.159-19H9 3.4

Language 57 Constant Expressions

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.55

Forward reft:rences: initialization (3.5.7).

55. Thus, in the following initialization,

static int i = 2 I I 1 / 0;

the expression is a valid integral constant expression with value one.

3.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.4

Language

3.5 Declarations

Syntax

58 Declarations

5

10

declaration:
declaration-specifiers init-declarator-list ;

opt

declara tion-specifiers:
storafJe-class-specifier declaration-specifiers, opt
tvpe-specifier declaration-specifiers•. . ~t

type-qualifier declaration-specifiersopt

in it-declarator-list:
init-declarator
init-declarator-list I in it-declarator

init-declarator:
declarator
declarator = initializer

15 Constraints

A declaration shall declare at least a declarator, a tag, or the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier (in
a declarator or type specifier) with the same scope and in the same name space, except for tags as
specified in 3.5.2.3.

20 All declarations in the same scope that refer to the same object or function shall specify
compatible types.

Semantics

A declaration specifies the interpretation and attributes of a set of identifiers. A declaration
that also causes storage to be reserved for an object or function named by an identifier is a

25 definition. 56

The declaration specifiers consist of a sequence of specifiers that indicate the linkage, storage
duration, and part of the type of the entities that the declarators denote. The init-declarator-list is
a comma-separated sequence of declarators, each of which may have additional type information,
or an initializer, or both. The declarators contain the identifiers (if any) being declared.

30 If an identifier for an object is declared with no linkage, the type for the object shall be
complete by the end of its declarator, or by the end of its in it-declarator if it has an initializer.

Forward references: declarators (3.5.4), enumeration specifiers (3.5.2.2), initialization (3.5.7),
tags (3.5.2.3).

56. Function definitions have a different syntax, described in 3.7.1.

3.5 AMERICAN NATIONAL STANDARD X3.159-1989 3.5

Language

3.5.1 Storage-Class Specifiers

Syntax

59 Declarations

5

storage-class-specifier:
typedef
extern
static
auto
register

Constraints

10 At most. one storage-class specifier may be given in the declaration specifiers in a
declaration.57

Semantics

The typedef specifier is called a "storage-class specifier" for syntactic convenience only; it
is discussed in 3.5.6. The meanings of the various linkages and storage durations were discussed

15 in 3.1.2.2 and 3.1.2.4.

A declaratLOn of an identifier for an object with storage-class specifier register suggests
that access to the object be as fast as possible. The extent to which such suggestions are
effective is implement~tion-defined.5x

The declaration of an identifier for a function that has block scope shall have no explicit

20 storage-class specifier other than extern.

Forward references: type definitions (3.5.6).

3.5.2 Type Specifiers

Syntax

25

30

35

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
stn ICt-or-II 11 i011-spec'ifier
enum-specifier
tvpedeFname

57. See '"future language directions" (3.9.3).

58. The implementation may treat any register declaration simply as an auto declaration. However. whether
or not addressable :itorage is actually used. the address of any part of an object declared with storage-class
specifler registel: may not be computed. either explicitly (by use of the unary & operator as discussed in
3.3.3.2) or implicitly (by converting an array name to a pointer as discussed in 3.2.2.1). Thus the only operator
that can be applied to an array declared with storage-class specifier register is sizeof.

3.5.1 AMERICAN NATIONAL STANDARD X3.159-1939 3.5.2

Language

Constraints

60

Faeh list of t.\p~' ,pccihcl' ,:hall he Oill' of the foIIO\'IIH' sets tdehmile,(C()jilin,\>," ltt'U

there is Jl1or,: than one set on a line): thl: t)pe ,pcciflcr" ma; OCellI' In ail: (JI'(kr.

intennixed with the other ckcl~iratinll speedier",

5 • void

• char

• signed char

• unsigned cha:::

• short. signed short. short i.nt.. or :S;~9i1ed ;;:;tlCiL tint

10 • unsigned short. or unsi9ne,d shc:rt int

• into signed. signed into or no lype 'lli.:eillei\

• unsigned. or unsigned int

• long. signed long. long int. or sig':n,ecl long illt

• unsigned long. or unsigned long int

15 • float

• double

• long double

• stfllct-llrllnion speeiiiCl

• cnllm-specitJer

20 • lypedcf-narne

Semantics

Specifier" for Sllucture,. union,,_ arid elllll1l.,:ralioIlS :.u,: disells,ed in 3S..!, I tJlro\l~'h;,).},(

Declarations of typeclet name:, arc cliseu",ed in .1.5.6 The charactcri".ties of the other! 'r'<:s ,ll",'

discussed in 3,1.2,5,

25 Each of the above cOlTlll1a-sep,mitcd "eb cksignalt:' tile ',Cline type. C\c<':P! lil,;! l')[hil'lll'!:I'
the type' signed int (0:' si qned) md" di ffer from int ((I! no type '.pcci I!CI'),

Forward references: cllumeratiul1 speediers 13,5,2,21. stni(lillC <l1,d 11Iii,};:
tags (35,2.3), type detinitions C~.5.6),

3.5.2.1 Structure and lJnion Specifier's

30 Syntax

I tl"l/c ,H il" -II! Iii)/I-spec inCI:
\tf"t 1(' (··()j"-l{)! il)} j

Sri"liL 'j' -{Jl'-! (j I ii j/ i

.IIi'lL I-OI-lIlIinil:

struct
union

ii/)I
dCllttjlCI

st/ill'! -dec/illil / ion !ill

.Itl"uel·d,'{ '/ur,/I In,'!

.Itiii! I-dc< 'IiimilOil-list strw ') -dr'! '/11 I"U ri' i/l

J.5.2 ,\\If'Ri('\'",: '\i '-TiO\\l

specifieI'-qualifier-lisl. . opt
specifieI'-qualifier-list. . opt

Language

5

61

slruet-declaralion.
specifier-quaIifier-lisl slrucl-declarator-Iisl

specifier-qualifter-Iisl.­

tvpe-specifier
type-qualifier

slruet-declarator-list.­
struct-declarator
slruct-declaralor-lisl , struct-declarator

Declarations

10
slruct-declarator .­

declarator

declarator
opt

constant-expression

Constraints

A structure or union shall not contain a member with incomplete or function type. Hence it
shall not contain an instance of itself (but may contain a pointer to an instance of itself).

15 The expression that specifies the width of a bit-field shall be an integral constant expression
that has nonnegative value that shall not exceed the number of bits in an ordinary object of
compatible type. If the value is zero, the declaration shall have no declarator.

Semantics

As discussed in 3.1.2.5, a structure is a type consisting of a sequence of named members,
20 whose storage is allocated in an ordered sequence, and a union is a type consisting of a sequence

of named members, whose storage overlap.

Structure and union specifiers have the same form.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type.
within a translation unit. The struct-declaration-list is a sequence of declarations for the members

25 of the structure or union. If the struct-declaration-list contains no named members. the behavior
is undefined. The type is incomplete until after the} that temlinates the list.

A member of a structure or union may have any object type. In addition, a member may be
declared to consist of a specified number of bits (including a sign bit. if any). Such a member is
called a hit~fie/d;s9 its width is preceded by a colon.

30 A bit-field shall have a type that is a qualified or unqualified version of one of into
unsigned int, or signed into Whether the high-order bit position of a (possibly qualified)
"plain" int bit-field is treated as a sign bit is implementation-defined. A bit-field is interprete:d
as an integral lype cunsisting of the specified number of bits.

An implementation may allocate any addressable storage unit large enough to hold a bit-field.
35 If enough space remains, a bit-field that immediately follows another bit-field in a structure shall

be packed into adjacent bits of the same unit. If insufficient space remains. whether a bit-field
that does not fit is put into the next unit or overlaps adjacent units is implementation-defined.
The order of allocation of bit-fields within a unit (high-order to low-order or low-order to high­
order) is implementation-defined. The alignment of the addressable storage unit is unspecified.

40 A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.60 As a special case of this, a bit-field structure member with a width of 0 indicates that

59. The unary & (address-of) operator may not be applied to a bit-field object: thus. there are no pointers to or
arrays of bit-field objects.

60. An unnamed bit-field structure member is useful for padding to contonn to externally imposed layouts.

3.5.2.1 AMERICAN NATIONAL STANDARD X3.159-19R9 3.5.2.1

Language 62 Declarations

no further bit-field is to be packed into the unit If] which the previous bit-field, if any, was
placed.

Each non-bit-field member of a structure or umon object IS aligned lf1 an implementation­
defined manner appropriate to its type.

5 Within a structure object, the non-bit-field members and the units in which bit-fields reside
have addresses that increase in the order in which they are declared. A pointer to a struclure
object, suitably converted, points to its initial member (or if that member is a bit-field, then to the
unit in which it resides), and vice versa. There may therefore be unnamed padding within a
structure object, but not at its beginning, as necessary to achieve the appropriate alignment.

10 The size of a union is sufficient to contain the largest of its members. The value of at most
one of the members can be stored in a union object at any time. A pointer to a union object,
suitably converted, points to each of its members (or if a member is a bit-field, then to the unit in
which it resides), and vice versa.

There may also be unnamed padding at the end of a structure or union, as necessary to
15 achieve the appropriate alignment were the structure or union to be an element of an array.

Forward references: tags (3.5.2.3).

3.5.2.2 Enumeration Specifiers

Syntax

20

25

enum-specifier:
enum identifier {enumerator-list}

'd if. optenum I entlJ'er

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant = cons/ant-expression

Constraints

The expression that defines the value of an enumeration constant shall be an integral constant
30 expression that has a value representable as an into

Semantics

The identifiers in an enumerator list are declared as constants that have type int and may
appear wherever such are pennitted. 51 An enumerator with = defines its enumeration constant as
the value of the constant expression. If the first enumerator has no =, the value of its

35 enumeration constant is O. Each subsequent enumerator with no = defines its enumeration
constant as the value of the constant expression obtained by adding I to the value of the previous
enumeration constant. (The use of enumerators with = may produce enumeration constants with
values that duplicate other values in the same enumeration.) The enumerators of an enumeration

are also known as its members.

40 Each enumerated type shall be compatible with an integer type; the choice of type is
implementation-defined.

61. Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from each other
and from other identifiers declared in ordinary declarators.

3.5.2.1 AMERICAN NATIONAL STANDARD X::,159-lljR9 3.5.2.2

Language

Example

63 Declarations

enum, hue { chartreuse, burgundy, claret:=20, winedark };
/* ... */
enum, hue col, *cp;

5 /* ... */
col = claret;
cp = &col;
/* */
/* */ (*cp != burgundy) /* ... */

10 makes hue the tag of an enumeration, and then declares col a~; an object that has that type and
cp as a pointer to an object that has that type, The enumerated values are in the set {O, 1, 20,
2l},

Forward references: tags (3.5.2.3).

3.5.2.3 Tags

15 Semantics

A type specifier of the form

struct-or-union identifier { struct-declaration-list
or

enum identifier { enumerator-list }

20 declares the identifier to be the tag of the structure, union, or enumeration specified by the list.
The list defines the structure content, union coment. or enumeration contem. If this declaration
of the tag is visible, a subsequent declaration that uses the tag and that omits the bracketed list
specifies the declared structure, union, or enumerated type. Subsequent declarations in the same
scope shall omit the bracketed list.

25 If a type specifier of the form

stru('(·or-union identifier

occurs prior to the declaration that defines the content, the structure or union is an incomplete
type.62 It declares a tag that specifies a type that may be lIsed only when the size of an object of
the specified type is not needed.6

' If the type is to be completed, another declaration of the tag
30 in the same scope (but not in an enclosed block, which declares a new type known only within

that block) shall define the content. A declaration of the form

struct··or-union identifier ;

specifies a structure or union type and declares a tag, both visible only within the scope in which
the declaration occurs. It specifies a new type distinct from any type with the same tag in an

35 enclosing scope (if any).

A type specifier of the form

62. A similar construction with enum does not exist and is not necessary as there can be no mutual dependencies
between the declaration of an enumerated type and any other type.

63. It is not needed, for example, when a typedef name is declared to be a specifier for a structure or union, or
when a pointer to or a function returning a structure or union is being declared. (See incomplete types in
3.1.2.5.) The specification shall be complete before such a function is called or defined.

3.5.2.2 AMERICAN NATIONAL STANDARD X3.159-1'l!N 3.5.2.3

Language

or

64

stntCl-Or-UIl ion { strut 't -declora tioll-I iSI

enum { enumerator-list }

Declarations

specifies a new structure, union, or enumerated type, within the translation unit that can only be
5 referred to by the declaration of which it is a pan.f>4

Examples

This mechanism allows declaration of a self-refelential structure.

10

struct tnode {
int count;
struct tnode *left, *right;

} ;

specifies a structure that contains an integer and two pointers to objects of the same type, Once
this declaration has been given, the declaration

struct tnode s, *sp;

15 declares 5 to be an object of the given type and sp lO be a pointer to an object of the given type.
With these declarations, the expression sp->left refers to the left struct tnode pointer of
the object to which sp points: the expression s , riqht->count designates the count member
of the right struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

20

25

typedef struct tnode TNOOE;
struct tnode {

int count;
TNOOE *left, *right;

} ;

TNOOE S, *sp;

To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures, the declarations

struct s1
struct s2

struct 52 *s2p; /* */ }; /* 01 */
struct 51 *s1p; /* */ }; /* 02 */

30 specify a pair of structures that contain pointers to each other. 'lote. however. that if s2 were
already declared as a tag III an enclosing scope. the declaration 01 would refer to if, not to the

tag s2 declared in 02. To eliminate this context sensitivity. the otherwise vacuous declaration

struct 52;

may be inserted ahead of 01. This declares a new tag s2 in the inner scope: the declaration D2
35 then completes the specification of the new type.

Forward references: type definitions (3.5.6).

6~, Of course. when the declaration is of a typedef name. subsequent declarations can make use of the typedef
name to declare objects having the speeihed structure. union. or enumerated type.

3,5.2.3 A\1ERICAt" \iATIONAL STANDARD X:1,1 'ilJ-!lJXlJ 3.:1 ..2.3

Language

3.5.3 Type Qualifiers

Syntax

65 Declarations

5

type-qualifier:
canst
volatile

Constraints

The same type qualifier shall not appear more than once in the same specifier list or qualifier
list, either directly or via one or more typedefs.

Semantics

10 The properties associated with qualified types are meaningful only for expressions that are
Ivalues.6)

If an attempt is made to modify an object defined with a canst-qualified type through use of
an Ivalue with non-canst-qualified type, the behavior is undefined. If an attempt is made to refer
to an object defined with a volatile-qualified type through use of an Ivalue with non-volatile­

15 qualified type, the behavior is undefined 66

An object [hat has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring to such
an object shall be evaluated strictly according to the rules of the abstract machine, as described in
2.1.2.3. Furthermore, at every sequence point the value last stored in the object shall agree with

20 that prescribed by the abstract machine, except as modified by the unknown factors mentioned
previously.o7 What constitutes an access to an object that has volatile-qualified type is
implementation-defined.

If the specification of an array type includes any type qualifiers, the element type is so­
qualified, not the array type. If the specification of a function type includes any type qualifiers,

25 the behavior is undefined. 6x

For two qualified types to be compatible, both shall have the identically qualified version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect
the specified type.

Examples

30 An object declared

extern canst volatile int real_time_cloc:k;

may be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

The following declarations and expressions illustrate the behavior when type qualifiers modify
an aggregate type:

65. The implementation may place a const object that is not volatile in a read-only region of storage.
Moreover, the implementation need not allocate storage for such an object if its address is never used.

66. This applies to those objects Ihat behave as if they were detined WiTh qualified Iypes, even if Ihey are never
actually defined as objects in the program (such as an object at a memory-mapped input/output address).

67. A volatile declaration may be used 10 describe an object corresponding 10 a memory-mapped input/output
port or an object accessed by an asynchronously interrupting function. Actions on objects so declared shall not
be "optimized alit" by an implementation or reordered except as permitted by the rules for evaluating
expressions.

68. Both of these can only occur through the use of typedefs.

3.5.3 AMERICAN NATIONAL STANDARD X3.1:'i9-1989 3.5.3

Language 66 Declarations

5

eonst struet s { int mem; } es = { 1 };
struet s nes; / * the ohiect nes is modlfwhle * /
typedef int A[2) [3];
eonst A a = {{4, 5, 6}, {7, 8, 9}}; /*arrayofarrayofeonst int */
int *pi;
eonst int *pei;

10

nes = es;
es nes;
pi = &nes.mem;
pi = &es.mem;
pei = &es.mem;
pi = a[O);

3.5.4 Declarators

/* valid */
/ * violates 1110difiahie Il'alue constraint for = * /
/* valid */
/ * violates type constraints for = * /
/* valid */
/* in1'Glid: a[O] has (vpe "eonst int *" */

Syntax

15 declarator:

cons'ant-expression
op'

parameter-type-list)
identifier-list)

. 01"

direct-declarator
direct-declarator

pointer direct-declarator
01"

direct-declarator:
identifier
(declarator
direct-declara'or20

pointer:

25

30

* tvpe-qualifier-Iist
. 01"

* 'vpe-qualifier-Iist poimer. op'

type-qualifier-Iist:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list ,

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

35 parameter-declaration:
dei'laration-specifiers
declaration-specifiers

declarator
ahstract-declarator

op'

40

identifier-list:
identifier
identifier-list , ident(fier

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as
the declarator appears in an expression, it designates a function or object with the scope. storage
duration, and type indicated by the declaration specifiers.

45 In the following subsections. consider a declaration

T D1

3.5.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.4

Language 67 Declarations

5

where T contains the declaration specifiers that specify a type T (such as int) and 01 is a
declarator that contains an identifier ident. The type specified for the identifier ident in the
various forms of declarator is described inductivcly using this notation.

If, in the dedaration "T 01," D1 has the form

identifier

then the type specified for ident is T.

If, in the dedaration "T 01," D1 has the form

(D)

then ident has the type specified by the declaration "T D." Thus, a declarator in parentheses is
10 identical to the unparenthesized declarator, but the binding of complex declarators may be altered

by parentheses.

ImplementatioJll Limits

The implementation shall allow the specification of types that have at least 12 pointer, array,
and function declarators (in any valid combinations) modifying an arithmetic, a structure. a union,

15 or an incomplete type, either directly or via one or more typedefs.

Forward referl~nces: type definitions (3.5.6).

3.5.4.1 Pointer Declarators

Semantics

If, in the declaration "T 01," 01 has the form

20 * type-qualifier-list D. opt

and the type specified for ident in the declaration "T D" is "deril'ed-declarator-type-list T:'
then the type specified for ident is "deril'ed-declarator-type-list type-qualifier-list pointer to T."
For each type qualifier in the list, ident is a so-qualified pointer.

For two pointer types to be compatible, both shall be identically qualified and both shall be
25 pointers to compatible types.

Examples

The following pair of declarations demonstrates the difference between a "variable pointer to
a constant value" and a "constant pointer to a variable value."

30
const i.nt *ptr_to_constant;
i.nt ~const constant-ptr;

The contents of an object pointed to by ptr_to_constant shall not be modified through that
pointer, but ptr_ to_constant itself may be changed to point to another object. Similarly,
the contents of the int pointed to by constantytr may be modified, but constantytr
itself shall always point to the same location.

~

35 The declaration of the constant pointer constant-ptr may be clarified by including a
definition for the type "pointer to int."

typedlef int *intytr;
const int-ptr constantytr;

declares constantytr as an object that has type "const-qualil1ed pointer to int."

3.5.4 AMERICAN NATIONAL STANDARD X3159-19g9 3.5.4.1

Language

3.5.4.2 Array Declarators

Constraints

Declarations

The expression delimited by [and] (whil'h ,pecities the size of an array) ,hall he an integral
constant expression that has a value greater than zero.

5 Semantics

If. in the declaration "T Dl," Dl has the form

D [collstanr-expressioll]
opl

and the type specified for idem in the declaration "T D" is "dC/i\'cd-Lin !ul"ilior-trpc-fisl T,"
then the type specified for !dent is "derired-del'iarator-tv/>e-list array of r. "I,') If the size is not

10 present the array type is an incomplete type.

For two array types to he compatible, both shall have cmnpatihle clement types, and if both
size specifiers are present, the) shall have the ,ame value.

Examples

float fa[ll], *afp[l7];

15 declares an array of float numbers and an array of pointers to float numhers.

Note the distinction between the declarations

extern int *x;
extern int y[];

The first declares x to be a pointer to int; the second declares y to be an array of int of
20 unspecified size (an incomplete type), the storage for which i, defined elsewhere.

Forward references: function definitions (3.7.1 L initialization (.\.5.7).

3.5.4.3 Function Declarators (Including Prototypes)

Constraints

A function declarator shall not specIfy a return type that is a function type or an array type.

25 The only storage-class specitier that shall occur in a paramekr declaration is register.

An identifier list in a function declarator that i, not part of a function definition shall be
empty.

Semantics

If, in the declaration "T Dl," Dl has the form

30
or

D (parameter-t\pe-lisl)

D (idelltifier-list). Opl

and the type specified for idellt in the declaration "T D" is "dcri\'cd-dec!al"iltor-t\l)e-list L"
then the type specified for idem is ··deri\'ed·dec!al"illor-typc-'ist function returning T."

35 A parameter type list specifies the types of, and may declare identifiers for. the parameters of
the function. If the list terminates with an ellipsis (,). no information about the number or
types of the parameters after the comma is supplied.'m The ,pecial ca',e of void as the only

fJ9. When several "array of" specilicalions are adjacent. a multidimensional array i, declared.
70. The macros defined in the <stdarg _h> header (4.R I may he used to access argUI11Cnh that cmrespond to the

ellipsis.

3.5.4.2 A\1ERICA'\ !'iATIONAL STA';D\RD x.\ 1:'Jli 1. %9 3.5.4.3

Language 69 Declarations

item in the list specifies that the function has no parameters.

In a parameter declaration. a single typedel' name in parentheses is taken to be an abstract
declarator that specifics a function with a single parameter, not as redundant parentheses around
the identifier for a declarator.

5 The storage-class specifier in the declaration specifiers for a parameter declaration. if present.
is ignored unless the declared parameter is one of the members of the parameter type list for a
function definition.

An identifier list declares only the identifiers of the parameters of the function. An empty list

in a function declarator that is part of a function definition specifies that the function has no
10 parameters. The empty list in a function declarator that is not part of a function definition

specifies that no information about the number or types of the parameters is supplied. 71

For two function types to be compatible. both shall specify compatible return types. 7
:

Moreover. the parameter type lists. if both are present. shall agree in the number of parameters
and in use of the ellipsis terminator; corresponding parameters shall have compatible types. If

15 one type has a parameter type list and the other type is specified by a function declarator that is
not part of a function definition and that contains an empty identifier list. the parameter list shall
not have an ell ipsis temlinator and the type of each parameter shall be compatible with the type
that results from the application of the default argument promotions. If one type has a parameter
type list and the other type is specified by a function definition that contains a (possibly empty)

20 identifier list. both shall agree in the number of parameters. and the type of each prototype
parameter shall be compatible with the type that results frarr the application of the default
argument promotions to the type of the con'esponding identifier. (For each parameter declared

with function or array type. its type for these comparisons is the one that results from conversion
to a pointer type. as in 3.7.1. For each parameter declared with qualified type. its type for these

25 comparisons is the unqualified version of its declared type.)

Examples

The declaration

int :f (void), *fip (), (*pfi) () ;

declares a function f with no parameters returning an into a function fip with no parameter
30 specification returning a pointer to an into and a pointer pfi to a function with no parameter

specification returning an into It is especially useful to compare the last two. The binding of
* fip () is * (fip ()). so that the declaration suggeqs. and the same construction in an
expression requires. the calling of a function fip. and then using indirection through the pointer
result to yield an into In the declarator (*pfi) (). the extra parentheses are necessary to

35 indicate that indirection through a pointer to a function yields a function designator. which is then
used to call the function: it returns an into

If the declaration occurs outside of any function. the Identifiers have file scope and external
linkage. If the declaration occurs inside a function. the identifiers of the functions f and fip
have block scope and either internal or external linkage (depending on what file scop,e

40 declarations for these identitiers arc visible). and the identifier of the pointer pfi has block scop,e
and no linkage.

Here arc two more intricate examples.

71. See "future language directions" 0.9.4).

7"2. If both function types are "old style." parameter types arc not compared.

3.5.4.3 AMERICAN r\ATIONAL STANDARD X:\.I.'i'J·19R9 3.5.4.3

Language 70

int (*apfi [3]) (int *x, int *y);

Declarations

5

declares an array apfi of three pointers to functions returning into Each of these functions has
two parameters that are pointers to into The identifiers x and yare declared for descriptive
purposes only and go out of scope at the end of the declaration of apfi. The declaration

int (*fpfi (int (*) (long), int» (int, ...);

declares a function fpfi that returns a pointer to a function returning an into The function
fpfi has two parameters: a pointer to a function returning an int (with one parameter of type
long). and an into The pointer returned by fpfi points to a function that has one int
parameter and accepts zero or more additional arguments of any type.

10 Forward references: function definitions (3.7.1), type names (3.5.5).

3.5.5 Type Names

Syntax

type-name:
specifier-qualifier-list ahstract-declarator

opt

constant-expression]
opt

parameter-t\'pe-list). opr

15

20

ahstract-declarator:
pointer
poiliter direet-ahstract-declarator

opr

direct-ahstract-declarator:
(ahstract-declarator)
direct-ahstract-declarator

opt
clirec 't-ahstract-dcc'/arator

opt

Semantics

In several contexts, it is desired to specify a type. This is accomplished using a type name,
which is syntactically a declaration for a function or an object of that type that omits the

2S identifier. 73

Examples

The constructions

30

(a)

(b)

(c)

(d)

(e)

([)

(g)

int
int *
int *[3]
int (*) [3]
int * ()
int (*) (void)
int (*const []) (unsigned int, ...)

35 name respectively the types (a) into (b) pointer to int, (c) array of three pointers to int, (d)
pointer to an array of three ints. (e) function with no parameter specification returning a pointer
to int, ([) pointer to function with no parameters returning an into and (g) array of an
unspecified number of constant pointers to functions, each with one parameter that has type
unsigned int and an unspecified number of other parameters, returning an into

n. As indicated by the syntax, cmpty parentheses in a type name are interpreted as "function with no parameter
specification." rather than redundant parentheses around the omitted identifier.

3.5.4.3 AMERICA:'oJ NATIONAL STANDARD X3.159-1989 3.5.5

Language

3.5.6 Type Definitions

Syntax

(vpedef-name:
identifier

71 Declarations

5 Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an
identifier to be a typedef name that specifies the type specified for the identifier in the way
described in 3.:5.4. A typedef declaration does not introduce a new type, only a synonym for
the type so specified. That is, in the following declarations:

10 typedef T type_ident;
type__ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers
in T (known a, T), and the identifier in D has the type "derived-declarator-type-list T" where
the derived-declarator-type-list is specified by the declarators of D. A typedef name shares the

15 same name space as other identifiers declared in ordinary declarators. If the identifier is
redeclared in an inner scope or is declared as a member of a structure or union in the same or an
inner scope, th(~ type specifiers shall not be omitted in the inner declaration.

Examples

After

20

25

typedef int MILES, KLICKSP();
typedef struct { double re, im; } complex;

the constructions

MILES distance;
exteJ:n KLICKSP *metricp;
complex x;
complex z, *zp;

are all valid declarations. The type of distance is int, that of metricp is . 'pointer to
function with no parameter specification returning int," and that of x and z is the specified
structure; zp is a pointer to such a structure. The object distance has a type compatible with

30 any other int object.

After the declarations

typedef struct sl { int X; } tl, *tpl;
typecief struct s2 { int X; } t2, *tp2;

type tl and the type pointed to by tpl are compatible. Type tl is also compatible with type
35 struct sl, but not compatible with the types struct s2, t2, the type pointed to by tp2,

and into

40

The following obscure constructions

typecief signed int t;
typecief int plain;
struc:t tag {

unsigned t:4;
const t:5;
plain r:5;

} ;

45 declare a typedef name t with type signed int, a typedef name plain with type int, and a
structure with three bit-field members, one named t that contains values in the range [0,15], an

3.5.6 AMERICAN NATIONAL STANDARD XJ.159-19K9 3.5.6

Language 72 Declarations

15

unnamed const-qualified bit-field which (if it could be accessed) would contain values in at least
the range [-15,+15], and one named r that contains values in the range 10,311 or values in at
least the range [-15,+15]. (The choice of range is implementation-defined.) The first two bit­
field declarations differ in that unsigned is a type specifier (which forces t to be the name of a

5 structure member), while const is a type qualifier (which modifies t which is still visible as a
typedef name). If these declarations are followed in an inner scope by

t f (t (t»;
long t;

then a function f is declared with type "function returning signed int with one unnamed
I() parameter with type pointer to function returning signed int with one unnamed parameter

with type signed int," and an identifier t with type long.

On the other hand, typedef names can be used to improve code readability. All three of the
following declarations of the signal function specify exactly the same type. the first without
making use of any typedef names.

typedef void fv(int), (*pfv) (int);

void (*signal (int, void (*) (int») (int) ;
fv *signal(int, fv *);
pfv signal (int, pfv);

Forward references: the signal function (4.7.1.1).

20 3.5.7 Initialization

Syntax

25

iniliali:er:
assignmell t-e.lpressiIJIl
{ iniliali:er-list
{ iniliali:er-list ,

in ilia /i:er-/ist:
initiali:er
initiali:er-list , initiali:er

Constraints

30 There shall be no more initializers in an initializer list than there are objects to be initialized.

The type of the entity to be initialized shal! be an object type or an array of unknown size.

All the expressions in an initializer for an object that has static storage duration or in an
initializer list for an object that has aggregate or union type shall be constant expressions.

If the declaration of an identifier has block scope. and the identifier has external or internal

35 linkage, the declaration shall have no initializer for the identifier.

Semantics

An initializer specifies the initial value stored in an object.

All unnamed structure or union members are ignored during initialization.

If an object that has automatic storage duration is not initialized explicitly, its value IS

40 indeterminate. 74 If an object that has static storage duration is not initialized explicitly. it IS

74. Unlike in the base document, any automatic duration object may be initialized.

3.5.6 AMERICAN NATIO'\AL STA"iDARD X:; 1.';t)-!l)S') 3.5.7

Language 73 Declarations

initialized implicitly as if every member that has arithmetic type were assigned 0 and every
member that has pointer type were assigned a null pointer constant.

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The
initial value of the object is that of the expression; the same type constraints and conversions as

5 for simple assignment apply, taking the type of the scalar to be the unqualified version of its

declared type.

A brace-enclosed initializer for a union object initializes the member that appears first in the

declaration list of the union type.

The initiaJizer for a structure or union object that has automatic storage duration either shall
10 be an initializer list as described below, or shall be a single expression that has compatible

structure or union type. In the latter case, the initial value of the object is that of the expression.

The rest of this section deals with initializers for objects that have aggregate or union type.

An alTay of character type may be initialized by a character string literaL optionally enclosed
in braces. Successive characters of the character string literal (including the terminating null

15 character if there is room or if the array is of unknown size) initialize the elements of the array.

An alTay with element type compatible with wchar_t may be initialized by a wide stri::lg
literal, optionally enclosed in braces. Successive codes of the wide string literal (including the
terminating zero-valued code if there is room or if the array is of unknown size) initialize the
elements of the alTay.

20 Otherwise, the initializer for an object that has aggregate type shall be a brace-enclosed list of
initializers for the members of the aggregate, written in increasing subscript or member order; and
the initializer for an object that has union type shall be a brace-enclosed initializer for the first

member of the union.

If the aggregate contains members that are aggregates or unions, or if the first member of a

25 union is an aggregate or union, the rules apply recursively to the subaggregatcs or contained
unions. If the initializer of a subaggregate or contained union begins with a left brace, the
initializers enclosed by that brace and its matching right bm:e initialize the members of the
subaggregate or the first member of the contained union. Otherwise, only enough initializers
from the list are taken to account for the members of the subaggregate or the first member of the

30 contained union; any remaining initializers are left to initialize the next member of the aggregr..te
of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are members of an aggregate,
the remainder of the aggregate shall be initialized implicitly the same as objects that have static
storage duration.

35 If an array of unknown size is initialized, its size is determined by the number of initialilers
provided for its elements. At the end of its initializer list. the array no longer has incomplete

type.

Examples

The declaration

40 int x[] = { 1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three elements. as no size was

specified and there are three initializers.

3.5.7 AMERICAN NATIONAL STANDARD X3.15'i-19R9 3.5.7

Language 74 Declarations

float y[41 [3] = {

{ 1. 3, 5 },

{ 2, 4, 6 } ,
{ 3, 5, 7 },

5 } ;

is a definition with a fully bracketed initialization: I, 3. and 5 initialize the first row of y (the
array object yeO]), namely yeO] [0], yeO] [1], and yeO] [2]. Likewise the next two lines
initialize y [1] and y [2]. The initializer ends early, so y [3] is initialized with zeros.
Precisely the same effect could have been achieved by

10

15

float y[4] [3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

} ;

The initializer for y [0] does not begin with a left brace, so three items from the list are used.
Likewise the next three are taken successively for y [1] and y [2]. Also,

float z [4] [3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

} ;

initializes the first column of z as specified and initializes the rest with zeros.

struct {int a[3], b; } we] = { { 1}, 2 };

20 is a definition with an inconsistently bracketed initialization. It defines an array with two element

structures: w[0] . a [0] is I and w[1] . a [0] is 2; all the other elements are zero.

The declaration

25

short q[4] [3] [2]
{ 1 },
{ 2, 3 },
{ 4, 5, 6

} ;

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional
array object: q[O] [0] [0] is I, q[l] [0] [0] is 2, q[l] [0] [1] is 3, and 4, 5, and 6

30 initialize q[2] [0] [0]. q[2] [0] [1]. and q[2] [1] [0], respectively; all the rest are zero.
The initializer for q [0] [0] does not begin with a left brace, so up to six items from the current
list may be used. There is only one, so the values for the remaining five elements are initialized
with zero. Likewise, the initializers for q [1] [0] and q [2] [0] do not begin with a left brace,
so each uses up to six items. initializing their respective two-dimensional subaggregates. If there

35 had been more than six items in any of the lists, a diagnostic message would have been issued.

The same initialization result could have been achieved by:

40

3.5.7

or by:

short q[4] [3] [2] = {
1, 0, 0, 0, 0, 0,

2, 3, 0, 0, 0, 0,
4, 5, 6

} ;

AMERICAN NATIONAL STANDARD X3.159-1989 3.5.7

Language

5

IO

short q[4] [3] [2] =
{

{ 1 },
} ,
{

{ 2, 3 },
} ,
{

{ 4, 5 },
{ 6 },

} ;

75 Declarations

in a fully bracketed form.

Note that the fully bracketed and minimally bracketed fOIDls of initialization are. in general,
15 less like]y to cause confusion.

One form of initialization that completes array types involves typedef names. Given the
declaration

typEadef int A [] ;

thc declaration

20

25

A a = {l, 2}, b = {3, 4, 5};

is identical to

int a [] = {l , 2 }, b [] = {3 , 4 , 5};

due to the rules for incomplete types.

Finally, the declaration

chaJ: s [] = "abc", t [3] = "abc";

defines "plain" char array objects sand t whose elements are initialized with character string
literals. This declaration is identical to

chaJ: s [] = { 'a', ' b', 'c', '\0 ' },
t [] = { 'a', 'b', 'c' } ;

30 The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abc";

defines p with type "pointer to char" that is initialized to point to an object with type "array
of char" wilth length 4 whose elements are initialized with a character string literal. If an
attempt is made to use p to modify the contents of the array, the behavior is undefined.

35 Forward references: common definitions <stddef . h> (4.1.5).

3.5.7 AMERICAN NATIONAL STANDARD X3.1S9-1989 3.5.7

Language

3.6 Statements

Syntax

76 Statements

5

statemellt:
lobeIed-stotement
('lm1pound-statement

e.tpression-statement
seleeti011- sta tement
i teration-statement
jllmp-statement

10 Semantics

A statement specifies an action to be performed. Except as indicated, statements are executed
in sequence.

A .lid! c\pression is an expression that is not part of another expression. Each of the
following is a full expression: an initializer; the expression in an expression statement; the

15 controlling expression of a selection statement (if or switch); the controlling expression of a
while or do statement; each of the three (optional) expressions of a for statement: the
(optional) expression in a return statement. The end of a full expression is a sequence point.

Forward references: expression and null statements (3.6.3), selection statements (3.6.4),
iteration statements (3.6.5), the return statement (3.6.6.4).

20 3.6.1 Labeled Statements

Syntax

25

labeled-statement:
identifier : statement

case eonstant-e.\pression
default : statement

Constraints

statement

A case or default label shall appear only in a switch statement. Further constraints on
such labels are discussed under the switch statement.

Semantics

30 Any statement may be preceded by a prefix that declares an identifier as a label name. Labels
in themselves do not alter the flow of control, which continues unimpeded across them.

Forward references: the goto statement (3.6.6.1), the switch statement (3.6.4.2).

3.6.2 Compound Statement, or Block

Syntax

3S

40

3.6

('O/lIf!llulld-sta teme II t:

{declaration-list statemel1l-list
opt opt

declaration-Iist:
declaration
declaration-list declaration

statement-Iist:

statement
statement-list statemellt

AMERICA:--': NATIONAL STANDARD X3.1S'J·I'J89 3.6.2

Language

Semantics

77 Statements

A compound stat(!melll (also called a block) allows a set of ',tatements to be grouped into one
syntactic unit. which may have its own set of declarations and initializations (as discussed in
3.1.2.4). The initializers of objects that have automatic storag'~ duration are evaluated and the

S values are stored in the objects in the order their declarators appear in the translation unit.

3.6.3 Expression and Null Statements

Syntax

(!Xprr:ssiOlI-statenl(! /1 t:
expressioll

opt

10 Semantics

The expreision in an expression statement is evaluated as a void expressIOn for its side
effects. 7)

A null statemellt (consisting of just a semicolon) perf0I111S no operations.

Examples

1S If a function call is evaluated as an expression statement for its side effects only. the
discarding of its value may be made explicit by converting the expression to a void expression by
means of a cast:

int p(int);

1* . .. *1
20 (void)p(O);

In the program fragment

char *8;
1* ... *1
while (*8++ 1- '\0')

25

a null statement is used to supply an empty loop body to the iteration statement.

A null statement may also be used to carry a label just before the closing } of a compound

statement.

30

3S

while (loopl)
1* .. . *1
while (loop2)

1* .. . *1
if (want_out)

goto end_loopl;

1* .. . *1
}

1* .. . *1
end loopl:

40 Forward references: iteration statements (3.6.5).

75. Such as assignments. and function calls which have side effects.

3.6.2 AMERICAN NATIONAL STANDARD XJ.t59-tIJR9 3.6.3

Language

3.6.4 Selection Statements

Syntax

.IeIeclion-statement:
if (expression) statemen!
if (expression) statemen! else sta!ement
switch (expression) statement

Semantics

Statements

A selection statement selects among a set of statements depending on the value of a
controlling expression.

10 3.6.4.1 The if Statement

Constraints

The controlling expression of an if statement shall have scalar type.

Semantics

In both forms, the first substatement is executed if the expression compares unequal to O. In
15 the else form, the second substatement is executed if the expression compares equal to O. If

the first substatement is reached via a label. the second substatement is not executed.

An else is associated with the lexically immediately preceding else-less if that is in the
same block (but not in an enclosed block).

3.6.4.2 The switch Statement

20 Constraints

The controlling expression of a switch statement shall have integral type. The expression
of each case label shall be an integral constant expression. No two of the case constant
expressions in the same switch statement shall have the same value after conversion. There
may be at most one default label in a switch statement. (Any enclosed switch statement

25 may have a default label or case constant expressions with values that duplicate case
constant expressions in the enclosing switch statement.)

Semantics

A switch statement causes control to jump to, into. or past the statement that is the swi!e!;
body, depending on the value of a controlling expression, and on the presence of a default

30 label and the values of any case labels on or in the switch hody. A case or default label is
accessible only within the closest enclosing switch statement.

The integral promotions are performed on the controlling expression. The constant expression
in each case label is converted to the promoted type of the controlling expression. If a
converted value matches that of the promoted controlling expression, control jumps to the

35 statement following the matched case label. Otherwise. if there is a default label. control
jumps to the labeled statement. If no converted case constant expression matches and there is
no default label. no part of the switch body is executed.

Implementation Limits

As discussed previously (2.2.4.1 l. the implementation may limit the number of case values
40 in a switch statement.

Example

In the artificial program fragment

3.6.4 A\1ERICAr\ NATIONAL STAr\DARD X', I V)-19K9 3.6.4.2

Language

switch (expr)
{

79 Statements

int i = 4;
f (i) ;

5 case 0:
i = 17; /* falls through into default code */

default:
printf ("%d\n", i);

10 the object whose identifier is i exists with automatic storage duration (within the block) but is
never initialized, and thus if the controlling expression has a nonzero value, the call to the
printf function will access an indeterminate value. Similarly, the call to the function f cannot
be reached.

3.6.5 Iteration Statements

15 Syntax

iteration-statement:
while (expression)
do statement while (
for (expressionopr

20 Constraints

statement
f.\pression

expressionapr expression) statementapr

The control ling expression of an iteration statement shall have scalar type.

Semantics

An iteration statement causes a statement called the loop hody to be executed repeatedly until
the controlling expression compares equal to O.

25 3.6.5.1 The w'hile Statement

The evaluation of the controlling expression takes place before each execution of the loop
body.

3.6.5.2 The do Statement

The evaluation of the controlling expression takes place after each execution of the loop body.

30 3.6.5.3 The :Eor Statement

Except for the behavior of a continue statement in the loop body, the statement

for (expression-l ; npression-2 ; expression-3) statement

and the sequence of statements

35
expression-l ;
whil.~ (expression-2)

statement
e~\pression-3 ;

are equivalent.'6

76. Thus, expressiall-l specifies initialization for the loop; expressioll-2. the controlling expression, specifies an
evaluation made before each iteration, such that execution of the loop continues until the expression compares
equal to 0; expressioll-3 specifies an operation (such as incrementing) that i, performed after each iteration.

3.6.4.2 AMERICAN NATIONAL STANDARD X'.I59-I9R9 3.6.5.3

Language Statements

Both npressio/i-J and c.rprcssion-3 may be omitted. Each is evaluated as a void expression.
An omitted clprcssion-2 is replaced by a nonlern constant.

Forward references: the continue statement (3.6.6.2).

3.6.6 Jump Statements

5 Syntax

jump-statemcnt:
goto idenlificr
continue ;
break ;

10 return npression
OJ'l

Semantics

A jump statement causes an unconditional jump to another place.

3.6.6.1 The gete Statement

Constraints

15 The identifier in a goto statement shall name a label located somewhere 111 the enclosing
function.

Semantics

A goto statement causes an unconditional Jump to the statement prefixed by the named label
in the enclosing function.

20 Example

It is sometimes convenient to jump into the middle of a complicated set of statements. The

following outline presents one possible approach to a problem based on these three assumptions:

I. The general initialization code accesses objects only visible to the current function.

2. The general initialization code is too large to warrant duplication.

25 3. The code to determine the next operation must be at the head of the loop. (To allow it to

be reached by continue statements, for example.)

30

35

40

.1.6.5.3

/* . .. */
goto first_time;
for (;;) {

/ * determille next 0fJeration * /
/* . .. */
if (nccd to reiniriali:c)

/ * reinitia/i:e-OIrlr code * /
/* .. . */

first time:
/ * genera/ inirillli:llrion code */
/* ... */
continue;

}

/ * hllnd/e other ofJerarions */
/* . .. */

!\\lERICA'J N!\TIO'JAL STANDAHD X3. I ';lJ-1 'iNt) 3.G.G.l

Language

3.6.6.2 The continue Statement

Constraints

81 Statements

A continue statement shall appear only in or as a loop body.

Semantics

5 A continue statement causes a Jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in each of the
statements

10

while (/*", */)
/* .. ,*/
continue;
/* ... */

contin:

do {
/* ... */
continue;
/* .. ,*/

contin:
) while (/* ... */);

for (/* ... */)
/* ... */
continue;
/* ... */

contin:

unless the ccmtinue statement shown is in an enclosed iteration statement (in which case ir IS

15 interpreted within that statement), it is equivalent to goto contin;.77

3.6.6.3 Th(~ break Statement

Constraints

A break. statement shall appear only in or as a switch body or loop body,

Semantics

20 A break statement terminates execution of the smallest enclosing switch or iteration
statement.

3.6.6.4 Tht return Statement

Constraints

A return statement with an expres';ion shall not appear in a function whose return type IS

25 void.

Semantics

A return statement terminates execution of the current function and returns control to its
caller. A function may have any number of return statement>, with and without expressions,

If a ret\llrn statement with an expression is executed. the value of the expression is returned
30 to the caller as the value of the function call expression. If the expression has a type different

from that of the function in which it appears, it is converted as if it were assigned to an object of
that type.

If a return statement without an expression is executed, and the value of the function call
is used by the caller, the behavior is undefined. Reaching the } that terminates a function is

35 equivalent to executing a return statement without an expression.

77, Following the contin: label is a null statement.

3.6.6.2 AMERICAN NATIONAL STANDARD X.'U59-19K9 3.6.6.4

Language

3.7 External Definitions

Syntax

External Definitions

5

IrallslaIi011-1111 i I:
e.rlernal-dcclaralil!/l

Ira11sia liOIl-1I1l i I exiernaI-del 'fa rat iOil

exlerl1aI-declara Ii011:

.Iilllclioll-defi 11 iiiOil

declaralioll

Constraints

10 The storage-class specifiers auto and register shall not appear in the declaration

specifiers in an external declaration.

There shall be no more than one external definition for each identifier declared with internal

linkage in a translation unit. Moreover. if an identifier declared with internal linkage is used in

an expression (other than as a part of the operand of a sizeof operator). there shall be exactly

15 one external definition for the identifier in the translation unit.

Semantics

As discussed in 2. I. I. I. the unit of program text after preprocessing is a translation unit.

which consists of a sequence of external declarations. These are described as "external" because

they appear outside any function (and hence have file scope), As discussed in 3,5. a declaration
20 that also causes storage to be reserved for an object or a function named by the identifier is a

definition.

An external defillitioll is an external declaration that is also a definition of a function or an

object. If an identifier declared with external linkage is used in an expression (other than as part

of the operand of a sizeof operator). somewhere in the entire program there shall be exactly

25 one external definition for the identifier: otherwise. there shall be no more than one 7h

3.7.1 Function Definitions

Syntax

.Ii111CtioIl-defi11 i Ii0 11 :

dec/aratioll-sfJccifiers dec/ara (or dec' lara IiOIl- fisl 1'(i/llP! illllll-sia IC/II1'111
, (~ ~I

30 Constraints

The identifier declared in a function definition (which is the name of the function) shall have

a function type. as specified by the declarator portion of the fUllction definition.
7CJ

n. Thus. if an identifier declared with external linkage is not used in an expression. there need be 110 external
definition for it.

79, The intent is that the type category in a function definition cannot he inherited from a typedef:

typedef int F(void);
F f, g;
F f { /* */ }
F gO { /* */)
int f (void) { /* ... */
int g () { /* ... * / }
F *e(void) { /* ... */)
F * ((e» (void) { /* ... */
int (*fp) (void);
F *Fp;

/* lVJiC F is 'jimoioll otllollr~III1/CIllI rClllrnillg int" */
/* f IIlId g holh jlil\'C /vJic cOIli/h/uh/c with F * /
/ * WRONG: ,1\'IIIa.licolI,llmill/ ('ITO!' */
/* WRON(;. licclllrcs 111111 g rclllrns IIjill/crillll * /
/* RIGHT: f has IIpC cOII/Jilllihic \\'i/Ii F * /
/* RIGHT: g hilS IIpC CIIIII/hllihic \1'illi F */
/* e rclllrllS a I'0illler lOll lim</illll * /
/* sallie: fJarcllllic.lcs irrclc\,(lII/ * /
/* fp Jioillis 10 a ,tllllc/ioll lliar /IlIS tl'PC F */
/ * Fp I'oillis 10 IIlfmc/ioll rlllli IIlIS 1\'/iC F */

3.7 AMERICA" NATIO"AL STX',D,'\RD iO,15'!·I9X9 3,7.1

Language 83 External Definitions

The return type of a function shall be void or an object type other than array.

The storage-class specifier, if any, in the declaration specifiers shall be either extern or
static.

If the declarator includes a parameter type list, the declaration of each parameter shall include
5 an identifier <except for the special case of a parameter list consisting of a single parameter of

type void, in which there shall not be an identifier). No declaration list shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall have at
least one declarator, and those declarators shall declare only identifiers from the identifier list.
An identifier declared as a typedef name shall not be redeclared as a parameter. The declarations

10 in the declaration list shall contain no storage-class specifier other than register and no
initializations

Semantics

The declarator in a function definition specifies the name of the function being defined and
the identifien, of its parameters. If the declarator includes a parameter type list, the list also

15 specifies the types of all the parameters; such a declarator also serves as a function prototype for
later calls to the same function in the same translation unit. If the declarator includes an
identifier list,IIO the types of the parameters may be declared in a following declaration list. Any
parameter thal is not declared has type into

If a function that accepts a variable number of arguments is defined without a parameter type
20 list that ends with the ellipsis notation, the behavior is undefined.

On entry to the function the value of each argument expression shall be converted to the type
of its corresponding parameter, as if by assignment to the parameter. Array expressions and
function designators as arguments are converted to pointers before the call. A declaration of a
parameter as "array of type" shall be adjusted to "pointer to type," and a declaration of a

25 parameter as "function returning type" shall be adjusted to "pointer to function returning t:.pe,"
as in 3.2.2.1. The resulting parameter type shall be an object type.

Each parameter has automatic storage duration. Its identifier is an Ivalue.l\! The layout of the
storage for parameters is unspecified.

Examples

30 extE!rn int max (int a, int b)

return a > b ? a : b;

Here extern is the storage-class specifier and int is the type specifier (each of which may je

35 omitted as those are the defaults); max (int a, int b) is the function declarator; and

{ return a > b ? a : b; }

is the function body. The following similar definition uses the identifier-list fonn for the
parameter decl arations:

80. See "future language directions" 0.9.5),

81. A parameter is in effect declared at the head of the compound statement that constitutes the function body, and
therefore may not be redeclared in the function body (except in an enclosed block),

3.7.1 AMERICAN NATIONAL STANDARD X3,159-1989 3.7.1

Language

5

84

extern int max (a, b)
int a, b;

return a > b ? a b;

External Definitions

Here int a, b; is the declaration list for the parameters, which may be omitted because those
are the defaults. The difference between these two definitions is that the first form acts as a
prototype declaration that forces conversion of the arguments of subsequent calls to the function,
whereas the second form may not.

10 To pass one function to another, one might say

int f (void) ;

/* ... */
g (f) ;

Note that f must be declared explicitly in the calling function, as its appearance in the expression
15 g (f) was not followed by (. Then the definition of g might read

g (int (*funcp) (void»
{

/* ... */ (*funcp) 0 /* or funcpO '" */

20 or, equivalently,

g (int func (void))
{

/ * ... * / func 0 / * or (* func) 0 ... * /

25 3.7.2 External Object Definitions

Semantics

If the declaration of an identifier for an object has file scope and an initializer, the declaration
is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and
30 without a storage-class specifier or with the storage-class specifier static, constitutes a

telltatil'e d(~finition, If a translation unit contains one or more tentative definitions for an
identifier, and the translation unit contains no external definition for that identifier, then the
behavior is exactly as if the translation unit contains a file scope declaration of that identifier,
with the composite type as of the end of the translation unit, with an initializer equal to O.

35 If the declaration of an identifier for an object is a tentative definition and has internal
linkage, the declared type shall not be an incomplete type.

Examples

40

int i1 = 1;
static int i2 = 2;
extern int i3 = 3;
int i4;
static int is;

/ * definition, external linkage */
/ * definition, internal linkage * /
/ * definition. external linkage * /
/* tentative definition. external linkage */
/* tentative definition. internal linkage */

3.7.1 AMERICAN NATIONAL STANDARD X3.! :;9-1989 3.7.2

Language 85 External Definitions

5

10

int il;
int i2;
int i3;
int i4;
int is;

extElrn int il;
extElrn int i2;
extElrn int i3;
extE!rn int i4;
extE!rn int is;

/* valid tentative definition, refers to prnious */
/ * 3.1.2.2 renders undefined, linkage disagreement */
/* valid tentative definition, refers to previous */
/ * valid tentative definition, refers to previous */
/* 3.1.2.2 renders undefined, linkage disagreement */
/ * refers to previous, whose linkage is external */
/* refers to prel'ious, whose linkage is internal */
/* refers to previous, whose linkage is external */
/* refers to previous, whose linkage is external */
/* refers to previous, whose linkage is internal */

3.7.2 AMERICAN NATIONAL STANDARD X3.159-19B9 3.7.2

Language

3.8 Preprocessing Directives

Syntax

preprocessing-file:
grouPopt

86 Preprocessing Directives

5

10

group:
group-part
group group-part

group-part:
pp-tokens new-line

opt
i(section
control-line

i(section:
iF-,"roup elif~oroups else-oroup endif-line
J' , J " opt " opt .

15
if-group:

#
#
#

if
ifdef
ifndef

constant-expression new-line f!.roup, opt
identifier new-line "rou/). "opt
identi"'er new-line oroup

J' "opt

constant-expression new-line f!.roup, opt

20

ellf-groups.·
eli(grouj)
eli(groups elif-group

elif-group:

elif

else-group:

else new-line l?roup
, OpT

25 endif-line.
endif new-line

30

35

control-line:
include
define
define
undef
line
error
pragrna
#

Iparen:

pp-tokens new-line
identifier replacement-list new-line
identifier Iparen identifier-listopt
identifier new-line
pp-tokens new-line

pp-tokens new-line
opt

po-tokens new-line. opt
new-line

replacement-list new-line

40

3.8

the left-parenthesis character without preceding white-space

replaeement-list:
pp-tokens

opt

pp-tokens:
prepro(essing-token
pp-tokens preprocessing-token

new-line:
the new-line character

AMERICA;-'; NATIONAL STANDARD XJ159-19S9 3.8

Language

Description

87 Preprocessing Directives

A preprocessing directive consists of a sequence of preprocessing tokens that begins with a #
preprocessing token that is either the first character in the source file (optionally after white space
containing no new-line characters) or that follows white space containing at least one new-line

5 character, and is ended by the next new-line character.x,

Constraints

The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducing # preprocessing token through just before
the terminating new-line character) are space and horizontal·tab (including spaces that have

10 replaced comments or possibly other white-space characters in translation phase 3),

Semantics

The implementation can process and skip sections of source files conditionally, include other
source files, and replace macros. These capabilities are called preprocessing, because
conceptually they occur before translation of the resulting translation unit.

15 The preprocessing tokens within a preprocessing directive are not subject to macro expansion
unless otherwise stated.

3.8.1 Conditional Inclusion

Constraints

The expression that controls conditional inclusion shall be an integral constant expression
20 except that: it shall not contain a cast: identifiers (including those lexically identical to keywords)

are interpreted as described below: X1 and it may contain unary operator expressions of the fonn

defi.ned idelltifier
or

defi.ned (idelltifier

25 which evaluate to I if the identifier is currently defint~d as a macro name (that is, if it is
predefined or if it has been the subject of a #define preprocessing directive without an
intervening #undef directive with the same subject identifier), () if it is not.

Each preprocessing token that remains after all macro replacements have occurred shall be in
the lexical fonn of a token.

30 Semantics

Preprocessing directives of the fomls

if cOl/stant-expressiol/ I/ew-line rsrrJup
, opl

elif cOllstant-ex/Jressioll I/cw-linc arO/l/J
" opl

check whether the controlling constant expression evaluates to nonzero.

35 Prior to evaluation, macro invocations in the list of preproce~;sing tokens that will become the
controlling constant expression are replaced (except for those macro names modified by the
defined unary operator). just as in nonnal text. If the token defined is generated as a result
of this replacement process or use of the defined unary operator does not match one of the two

82. Thus, preprocessing directives are commonly called "'lines." These "'lines" have no other syntactic
significance, as all white space is equivalent cxcept in certain situations during preprocessing (se~ the #
character string lite~'al crcation operator in 3.8.3.2, for example).

83. Because the contro.ling constant expression is evaluated during translation phase 4. all identifiers either are or
are not macro names - there simply arc no keywords. enumeration constants. and so on.

3.8 AMERICAN :\ATIONAL STA1\DARD)(3.t59-1989 3.8.1

Language Preprocessing Directive,

specified forms prior to macro replacement. the behavior is undefined. After all replacements due

to macro expansion and the defined unary operator have been performed. all remaining
identifiers are replaced with the pp-number O. and then each preprocessing token is converted

into a token. The resulting tokens comprise the controlling constant expression which is
5 evaluated according to the rules of 3.4 using arithmetic that has at least the ranges specified in

2.2.4.2. except that int and unsigned int act as if they have the same representation as.
respectively, long and unsigned long. This includes interpreting character constants. which
may involve converting escape sequences into execution character set members. Whether the

numeric value for these character constants matches the value obtained when an identical

10 character constant occurs in an expression (other than within a #if or #elif directive) IS

implementation-defined.s~ Also. whether a single-character character constant may have a

negative value is implementation-defined.

15

20

25

Preprocessing directive, of the forms

ifdef idelltl,'fier new-line "rOll!)
" o!','

ifndef idelltl,'fier neH'-!ine "rOll!)
" "!,I

check whether the identifier is or is not currently defined as a macro name. Their conditions are
equivalent to #if defined idcntifier and #if !defined identifier respectively.

Each directive's condition is checked in order. If it evaluates to false (zero), the group that it
controls is skipped: directives are processed only through the name that determines the directive

in order to keep track of the level of nested condItionals: the rest of the directives' preprocessing
tokens are ignored. as are the other preprocessing tokens in the group. Only the first group

whose control condition evaluates to true (nonzero) is processed. If none of the conditions
evaluates to true. and there is a #else directive. the group controlled by the #else IS

processed: lacking a #else directive. all the groups until the #endif are skipped. S
)

Forward references: macro replacement (3.8.3). source file inclusion (3.8.2).

3.8.2 Source File Inclusion

Constraints

A #include directive shall identify a header or source file that can be processed by the

implementation.

30 Semantics

A preprocessing directive of the form

include <Iz-c!wr-seqllencc> IIcH,-hnc

searches a sequence of implementation-defined places for a header identified uniquely by the

specified sequence between the < and> delimiters. and causes the replacement of that directive
35 by the entire contents of the header." How the places are specified or the header identified is

implementation-defined.

R-l, Thus. the constant expression in the following #if directive and if statement is not guaranteed to evaluate to
the same value in these two contexts.

#if 'z' - 'a' 25

if ('z' 'a' 25)

X5 As indicated by the syntax. a preprocessing token shall not follow a #else or #endif directive before the
terminating new-line character. However, comments may appear anywhere in a source tile. including within a
preprocessing directive,

3.8.1 A'vIERIC\'\ \iATIONAL STA.NDARD X.1,15Y-1 '!XC) 3X2

Language 89

A preprocessing directive of the fonn

inc1ude "q-c!lar-scqucncc" ncw-linc

Preprocessing Directives

causes the replacement of that directive by the entire contents of the source file identified by the
specified sequence between the " delimiters. The named source file is searched for in an

5 implementatior-defined manner. If this search is not supported, or if the search fails, the
directive is reprocessed as if it read

in,:::lude <h-char-scqucllcc> IIcw-linc

with the identical contained sequence (including> characters, if any) from the original directive.

A preprocessing directive of the [onn

10 # include pp-tokclls new-linc

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined
as a macro name is replaced by its replacement list of preprocessing tokens.) The directive
resulting after all replacements shall match one of the two previous forms. S6 The method by

IS which a sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair
of " characters is combined into a single header name preprocessing token is implementation­
defined.

There shall be an implementation-defined mapping between the delimited sequence and the
external source file name. The implementation shall provide unique mappings for sequences

20 consisting of one or more letters (as defined in 2.2.1) followed by a period (.) and a single
letter. The implementation may ignore the distinctions of alphabetical case and restrict the
mapping to six significant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because
of a #include directive in another file. up to an implementation-defined nesting limit (see

25 2.2.4.1).

Examples

The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

30 This example illustrates a macro-replaced #include directive:

35

#if VERSION == 1
#define INCFILE "versl.h"

#elif VERSION == 2
#define INCFILE "vers2.h"

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

Forward references: macro replacement (3.8.3).

/* and so on */

R6. Note that adjacent string literals arc not concatenated into a single qring literal (see the translation phases in
2.1.1.2): thus. an expansion that results in two string literals is an invalid directive.

3.8.2 AMERICA~ \iATIO'\iAL STA'\iDARD X3. t ;'il)-Il)s9 3.8.2

Language

3.8.3 Macro Replacement

Constraints

90 Preprocessing Directives

Two replacement lists are identical if and only if the preprocessing tokens in both have the
same number, ordering, spelling, and white-space separation, where all white-space separations

5 are considered identical.

An identifier currently defined as a macro without use of lparen (an ohject-like macro) may be
redefined by another #define preprocessing directive provided that the second definition is an
object-like macro definition and the two replacement lists are identical.

An identifier currently defined as a macro using lparen (a fill1ction-like macro) may be
10 redefined by another #define preprocessing directive provided that the second definition is a

function-like macro definition that has the same number and spelling of parameters, and the two
replacement lists are identical.

The number of arguments in an invocation of a function-like macro shall agree with the
number of parameters in the macro definition, and there shall exist a) preprocessing token that

15 terminates the invocation.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

Semantics

The identifier immediately following the define is called the macro name. There is one
name space for macro names. Any White-space characters preceding or following the

20 replacement list of preprocessing tokens are nOI considered part of the replacement list for either
form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a
preprocessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

25

30

35

40

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro nameS7 to be
replaced by the replacement list of preprocessing tokens that constitute the remainder of the
directive. The replacement list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

define identifier lpm'en identifier-list) replacement-list new-line
opt

defines a function-like macro with arguments, similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their
declaration in the identifier list until the new-line character that terminates the #define
preprocessing directive. Each subsequent instance of the function-like macro name followed by a
(as the next preprocessing token introduces the sequence of preprocessing tokens that is replaced
by the replacement list in the definition (an invocation of the macro). The replaced sequence of
preprocessing tokens is terminated by the matching) preprocessing token, skipping intervening
matched pairs of left and right parenthesis preprocessing tokens. Within the sequence of
preprocessing tokens making up an invocation of a function-like macro, new-line is considered a
normal white-space character.

87. Since. by macro-replacement time, all character constants and string literals are preprocessing tokens, not
sequences possibly containing identifier-like subsequences Isee 2:.1.1.2, translation phases), they are never
scanned for macro names or parameters.

3.8.3 AMERICAN NATIONAL STANDARD X3.1S9-1989 3.S.3

Language 91 Preprocessing Directives

The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within the Ii 5t
are separated by comma preprocessing tokens, but comma preprocessing tokens between
matching inner parentheses do not separate arguments. If (before argument substitution) any

S argument consists of no preprocessing tokens, the behavior is undefined. If there are sequences
of preprocessing tokens within the list of arguments that would otherwise act as preprocessing
directives, the behavior is undefined.

3.8.3.1 Argument Substitution

After the arguments for the invocation of a function-like macro have been identified,
10 argument substitution takes place. A parameter in the replacement list, unless preceded by a # or

preprocessing token or followed by a ## preprocessing token (see below), is replaced by the
corresponding argument after all macros contained therein have been expanded. Before being
substituted, each argument's preprocessing tokens are completely macro replaced as if they
formed the rest of the translation unit; no other preprocessing tokens are available.

1S 3.8.3.2 The # Operator

Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be followed
by a parameter as the next preprocessing token in the replacement list.

Semantics

20 If, in the replacement list, a parameter is immediately preceded by a # preprocessing token,
both are replaced by a single character string literal preprocessing token that contains the spelling
of the preprocessing token sequence for the corresponding argument. Each occurrence of white
space between the argument's preprocessing tokens becomes it single space character in the
character string literal. White space before the first preprocessing token and after the last

2S preprocessing token comprising the argument is deleted. Otherwise, the original spelling of each
preprocessing token in the argument is retained in the character string literal, except for special
handling for producing the spelling of string literals and character constants: a \ character is
inserted before each " and \ character of a character constant or string literal (including the
delimiting" characters). If the replacement that results is not a valid character string literal, the

30 behavior is undefined. The order of evaluation of # and ## operators is unspecified.

3.8.3.3 The ~# Operator

Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement lis!
for either form of macro definition.

3S Semantics

If. in the replacement list, a parameter is immediately preceded or followed by a ##
preprocessing token, the parameter is replaced by the corresponding argument's preprocessing
token sequence.

For both object-like and function-like macro invocations, before the replacement list is
40 reexamined for more macro names to replace, each instance of a ## preprocessing token in the

replacement list (not from an argument) is deleted and the preceding preprocessing token is
concatenated with the following preprocessing token. If the result is not a valid preprocessing
token, the behavior is undefined. The resulting token is available for further macro replacement.
The order of evaluation of ## operators is unspecified.

3,8.3 AMERICA", NATIONAL STANDARD X3.159-1989 3.8.3.3

Language 92 Pn~proces,illg Directives

3.8.3.4 Rescanning and Further Replacement

After all parameters in the replacement list have been substituted. the resuiting preprocessmg
token sequence is rescanned with all subsequent preprocessing token, of the source lile for more
macro names to replace.

5 If the name of the macro being replaced is found during thi, sC:Jn oJ the replacement lis! \noi
including the rest of the source file's preproce'ising tokens). it i, not replaced. Further. if any

nested replacements encounter the name of the macro being replaced. it i, nOl replaced. Thc,e
nonreplaced macro name preprocessing tokens arc no longer available for further replacenwllt

even if they are later (re lexamined in contex ts in which that macro name prepmcessing token
10 would other'Nise have been replaced.

The resulting completely macro-replaced preproces';ing token sequence i, not proccs'ed as a

preprocessing directive even if it resembles one.

3.8.3.5 Scope of Macro Definitions

A macro definition lasts (independent of block qruclure) until a corresponding #undef
IS directive is encountered or (if none is encountered) until the end of the translation unit.

A preprocessing directive of the form

undef identifier nCl\'-linf

causes the specified identifier no longer to be defined as a macro name. It is ignored it rill'
specified identifier is not currently defined as a macro name.

20 Examples

The simplest use of this facility is to define a "manifest constant.·· as in

#define TABSIZE 100

int table[TABSIZE];

The following defines a function-like macro whose value is the maximum of its arguments It

25 has the advantages of working for any compatible types of the arguments and of generating l!1­

line code without the overhead of function callmg. It has the disadvantages of evalu:Jting onc or

the other of its arguments a second time (including Side effects) and generating more code than ;I

function if invoked several times. It also cannot have its address taken. as it has none.

#define max (a, b) «a) > (b) ? (a) (b))

30 The parentheses ensure that the arguments and the resulting c,pression are bound properly.

To illustrate the rules for redefinition and reexamination, the sequence

35

40

#define x 3
#define f (a) f(x * (a»
#undef x

#define x 2
#define g f

#define z z[O]
#define h g(-

#define m (a) a (w)

#define w 0,1

#define t (a) a

f (y+1) + f (f (z» % t (t (g) (0) + t) (1) ;

g(x+(3,4)-w) I h 5) & m
(f) Am (m) ;

45 results in

3.8.3.4 A\IER!CAN NATiONAL STANDARD X.' l:ill 19x9

Language 93 Preprocessing Directives

f (2 ;, (Y+1» + f (2 * (f (2 * (z [0])) » % f (2 * (0)) + t (1) ;
f(2;r (2+(3,4)-0,1» I f(2 * (- 5)) & f(2 * (O,l»Am(O,l);

To illustrate the rules for creating character string literals and concatenating tokens, the
sequence

5

10

#define str(s)
#define xstr(s)
#define debug(s, t)

#define INCFILE(n)
#define glue (a, b)
#define xglue(a, b)
#define HIGHLOW
#define LOW

s
str (s)
printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
vers ## n /* /i'Om prCl'ious #include example */
a ## b
glue (a, b)
"hello"
LOW", world"

15
debugr (1 , 2);
fputs(str(strncmp("abc\Od", "abc", '\4') /* this goes away */

== 0) str(: @\n), s);
#include xstr(INCFILE(2) ,h)
glue (HIGH, LOW);
xglue(HIGH, LOW)

20 results in

25

30

printf("x" "1" "= %d, x" "2" "= %s", xl, x2);
fputs("strncmp(\"abc\\Od\", \"abc\", '\\4') == 0" ": @\n", s);
#include "vers2, h" (after macro replacement herore file access)
"hello" ;
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", xl, x2);
fputs("strncmp(\"abc\\Od\", \"abc\", '\\4') == 0: @\n", s);
#include "vers2. h" (after macro replacemclIt, herore ,{Ill' access)
"hello";
"hello, world"

Space around th,~ # and ## tokens in the macro definition is optionaL

And finally, to demonstrate the redefinition rules, the following sequence is valid,

35
#defilile OBJ LIKE
#define OBJ LIKE
#define FTN_LIKE(a)
#define FTN_LIKE(a

(1-1)
/* white space */ (1-1) /* other */
(a)

) (/* note the white space */ \
a /* other stuff on this line

*/

40 But the following redefinitions are invalid:

#define OBJ LIKE
#define OBJ LIKE
#define FTN_LIKE(b)
#define FTN_LIKE(b)

(0)
(1 - 1)

(a)
(b)

/ * different token sequence * /
/* different whirl' space * /
/ * dijj£'1'ent pawmeter usage * /
/* dijj£'1'e1lt pawmetC!' spelling */

3.8.3.5 AMERICAN f\iATIONAL STANDARD X.'.159-19XS' 3.8.3.5

Language

3.8.4 Line Control

Constraints

94 Preprocessing Directives

The string literal of a #line directive, if present, shall be a character string literal.

Semantics

5 The line numher of the current source line IS one greater than the number of new-line
characters read or introduced in translation phase I (2.1. 1.2) while processing the source file to
the current token.

A preprocessing directive of the form

line digit-sequence new-line

10 causes the implementation to behave as if the following sequence of source lines begins with a
source line that has a line number as specified by the digit sequence (interpreted as a decimal
integer). The digit sequence shall not specify zero, nor a number greater than 32767.

A preprocessing directive of the form

line dir;it-sequence "s-char-sequence "new-line
• 01'1

15 sets the line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is pemlitted. The preprocessing tokens after
20 line on the directive are processed just as in normal text (each identifier currently defined as a

macro name is replaced by its replacement list of preprocessing tokens). The directive resulting
after all replacements shall match one of the two previous forms and is then processed as
appropriate.

3.8.5 Error Directive

25 Semantics

A preprocessing directive of the form

error pp-tokens new-line
opl

causes the implementation to produce a diagnostic message that includes the specified sequence
of preprocessing tokens.

30 3.8.6 Pragma Directive

Semantics

A preprocessing directive of the form

pragma fip-tokens new-line
opl

causes the implementation to behave in an implementation-defined manner. Any pragma that is
35 not recognized by the implementation is ignored.

3.8.4 AMERICAN NATIONAL STANDARD X3159-19S9 3.8.6

Language 95 Preprocessing Directives

3.8.7 Null Directive

Semantics

A preprocessing directive of the form

new-line

5 has no effect.

3.8.8 Predt~fined Macro Names

The following macro names shall be defined by the implementation:

FILE

LINE

DATE

TIME

The line number of the current source line (a decimal constant).

The presumed name of the source file (a character ~;tring literal).

The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy", where the names of the months are the same as those generated
by the asctirne function, and the first character of dd is a space character if the
value is less than 10). If the date of translation is not available, an
implementation-defined valid date shall be supplied.

The time of translation of the source file (a character string literal of the form
"hh: rnrn: ss" as in the time generated by the asctirne function). If the time of
translation is not available, an implementation-defined valid time shall be supplied.

STDC The decimal constant I, intended to indicate a conforming implementation.

IO

15

The values of the predefined macros (except for __LINE__ and __FILE__) remain
20 constant throughout the translation unit.

None of these macro names, nor the identifier defined, shall be the subject of a #define
or a #undef preprocessing directive. All predefined macro names shall begin with a leading
underscore followed by an uppercase letter or a second underscore.

Forward references: the asctirne function (4.12.3.1).

3.8.7 AMERICAN NATIONAL STANDARD X3.159-1989 3.8.8

Language

3.9 Future Language Directions

3.9.1 External Names

96 Future Language Directions

Restriction of the significance of an external name to fewer than 31 characters or to only one
case is an obsolescent feature that is a concession to existing implementations.

5 3.9.2 Character Escape Sequences

Lowercase letters as escape sequences are reserved for future standardization. Other
characters may be used in extensions.

3.9.3 Storage-Class Specifiers

The placement of a storage-class specifier other than at the beginning of the declaration
10 specifiers in a declaration is an obsolescent feature.

3.9.4 Function Declarators

The use of function declarators with empty parentheses (not prototype-format parameter type
declarators) is an obsolescent feature.

3.9.5 Function Definitions

15 The use of function definitions with separate parameter identifier and declaration lists (not
prototype-fonnat parameter type and identifier declarators) is an obsolescent feature.

3.9.6 Array Parameters

The use of two parameters declared with an array type (prior to their adjustment to pointer
type) in separate Ivalues to designate the same object is an obsolescent feature.

3.9 AMERICA!\ NATIONAL STANDARD XlI5LJ-!lJXLJ 3.9.6

C Standard

4. Library

4.1 Introduction

4.1.1 Definitiions of Terms

97 Library

5 A strinR is a contiguous sequence of characters tenninated by and including the first null
character. A "pointer to" a string is a pointer to its initial (lowest addressed) character. The
"length" of a string is the number of characters preceding the null character and its "value" is
the sequence of the values of the contained characters, in order.

A letter is a printing character in the execution character set corresponding to any of the 52
10 required lowercase and uppercase letters in the source character set. listed in 2.2.1.

The decimal-point character is the character used by functions that convert floating-point
numbers to or from character sequences to denote the beginning of the fractional part of such
character sequences.88 It is represented in the text and examples by a period, but may be changed
by the setloccLle function.

15 Forward references: character handling (4.3). the setlocale function (4.4.1.1).

4.1.2 Standard Headers

Each library function is declared in a header,89 whose contents are made available by the
#include preprocessing directive. The header declares a set of related functions. plus any
necessary types and additional macros needed to facilitate their use.

20 The standard headers are

25

<assert.h>
<CtypE! .h>
<errno.h>
<float:. h>
<limit:s . h>

<locale.h>
<math.h>
<setjmp.h>
<signal.h>
<stdarg.h>

<stddef.h>
<stdio.h>
<stdlib.h>
<string.h>
<time.h>

If a file with the same name as one of the above < and> delimited sequences, not provided
as part of the implementation, is placed in any of the standard places for a source file to be
included, the behavior is undefined.

Headers may be included in any order; each may be included more than once in a given
30 scope, with no effect different from being included only once, except that the effect of including

<assert. h> depends on the definition of NDEBUG. If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However,
if the identifier is declared or defined in more than one header, the second and subsequent

35 associated headers may be included after the initial reference to the identifier. The program shall
not have any macros with names lexically identical to keywords currently defined prior to the
inclusion.

Forward references: diagnostics (4.2).

88. The functions that make use of the decimal-point character are localecon'lr, fprintf. fscanf. printf,
scanf, sprintf, s,scanf. vfprintf. vprintf, vsprintf, atof, and strtod.

89. A header is not necessarily a source tile. nor are the < and> delimited sequ<~nces in header names necessarily
valid source file names.

4. AMERICAN NATIONAL STANDARD X3.159-1989 4.1.2

Library

4.1.2.1 Reserved Identifiers

98 Introduction

Each header declares or defines all identifiers listed in its associated section, and optionally
declares or defines identifiers listed in its associated future library directions section and
identifiers which are always reserved either for any use or for use as file scope identifiers.

S • All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always reserved for any use.

• All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary identifier and tag name spaces.

• Each macro name listcd in any of the following sections (including the future lihrary
10 directions) is reserved for any use if any of its associated headers is included.

• All identifiers with external linkage in any of the following sections (including the future
library directions) are always reserved for usc as identifiers with external linkageYo

• Each identifier with file scope listed in any of the following sections (including the future
library directions) is reserved for usc as an identifier with file scope in the same name space if

IS any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier with the
same name as an identifier reserved in that context (other than as allowed bv 4.1.6). the behavior
is undefined 91 •

4.1.3 Errors <errno . h>

20 The header <errno. h> defines several macros, all relating to the reporting of error
conditions.

The macros are

EDOM
ERANGE

2S which expand to integral constant expressions with distinct nonzero values. suitable for use In

#if preprocessing directives; and

errno

which expands to a modifiable Ivalue92 that has type int, the value of which is set to a positive
error number by several library functions. It is unspecified whether errno is a macro or an

30 identifier declared with external linkage. If a macro definition is suppressed in order to access an

actual object, or a program defines an identifier with the name errno, the behavior is undefined.

The value of errno is zero at program startup, but is never set to zero by any library
function. 93 The value of errno may be set to nonzero by a library function call whether or not
there is an error, provided the use of errno is not documented in the description of the function

3S in the standard.

90. The list of reserved identifiers with external linkage includes errno, set jmp, and va_end.

91. Since macro names are replaced whenever found, independent of scope and name space. macro names
matching any of the reserved identifier names must not be delined if an associated header, if any. is included.

92. The macro errno need not be the identifier of an object. It might expand to a modifiable Ivalue resulting
from a function call (for example. *errno ()).

93. Thus, a program that uses errno for error checking should set it to zero before a library function call, then
inspect it before a subsequent library function call. Of course. a library function can save the value of errno
on entry and then set it to zero, as long as the original value is restored if errno's value is still zero just
before the return.

4.1.2.1 AMERICAN NATIONAL STANDARD X3.159- t9X9 4.1.3

Library 99 Introduction

Additional macro definitions, beginning with E and a digit or E and an uppercase letter.94 may
also be specified by the implementation.

4.1.4 Limits <float. h> and <limits. h>

The headers <float. h> and <limits. h> define several macros that expand to various
5 limits and parameters.

The macros, their meanings, and the constraints (or restrictions) on their values are listed III

2.2.4.2.

4.1.5 Common Definitions <stddef . h>

The following types and macros are defined in the standard header <stddef . h>. Some are
10 also defined in other headers, as noted in their respective sections.

The types are

ptrdiff_t

which is the signed integral type of the result of subtracting two pointers;

size t

15 which is the unsigned integral type of the result of the sizeof operator; and

wchar t

which is an integral type whose range of values can represent distinct codes for all members of
the largest ext,~nded character set specified among the supported locales; the null character shall
have the code value zero and each member of the basic character set defined in 2.2.1 shall have a

20 code value equal to its value when used as the lone character in an integer character constant.

The macro:; are

NULL

which expands to an implementation-defined null pointer constant; and

offsetof (type, memher-designator)

25 which expands to an integral constant expression that has type size_ t, the value of which is the
offset in bytes, to the structure member (designated by memher·designator), from the beginning
of its structure (designated by tvpe). The memher-designator shall be such that given

stat ic type t;

then the expression &(t . memher-designator) evaluates to an address constant. (If the specified
30 member is a bit-field, the behavior is undefined.)

Forward references: localization (4.4).

94. See" future library directions" (4.13.1).

4.1.3 AMERICAN NATIONAL STANDARD X3.1:i9-1989 4.1.5

Library

4.1.6 Use of Library Functions

100 Introduction

Each of the following statements applies unless cxplicitly statcd otherwise in the detailed
descriptions that follow. If an argument to a function has an invalid value (such as a value
outside the domain of the function. or a pointer outside the address space of the program. or a

5 null pointer). the behavior is undefined. If a function argument is described as bemg an array.
the pointer actually passed to the function shall have a value such that all address computations
and accesses to objects (that would be valid if the pointer did point to the first element of such an
array) are in fact valid. Any function declared 111 a header llIay be additionally implemented as a
macro defined in the header. so a library funclion should not be declared explicitly if its header is

10 included. Any macro definition of a function can be suppressed locally by enclosing the name of
the function in parentheses. because the name is then not followed bv the left parenthesis that
indicates expansion of a macro function name. For the same s:mtactic reason. it is permitted to
take the address of a library function even if it is also deiincd as a macro.'" The usc of #undef
to remove any macro delinition will also ensure that an ell'tua] function is referred to. f\l1y

15 invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once. fully protected by parentheses where necessary. so
it is generally safe to use arbitrary expressions as arguments. Likewise. those function-like
macros described in the following sections may be invoked ;n an expression anywhere a function
with a compatible return type could be called,'lh All object-like macros listed as expanding to

20 integral constant expressions shall additionally be suitable for usc in #if preprocessing
directives.

Provided that a library function can be declared without reference to any type defined in a
header. it is also permissible to declare the function. either explicitly or implicitly. and use it
without including its associated header. II' a function that accepts a variable number of arguments

25 i, not declared (explicitly or by including its as!;ociated header). the behavior is undefined.

Examples

The function atoi may be used in any of several ways:

• by use of its associated header (possibly generating a macro expansion)

30
#include <stdlib.h>
const char *str;
/* ... * /
i = atoi (str) ;

95. This means that an implementation must provide an actual function for each lihrary junction. even if it also
provides a macro for that function.

lJO. Because external identifiers and some macro names beginning with an underscore arc reservcu. impkmentations
may provide special scmantics for such names. For cxample. the identilier _BUILTIN_abs could he used to
indicate generation of in-line code for the abs function. Thus. the appropriate header could specify

~define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept It.

In thi, manner. a user desirini! to guarantee that a !-,iven library tunclion such ,h abs will be a genume
function may write

#undef abs

whelher the implementation's headcr provldcs a macro implelllentalion of abs or a built-in 1IlIpklllcnlatio!1.
The prototype for Ihe function. which precedes and is hidden 1-1\ arrv macro definition. i, thl'lcf1\ reve,lkd also.

-+.1.6 A'\1ERICAN NATIO""!. STA\;D\RD \'.I'.')19SLJ 4.1.6

Library

5

10

15

20

4.1.6

101

• by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi
const char *str;
/" .. . */
i = atoi(str);

or

#:mclude <stdlib. h>
ccmst char *str ;

/" .. . */
i = (atoi) (str) ;

• by explicit dec laration

e~ttern int atoi (const char *);
ccmst char *str ;

/" .. . */
i = atoi (str) ;

• by implicit declaration

ccmst char * str;
/" .. . */
i = atoi(str);

AMERICAN '\ATIONAL STANDARD X3.15lJ-I'IXlJ

Introductic,n

4.1.6

Library

4.2 Diagnostics <assert. h>

102 Diagnostics <assert. h>

The header <assert. h> defines the assert macro and refers to another macro.

NDEBUG

which is /lot defined by <assert. h>. If NDEBUG is detlned as a macro name at the point in
5 the source file where <assert. h> is included. the assert macro is defined simply as

#define assert (ignore) «void)O)

The assert macro shall be implemented as a macro. not as an actual function, If the macro
definition is suppressed in order to access an actual function, the behavior is undefined.

4.2.1 Program Diagnostics

10 4.2.1.1 The assert Macro

Synopsis

#include <assert.h>
void assert(int expression);

Description

15 The assert macro puts diagnostics into programs. When it is executed. if expression is
false (that is. compares equal to 0). the assert macro writes information about the particular
call that failed (including the text of the argument. the name of the source tile. and the source
line number - the latter are respectively the values of the preprocessing macros FILE and

LINE__) on the standard error file in an implementation-defined format 97 It-then c~ii~ the
20 abort function.

Returns

The assert macro returns no value,

Forward references: the abort function (4, 10.4. I).

97, The message written might be of the form

Assertion failed: npressiol1. Ii Ie -I"r:. line 111111

4.2 AMERICAN '\lATIONAL STANDARD X3, 1'i9-19~9 4.2.1.1

Library 103 Character Handling <ctype. h>

25

4.3 Character Handling <ctype . h>

The header <ctype. h> declares several functions useful for testing and mapping
characters.9X In all cases the argument is an int, the value of which shall be representable as an
unsigned char or shall equal the value of the macro EOF. If the argument has any other

5 value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that have
implementation-defined aspects only when not in the "e" locale are noted below.

The term priming character refers to a member of an implementation-defined set of
characters, each of which occupies one printing position on a display device; the term control

I0 character refers to a member of an implementation-defined set of characters that are not printing
characters.99

Forward references: EOF (4.9.1), localization (4.4).

4.3.1 Character Testing Functions

The functions in this section return nonzero (true) if and only if the value of the argument c
15 conforms to that in the description of the function.

4.3.1.1 The isalnum Function

Synopsis

#include <ctype.h>
int isalnum (int c);

20 Description

The isalnum function tests for any character for which isalpha or isdigit is true.

4.3.1.2 The isalpha Function

Synopsis

#include <ctype.h>
int isalpha(int c);

Description

The isalpha function tests for any character for which isupper or islower is true, or
any character that is one of an implementation-defined set of characters for which none of
iscntrl, isdigit, ispunct, or isspace is true. In the "e" locale, isalpha returns

30 true only for the characters for which isupper or islower is true.

4.3.1.3 The :Lscntrl Function

Synopsis

#incJLude <ctype. h>
int iscntrl(int c);

98. Sec "'future library directions" (4.13.2).

99. In an implementation that uses the seven-bit ASCII character set, the printing characters are those whose values
lie from Ox20 (space) through Ox7E (tilde); the control characters are those whose values lie from 0 (NUL)
through Ox IF (US). and the character Ox7F (DEL).

4.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.3.1.3

Library 104 Character Handling <ctype. h>

5

Description

The iscntrl function tests for any control character,

4.3.1.4 The isdigit Function

Synopsis

#include <ctype.h>
int isdigit(int c);

Description

The isdigit function tests for any decimal-digit character (as defined in 2.2.1).

4.3.1.5 The isgraph Function

10 Synopsis

#include <ctype.h>
int isgraph(int c);

Description

The isgraph function tests for any printing character except space (' ').

15 4.3.1.6 The islower Function

Synopsis

#include <ctype.h>
int islower(int c);

Description

20 The islower function tests for any character that is a lowercase letter or is one of an
implementation-defined set of characters for which none of iscntrl. isdigit. ispunct. or
isspace is true. In the "C" locale. islower returns true only for the characters defined as
lowercase letters (as defined in 2.2.1).

4.3.1.7 The isprint Function

25 Synopsis

#include <ctype.h>
int isprint(int c);

Description

The isprint function tests for any printing character including space (' ').

30 4.3.1.8 The ispunct Function

Synopsis

#include <ctype.h>
int ispunct(int c);

Description

35 The ispunct function tests for any printing character that IS neither space (' ') nor a
character for which isalnum is true.

4.3.1.3 AMERICAN NATIONAL STAI\DARD X3,1:'i9-19X9 4.3, I ,R

Library

4.3.1.9 The isspace Function

105 Character Handling <ctype. h>

Synopsis

#include <ctype.h>
int isspace(int c);

5 Description

The isspace function tests for any character that is a standard white-space character or is
one of an implementation-defined set of characters for which isalnum is false. The standard
white-space characters are the following: space (' '). form feed (' \f'). new-line (' \n'),
carriage return (' \r'), horizontal tab (' \t'), and vertical tab (' \v'). In the "C" locale,

10 isspace returns true only for the standard white-space characters.

4.3.1.10 The isupper Function

Synopsis

#include <ctype.h>
int isupper(int c);

IS Description

The isupper function tests for any character that is an uppercase letter or is one of an
implementation-defined set of characters for which none of is<:ntrl, isdigit. ispunct. or
isspace is true. In the "C" locale, isupper returns true only for the characters defined as
uppercase Icttl~rs (as defined in 2.2.1).

20 4.3.1.11 The isxdigit Function

Synopsis

#inc:lude <ctype. h>
int isxdigit(int c);

Description

25 The isxdigit function tests for any hexadecimal-digit character (as defined in 3.1.3.2).

4.3.2 Char'acter Case Mapping Functions

4.3.2.1 The tolower Function

30

Synopsis

#inc:lude <ctype. h>
int tolower(int c);

Description

The tolower function converts an uppercase letter to the corresponding lowercase letter.

Returns

If the argument is a character for which isupper is true and there is a corresponding
35 character for which islower is true, the tolower function returns the corresponding character;

otherwise, the argument is returned unchanged.

40

4.3.2.2 The toupper Function

Synopsis

#inc:lude <ctype.h>
int toupper(int c);

4.3.1.9 AMERICAN NATIONAL STANDARD X3.159-1989 4.3.2.2

Library 106 Character Handling <ctype. h>

Description

The toupper function converts a lowercase letter to the corresponding uppercase letter.

Returns

If the argument is a character for which islower is true and there is a corresponding
5 character for which isupper is true. the toupper function returns the con'esponding character;

otherwise. the argument is returned unchanged.

4.3.2.2 AMERICAN NATIONAL ST/\NDARD X3.159-1989 4.3.2.2

Library

4.4 Localization <locale. h>

107 Localization <locale. h>

The header <locale. h> declares two functions, one type, and defines several macros.

The type is

str'l:lct lconv

5 which contain, members related to the formatting of numeric values. The structure shall contain
at least the following members, in any order. The semantics of the members and their normal
ranges is explained in 4.4.2.1. In the "C" locale. the members shall have the values specified in
the comments.

10

15

20

25

cha:z:' *decimalyoint; /* " " */
cha:z:' *thousands_sep; /* "" */
cha:z:' *grouping; /* "" */
char *int_curr_symbol; /* */
cha:z:' *currency_symbol; /* u" */
cha:z:' *mon_decimalyoint; /* "" */
cha:z:' *mon thousands_sep; /* "" */
char *mon_grouping; /* */
cha:z: *positive_sign; /* */
cha:z: *negative_sign; /* "" */
cha:z: int_frac_digits; /* CHAR MAX */
char frac_digits; /* CHAR MAX */
char p_csyrecedes; /* CHAR MAX */
char p_sep_by_space; /* CHAR MAX */
char n_csyrecedes; /* CHAR MAX */
char n_sep_by_space; /* CHAR MAX */
char p_signyosn; /* CHAR MAX */
char n_signyosn; /* CHAR MAX */

The macro, defined are NULL (described in 4.1.5); and

LC ALL
LC COLLATE

30 LC CTYPE
LC MONETARY
LC NUMERIC
LC TIME

which expand to integral constant expressions with distinct values, suitable for use as the first
35 argument to the set locale function. Additional macro definitions, beginning with the

characters LC_. and an uppercase letter,l00 may also be specified by the implementation.

IOU. See "future library directions" (4.13.3).

4.4 AMERICAN NATIONAL STANDARD X3.159-1989 4.4

Library

4.4.1 Locale Control

4.4.1.1 The setlocale Function

10~ Localization <locale. h>

5

Synopsis

#include <locale.h>
char *setlocale(int category, const char *locale);

Description

The set locale function selects the appropriate portion of the program's locale as specified

by the category and locale arguments. The setlocale function may be used to change
or query the program's entire current locale or portions thereof. The value LC ALL for

10 category names the program's entire locale: the other values for category name only a
portion of the program's locale. LC_COLLATE affects the behavior of the strcoll and
strxfrm functions. LC_ CTYPE affects the behavior of the character handling functions III! and

the multibvte functions. LC MONETARY affects the monetarv f0lll1atting information returned bv
-' - -' '- ..-

the localeconv function. LC_NUMERIC affects the decimal-point character for the formatted
15 input/output functions and the string conversion functions, as well as the nonmonetary formatting

information returned by the localeconv function. LC TIME affects the behavior of the

strftime function.

A value of "C" for locale specifies the minimal environment for C translation: a value of

" " for locale specifies the implementation-defined native environment. Other
20 implementation-defined strings may be passed as the second argument to setlocale.

At program startup. the equivalent of

setlocale (LC_ALL, "C");

is executed.

The implementation shall behave as if no library function calls the setlocale function.

25 Returns

If a pointer to a string is given for locale and the selection can be honored. the

set locale function returns a pointer to the string associated with the specified category for
the new locale. If the selection cannot be honored, the set locale function returns a null

pointer and the program"s locale is not changed.

30 A null pointer for locale causes the setlocale function to return a pointer to the string
associated with the category for the program's current locale: the prugram's locale is not

changed. I02

The pointer to string returned by the set locale function is such that a subsequent call with

that string value and its associated category will restore that part of the program's locale. The
35 string pointed to shall not be modified by the program, but may be overwritten by a subsequent

call to the setlocale function.

Forward references: formatted input/output functions (4.9.6), the multibyte character functions
(4.10.7), the multi byte string functions (4.1 O.~), string conversion functions (4.10. I). the

strcoll function (4.11.4.3), the strftime function (4.12.3.5), the strxfrm function

40 (4.11.4.5).

101. The only functions in 4.3 whose behavior is not affected by the current locale are isdigit and isxdigit.

](12. The implementation must arrange to encode in a string the various categories due to a heterogencous locale
when category has the valuc LC_ALL.

4.4.1 AMERICA'\i !\.\TIO'\iAL STA!\DARD X3.15lJ- J lJHlJ 4.4.1.1

Library 109 Localization <locale. h>

5

4.4.2 Numeric Formatting Convention Inquiry

4.4.2.1 The localeconv Function

Synopsis

#include <locale.h>
struct lconv *localeconv(void);

Description

The localeconv function sets the components of an objecl with type struct lconv with
values appropriate for the fonnatting of numeric quantities (monetary and otherwise) according to
the rules of the current locale.

lO The members of the structure with type char * are pointers to strings. any of which (except
decimalyClint) can point to "". to indicate that the value is not available in the current
locale or is of zero length. The members with type char are nonnegative numbers. any of
which can be CHAR MAX to indicate that the value is not available in the currem locale. The
members include the following:

15 char *decimalyoint
Thc decimal-point character used to format nonmonetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point character in
formatted nonmonetary quantities.

20 char *grouping
A string whose elemeIlls indicate the size of each group of digits III formatt'cd
nonmonetary quantities.

char *int__curr_symbol
The international currency symbol applicable to the current locale. The first three

25 characters contain the alphabetic international currency symbol in accordance with
those specified in ISO 4217: 19X7. The fourth character (immediately preceding the
I'ull character) is the character used to separate the international currency symbol
from the monetary quantity.

char *currency_symbol
30 The local currency symbol applicable to the current locale.

char *mon__decimalyoint
The decimal-point used to format monetary quantities.

char *mon_~housands_sep

The separator for groups of digits before the decimal-point 111 formatted monetary
35 quantities.

char *mon_9rouping
A string whose elements indicate the size of each group of digits in formatted

monetary quantities.

char *posi.tive_sign
40 The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negaLtive_sign
The string used to indicate a negative-valued formatted monetary quantity.

char int_:frac__digits
The number of fractional digits (those after the decimal-point) to be displayed 1I1 a

45 internationally formatted monetary quantity.

4.4.1.1 AMERICA'i NATIONAL STA'iDARD X3.159-ln9 4.4.2.1

Librarv 110 Localization <locale. h>

25 mile,.

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed III a
formatted monetary quantity.

char p_cs-precedes
5 Set to I or 0 if the currency_symbol respectively precedes or succeeds the

value for a nonnegative formatted monetary quantity.

char p_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by a
space from the value for a nonnegative formatted monetary quantity.

10 char n_csyrecedes
Set to I or 0 if the currency_symbol respectively precedes or succeeds the
value for a negative formatted monetary quantity.

char n_sep_by_space
Set to I or 0 if the currency_symbol respectively is or is not separated by a

15 space from the value for a negative formatted monetary quantity.

char p_sign-posn
Set to a value indicating the positioning of the positive_sign for a nonnegative
formatted monetary quantity.

char n_sign-posn
20 Set to a value indicating the positioning of the negative_sign for a negative

formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

CHAR MAX No further grouping is to be perfonned.

o The previous element is to be repeatedly used for the remainder of the digits.

The integer value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits before
the current group.

The value of p_signyosn and n_signyosn is interpreted according to the following:

o Parentheses surround the quantity and currency_symbol.

30 1 The sign string precedes the quantity and currency_symbol.

2 The sign string succeeds the quantity and currency_symbol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeeds the currency_symbol.

The implementation shall behave as if no library function calls the localeconv function.

3S Returns

The localeconv function returns a pointer to the tilled-in object. The structure pointed to

by the return value shall not be modified by the program. but may be overwritten by a subsequent
call to the localeconv function. In addition. calls to the setlocale function with
categories LC ALL. LC MONETARY. or LC NUMERIC may overwrite the contents of the

40 structure.

Examples

The following table illustrates the rulcs which may well be used by four countries to format
monetary quantities.

4.4.2.1 ".'vtERICAN NATIONAL STANDARD X3.1:'i')·I%LJ 4.4.2.1

Library III Localization <locale. h>

Country Positive format Negative format International format

Italy L.1.234 -L.1.234 ITL.1.234
Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56
Norway kr1.234,56 kr1.234,56- NOK 1.234,56

5 Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the structure
returned by lc)caleconv are:

10

IS

20

int_curr_symbol
currency_symbol
mon_decimal-point
mon thousands_sep
mon_grouping
positive_sign
negative_sign
int_frac_digits
frac_digits
p_cs-precedes
p_sep_by_space
n_cs-precedes
n_sep_by_space
p_sign_posn
n_sign_posn

Italy

"ITL."
"L."

""
" "
"\3"

""
"_"
o
o
1
o
1
o
1
1

Netherlands

"NLG "
"F"

" ",
" "
"\3"
""
11_"

2
2
1
1
1
1
1
4

Norway

"NOK "
"kr"
II ",
" "
"\3"

"-"
2
2
1
o
1
o
1
2

Switzerland

"CHF "
"SFrs."

" "
" ",
"\3"

"e"
2
2
1
o
1
o
1
2

4.4.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.4.2.1

Library

4.5 Mathematics <math. h>

112 Mathematics <math. h>

The header <math. h> declares several mathematical functions and defines one macro. The
functions take double arguments and return double values.lll.~ Integer arithmetic functions
and conversion functions are discussed later.

5 The macro defined is

HUGE VAL

which expands to a positive double expression. not necessarily representable as a float.lll~

Forward references: integer arithmetic functions (4. 10.6). the atof function (4. 10.1.1 J. the
strtod function (4.10.1.4).

10 4.5.1 Treatment of Error Conditions

The behavior of each of these functions is defined for all representable values of its input
arguments. Each function shall execute as if it were a single operation. without generating any
externally visible exceptions.

For all functions. a domain error occurs if an input argument is outside the domain over
15 which the mathematical function is defined. The description of each function lists any required

domain errors; an implementation may define additional domain errors, provided that such errors
are consistent with the mathematical definition of the function. In, On a domain error. the
function returns an implementation-defined value; the value of the macro EDOM is stored in
errno.

20 Similarly. a range error occurs if the result of the function cannot be represented as a
double value. If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the value of the macro
HUGE_VAL. with the same sign (except for the tan function) as the correct value of the

function; the value of the macro ERANGE is stored in errno. If the result underflows (the
25 magnitude of the result is so small that it cannot be represented in an object of the specified

type), the function returns zero; whether the integer expression errno acquires the value of the
macro ERANGE is implementation-defincd.

4.5.2 Trigonometric Functions

4.5.2.1 The acos Function

30 Synopsis

#include <math.h>
double acos(double x);

Description

The acos function computes the principal value of the arc cosinc of x. A domain error

35 occurs for arguments not in the range 1- I. + 1] .

.~-----_.-

103. See "future library dircctions" (4.1.'.41.

104. HUGE_VAL can be positivc infinity in an implcmcntation that supports infinities.
j05. In an implcmcntation that supports infinities. this allows inlinity as an argumcnI [0 he a domain error if the

mathematical domain of thc function does nOl includc inlinity.

4.5 AvIERICA'\ NAIIU AL STANDARD X.\.15'!-1 YX9 4.:'.2.1

Library

Returns

113 Mathematics <math. h>

5

The acos function returns the arc cosine in the range [0, 11) radians.

4.5.2.2 The asin Function

Synopsis

#include <math.h>
dOt~le asin(double x);

Description

The asin function computes the principal value of the arc sine of x. A domain error occurs
for arguments not in the range [-I, + I].

10 Returns

The asio function returns the arc sine in the range l-re/2, +11:/2J radians.

4.5.2.3 The atan Function

IS

Synopsis

#include <math.h>
double atan(double x);

Description

The atal:l function computes the principal value of the arc tangent of x.

Returns

The atan function returns the arc tangent in the range [-11:/2, +11:/2] radians.

20 4.5.2.4 ThE~ atan2 Function

Synopsis

#include <math.h>
double atan2(double y, double x);

Description

25 The atan2 function computes the principal value of the arc tangent of y lx, using the signs
of both arguments to determine the quadrant of the return value. A domain error may occur if
both arguments are zero.

Returns

The atan2 function returns the arc tangent of y/x. in the range [-re, +11:1 radians.

30 4.5.2.5 The cos Function

Synopsis

#in<:::lude <math. h>
dow~le cos(double x);

Description

35 The cos function computes the cosine of x (measured in radians).

Returns

The cos function returns the cosine value.

4.5.2.1 AMERICAN NATIONAL STANDARD XJ.I59-19XlJ 4.5.2.:'1

Library

4.5.2.6 The 5 in Function

Synopsis

#include <math.h>
double sin(double x);

5 Description

114 Mathematics <math. h>

The sin function computes the sine of x (measured in radians).

Returns

The sin function returns the sine value.

4.5.2.7 The tan Function

10 Synopsis

#include <math.h>
double tan(double x);

Description

The tan function returns the tangent of x (measured in radians).

IS Returns

The tan function returns the tangent value.

4.5.3 Hyperbolic Functions

4.5.3.1 The cosh Function

20

Synopsis

#include <math.h>
double cosh(double x);

Description

The cosh function computes the hyperbolic cosme of x. A range error occurs if the
magnitude of x is too large.

25 Returns

The cosh function returns the hyperbolic cosine value.

4.5.3.2 The sinh Function

30

Synopsis

#include <math.h>
double sinh(double x);

Description

The sinh function computes the hyperbolic sine of x. A range error occurs if the magnitude
of x is too large.

Returns

35 The sinh function returns the hyperbolic sine value.

4.5.2.6 AMERICAt" :sJATIONAL STANDARD X.·U5'!-I'!S9 4.5.J.2

Library

4.5.3.3 The tanh Function

115 Mathematics <math. h>

Synopsis

#inc:lude <math.h>
double tanh (double x);

5 Description

The tanh function computes the hyperbolic tangent of x.

Returns

The tanh function returns the hyperbolic tangent value.

4.5.4 Exponential and Logarithmic Functions

10 4.5.4.1 The exp Function

Synopsis

#include <math.h>
double exp(double x);

Description

15 The exp function computes the exponential function of x. A range error occurs if the
magnitude of)t is too large.

Returns

The exp function returns the exponential value.

4.5.4.2 The frexp Function

20 Synopsis

#include <math.h>
double frexp(double value, int *exp);

Description

The frexp function breaks a floating-point number into a normalized fraction and an integral
25 power of 2. It stores the integer in the int object pointed to by expo

Returns

The frexp function returns the value x, such that x is a double with magnitude in the
interval [1/2, I) or zero, and value equals x times 2 raised to the power *exp. If value is
zero, both parts of the result are zero.

30 4.5.4.3 The JLdexp Function

Synopsis

#include <math.h>
double ldexp(double x, int exp);

Description

35 The ldexp function multiplies a floating-point number by an integral power of 2. A range
error may occur.

Returns

The ldexp function returns the value of x times 2 raised to the power expo

4.5.3.3 AMERICAN NATIONAL STANDARD X3.159-19B9 4.5.4.3

Library 116 Mathematics <math. h>

4.5.4.4 The log Function

Synopsis

#include <math.h>
double log(double x);

5 Description

The log function computes the natural logarithm of x. A domain error occurs if the
argument is negative. A range error may occur if the argument is zero.

Returns

The log function returns the natural logarithm.

10 4.5.4.5 The loglO Function

Synopsis

#include <math.h>
double loglO(double x);

Description

15 The loglO function computes the base-ten logarithm of x. A domain error occurs if Ihe
argument is negative. A range error may occur if the argument is zero.

Returns

The loglO function returns the base-ten logarithm.

4.5.4.6 The modf Function

20 Synopsis

#include <math.h>
double modf(double value, double *iptr);

Description

The modf function breaks the argument value into integral and fractional parts. each of
25 which has the same sign as the argument. It stores the integral part as a double in the object

pointed to by iptr.

Returns

The modf function returns the signed fractional part of value.

4.5.5 Power Functions

30 4.5.5.1 The pow Function

Synopsis

#include <math.h>
double pow(double x, double y);

Description

35 The pow function computes x raised to the power y. A domain error occurs if x is negative
and y is not an integral value. A domain error occurs if the result cannot he represented when x
is zero and y is less than or equal to zero. A range error may occur.

Returns

The pow function returns the value of x raised to the power y.

4.5.4.4 AMERICAN NATIONAL STANDARD X3.15Y-I Y~9 4.5.5.1

Library

4.5.5.2 The sqrt Function

117 Mathematics <math. h>

Synopsis

#include <math.h>
double sqrt(double x);

5 Description

The sqrt function computes the nonnegative square root of x. A domain en-or occurs if the
argument is negative.

Returns

The sqrt function returns the value of the square root.

10 4.5.6 Nearest Integer, Absolute Value, and Remainder Functions

4.5.6.1 The ceil Function

Synopsis

#include <math.h>
doul::,le ceil (double x);

15 Description

The ceil function computes the smallest integral value not less than x.

Returns

The ceil function returns the smallest integral value not less than x. expressed as a double.

4.5.6.2 The fabs Function

20 Synopsis

#include <math.h>
double fabs(double x);

Description

The fabs function computes the absolute value of a f1oating·point number x.

25 Returns

The fabs function returns the absolute value of x.

4.5.6.3 The floor Function

30

Synopsis

#include <math.h>
double floor(double x);

Description

The floor function computes the largest integral value not greater than x.

Returns

The floo:r function returns the largest integral value not greater than x. expressed as a
3S double.

4.5.5.2 AMERICAN NATlONAL STANDARD X3.159-19R9 4.5.6.3

Library

4.5.6.4 The fmod Function

118 Mathematics <math. h>

Synopsis

#include <math.h>
double fmod(double x, double y);

5 Description

The fmod function computes the floating-point remainder of x/yo

Returns

The fmod function returns the value x - i * y, for some integer i such that. if y is nonzero.
the result has the same sign as x and magnitude less than the magnitude of y. If Y is zero.

10 whether a domain error occurs or the fmod function returns zero is implementation-defined.

4.5.6.4 AMERICAN NATIONAL STANDARD X3.159-I9R9 4.5.6.4

Library 119 Nonlocal Jumps <set jrnp. h>

5

4.6 Nonloll:al Jumps <setjmp. h>

The header <set jrnp . h> defines the macro set jrnp, and declares one function and one
type, for bypassing the normal function call and return discipline. 106

The type declared is

jrnp__buf

which is an array type suitable for holding the infonnation needed to restore a calling
environment.

It is unspecified whether set jrnp is a macro or an identifier declared with external linkage.
If a macro definition is suppressed in order to access an actual function, or a program defines an

10 external identifier with the name set jrnp, the behavior is undefined.

15

4.6.1 Save Calling Environment

4.6.1.1 The setjmp Macro

Synopsis

#include <setjrnp.h>
int setjrnp(jrnp_buf env);

Description

The set jrnp macro saves its calling environment in its jrnp_ buf argument for later use by
the longjrnp function.

Returns

20 If the return is from a direct invocation, the set jrnp macro returns the value zero. If the
return is from a call to the longjrnp function, the setjrnp macro returns a nonzero value.

Environmental Constraint

An invocation of the set jrnp macro shall appear only in one of the following contexts:

• the entire controlling expression of a selection or iteration statement;

25 • one operand of a relational or equality operator with the other operand an integral constant
expression .. with the resulting expression being the entire controlling expression of a selection
or iteration statement;

the operand of a unary ! operator with the resulting expre~,sion being the entire controlling
expression of a selection or iteration statement; or

30 • the entire expression of an expression statement (possibly cast to void).

106. These functions are useful for dealing with unusual conditions encountered In a low-level function of a
program.

4.6 AMERICAN NATIONAL STANDARD X3.I59-1989 4.6.1.1

Library 120 Nonlocal Jumps <set jmp. h>

s

4.6.2 Restore Calling Environment

4.6.2.1 The longjrnp Function

Synopsis

#include <setjmp.h>
void longjmp(jrnp_buf env, int val);

Description

The longjmp function restores the environment saved by the most recent invocation of the
set jmp macro in the same invocation of the program. with the corresponding jrnp_ buf
argument. If there has been no such invocation. or if the function containing the invocation of

10 the set jmp macro has terminated execution 107 in the interim. the behavior is undefined.

All accessible objects have values as of the time longjrnp was called. except that the values

of objects of automatic storage duration that are local to the function containing the invocation of

the corresponding set jrnp macro that do not have volatile-q ualified type and have been changed
between the set jmp invocation and longjrnp call are indeterminate.

1S As it bypasses the usual function call and return mechanisms. the longjmp function shall

execute correctly in contexts of interrupts. signals and any of their associated functions.
However. if the longjmp function is invoked from a nested signal handler (that is. from a

function invoked as a result of a signal raised during the handling of another signal). the behavior
is undefined.

20 Returns

After longjrnp is completed. program execution continues as if the corresponding invocation
of the set jmp macro had just returned the value specified by val. The longjrnp function

cannot cause the set jmp macro to return the value 0; if val is O. the set jmp macro returns
the value I.

107 For example. by executing a return statement or because another longjmp call has caused a transfer to a
set jmp invocation in a function earlier in the set of nested calls.

4.6.2 AMER IC".N NATIONAL STANDARD X3.1 :;'1-1 'JX9 4.6.2.1

Library 121 Signal Handling <signal. h:>

5

4.7 Signal Handling <signal. h>

The header <signal. h> declares a type and two functiom and defines several macros, for
handling various signals (conditions that may be reported during program execution).

The type defined is

sig_,atomic_ t

which is the integral type of an object that can be accessed as an atomic entity, even In the
presence of asynchronous interrupts.

The macrm, defined are

SIG DFL

10 SIG H:RR

SIG IGN

which expand to constant expressions with distinct values that have type compatible with the
second argument to and the return value of the signal function, and whose value compares
unequal to the address of any declarable function: and the following, each of which expands to a

15 positive integral constant expression that is the signal number corresponding to the specified
condition:

SIGABRT abnormal termination. such as is initiated by the abo]~t function

SIGFPE an erroneous arithmetic operation. such as zero divide or an operation resulting III

overflow

20 SIGILL detection of an invalid function image, such as an illegal instruction

SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

An implementation need not generate any of these signals. except as a result of explicit calls
25 to the raise function. Additional signals and pointers to undeclarable functions, with macro

definitions beginning. respectively, with the letters SIG and an uppercase letter or with SIG and
an uppercase letter. lOS may also be specified by the implementation. The complete set of signals,
their semantics, and their default handling is implementation-defined: all signal numbers shall be
positive.

30 4.7.1 Specify Signal Handling

4.7.1.1 The signal Function

Synopsis

#include <signal.h>
void (*signal(int sig, void (*func) (int») (int);

35 Description

The signal function chooses one of three ways in which receipt of the signal number sig'
is to be subsequently handled. [I' the value of func is SIG_.nFL. default handling for thaI
signal will occur. If the value of func is SIG_IGN, the signal will be ignored. Otherwise.

lOs. See "future library directions" (4.13.5). The names or lhe signal numbers reflect the following terms
(respectively): abori. floating-point exception. illegal instruction. interrupt. segmentation violation. and
termination.

4.7 AMERICAN 'JATIONAL STA'JDARD X3,159-19X9 4.7.1.1

Library 122 Signal Handling <signal. h>

func shall point to a function to be called when that signal occurs. Such a function is called a
signal handler.

When a signal occurs, if func points to a function, first the equivalent of signal (sig,
SIG_DFL); is executed or an implementation-defined blocking of the signal is perfonned. (If

5 the value of sig is SIGILL, whether the reset to SIG_ DFL occurs is implementation-defined.)
Next the equivalent of (*func) (sig); is executed. The function func may tenninate hy
executing a return statement or by calling the abort, exit, or longjmp function. If func
executes a return statement and the value of sig was SIGFPE or any other implementation­
defined value corresponding to a computational exception, the behavior is undefined. Otherwise.

10 the program will resume execution at the point it was interrupted.

If the signal occurs other than as the result of calling the abort or raise function, the
behavior is undefined if the signal handler calls any function in the standard library other than the
signal function itself (with a first argument of the signal number corresponding to the signal
that caused the invocation of the handler) or refers to any object with static storage duration other

15 than by assigning a value to a static storage duration variable of type volatile
sig atomic t. Furthermore, if such a call to the signal function results in a SIG ERR
retur;, the val~ of errno is indetenninate. 109

At program startup, the equivalent of

signal (sig, SIG_IGN);

20 may be executed for some signals selected in an implementation-defined manner; the e4uivalent
of

signal (sig, SIG_DFL);

is executed for all other signals defined by the implementation.

The implementation shall behave as if no library function calls the signal function.

25 Returns

If the request can be honored, the signal function returns the value of func for the most
recent call to signal for the specified signal sig. Otherwise, a value of SIG_ ERR is returned
and a positive value is stored in errno.

Forward references: the abort function (4.10.4.1), the exit function (4.10.4.3).

30 4.7.2 Send Signal

4.7.2.1 The raise Function

Synopsis

#include <signal.h>
int raise(int sig);

35 Description

The raise function sends the signal sig to the executing program.

Returns

The raise function returns zero if successful, nonzero if unsuccessful.

109. If any signal is generated by an asynchronous signal handler, the behavior is undefined

4.7.1.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.7.2.1

Library 123 Variable Arguments <stdarg. h>

25

4.8 Variable Arguments <stdarg. h>

The header <stdarg. h> declares a type and defines three macros. for advancing through a
list of arguments whose number and types are not known to the called function when it is
translated.

5 A function may be called with a variable number of arguments of varying types. As
described in 3.7.1, its parameter list contains one or more parameters. The rightmost parameter
plays a special role in the access mechanism. and will be designated parmN in this description.

The type declared is

va list

10 which is a type suitable for holding information needed by the macros va_start, va_arg, ard
va_end. If access to the varying arguments is desired, the called function shall declare an
object (referred to as ap in this section) having type va_list. The object ap may be passed as
an argument to another function: if that function invokes the va_arg macro with parameter ap.
the value of ap in the calling function is indeterminate and shall be passed to the va_end macro

15 prior to any further reference to ap.

4.8.1 Variable Argument List Access Macros

The va start and va arg macros described 111 this section shall be implemented c1s
macros, not as actual functions. It is unspecified whether va_end is a macro or an identifier
declared with external linkage. If a macro definition is suppressed in order to access an actual

20 function, or a program defines an external identifier with the name va_end, the behavior is
undefined. The va_start and va_end macros shall be invoked in the function accepting a
varying number of arguments, if access to the varying arguments is desired.

4.8.1.1 The va start Macro

Synopsis

#include <stdarg.h>
void va_start (va_list ap, parmN);

Description

The va_ start macro shall be invoked before any access to the unnamed arguments.

The va_start macro initializes ap for subsequent use by va_arg and va_end.

30 The parameter parmN is the identifier of the rightmost parameter in the variable parameter list
in the function definition (the one just before the, ...). If the parameter parmN is declared
with the regi ster storage class, with a function or array type. or with a type that is not
compatible with the type that results after application of the default argument promotions, the
behavior is undefined.

35 Returns

The va start macro returns no value.

40

4.8.1.2 The va_ arg Macro

Synopsis

#include <stdarg.h>
type va_arg(va_list ap, type);

Description

The va_ arg macro expands to an expression that has the type and value of the next
argument in the call. The parameter ap shall be the same as the va_list ap initialized by
va start. Each invocation of va_ arg modifies ap so that tile values of successive arguments

4.8 AMERICA'J NATIONAL STANDARD X~ 159-19~') 4.8.1.2

Library 124 Variable Arguments <stdarg. h>

are returned In turn. The parameter t\'Iie is a type name spec.·died such that the type of a pOinter

to an object that has the specified type can be obtained ,imply by postfixing a '" to typc. If then~

is no actual next argument. or if tyPC is not compatible with the type of th,~ ,lctual next argument
(as promoted according to the default argument promotions). the beha\ior i,; undefined.

5 Returns

The first lI1VOcatlon of the va arg macro after that 01 the va sta.rt maero retulll' the
value of the argument after that specified by parl1u\. Successive invocations return the value, of
the remaining arguments in succession.

4.8.1.3 The va end Macro

10 Synopsis

#include <stdarg.h>
void va_end(va_list ap);

Description

The va_end macro facilitates a normal return from the function whose \ariable argument list

15 was referred to by the expansion of va_ start~ that initialized the va_list ap. The va_.end
macro may modify ap so that it is no longer usable <without an intervening invocation of

va_start). If there is no corresponding invocation of the va_start macro. or i I' the
va end maero is not invoked before the return. the behavior is undefined.

Returns

20 The va end macro returns no value.

Example

25

30

35

The function fl gathers into an array a list of arguments that are pointers to strings (hut no!

more than MAXARGS arguments). then passes the array as a single argument to function f2. The

number of pointers is specified by the first argument 10 fl.

#include <stdarg.h>
#define MAXARGS 31

void fl(int nytrs, ...)

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (nytrs > MAXARGS)
nytrs = MAXARGS;

va_start (ap, nytrs);
while (ptr_no < nytrs)

array [ptr_no++l = va_arg(ap, char *);
va_end (ap) ;
f2(nytrs, array);

40 Each call to fl shall have visible the definition of the function or a declaration such ih

void fl (int, ...);

4.S.1.1 A\1ERICAN ~;ATlO\AL STA\DARD X.' 1:\9-1%';

Library

4.9 Input/Output <stdio . h>

4.9.1 Introduction

125 Input/Output <stdio. h>

The header <stdio. h> declares three types. several macros. and many functions for
performing input and output.

5 The types declared are size_t (described in 4.1.5);

FILE

which is an object type capable of recording all the information needed to control a stream.
including its file position indicator. a pointer to its associated buffer (if any). an error indicator
that records whether a read/write error has occurred. and an elld-orfile indicator that records

10 whether the end of the file has been reached; and

fpos__t

which is an object type capable of recording all the informatior needed to specify uniquely every
position within a file.

The macros are NULL (described in 4.1.5);

IS

20

IOFBF
IOLBF
IONBF

which expand 10 integral constant expressions with distinct values. suitable for use as the third

argument to the setvbuf function;

BUFSIZ

which expands to an integral constant expression. which IS the size of the buffer used by the
setbuf function;

EOF

which expands to a negative integral constant expression that is returned by several functions to
25 indicate end-oFfile. that is. no more input from a stream;

FOPEN MAX

which expands to an integral constant expression that is the minimum number of files that the
implementation guarantees can be open simultaneously;

FILENAME MAX

30 which expands to an integral constant expression that is the size needed for an array of char
large enough to hold the longest file name string that the implementation guarantees can be
opened; 110

L_tmf·nam

which expands to an integral constant expression that is the size needed for an array of char
35 large enough to hold a temporary file name string generated by th~ tmpnam function;

110. If the implementation imposes no practical limit on the length of file name strings. the value of
FILENAME MAX should instead be the recommended size of an array intended to hold a file name strin2:. Of
course. file name string contents are subject to other system-specific constraints: therefore all possible stri;gs at'
length FILENAME_!~ cannot be expected to be opened successfully.

4.9 AMERICAN NATIONAL STANDARD X3.159-19:\'J 4.9.1

Library

SEEK CUR
SEEK END
SEEK SET

126 Input/Output <stdio. h>

which expand to integral constant expressions with distinct values. suitahle for use as the third
5 argument to the fseek function;

TMP MAX

10

which expands to an integral constant expression that IS the mll1lmUm numher of unique fi Ie
names that shall be generated by the tmpnam function;

stderr
stdin
stdout

which are expressions of type "pointer to FILE" that point to the FILE objects associated.
respectively, with the standard error, input, and output streams.

Forward references: files (4.9.3), the fseek function (4.9.9.2), streams (4.9.2). the tmpnam
15 function (4.9.4.4).

4.9.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drives, or
whether to or from files supported on structured storage devices. are mapped into logical data
streams, whose properties are more uniform than their various inputs and outputs. Two forms of

20 mapping are supported, for text streams and for hinary streams .111

A text stream is an ordered sequence of characters composed into lines, each line conslstll1g
of zero or more characters plus a terminating new-line character. Whether the last line requires a

terminating new-line character is implementation-defined. Characters may have to be added,
altered, or deleted on input and output to confonn to differing conventions for representing text in

25 the host environment. Thus, there need not be a one-to-one correspondence between the
characters in a stream and those in the external representation. Data read in from a text stream
will necessarily compare equal to the data that were earlier written out to that stream only if: the
data consist only of printable characters and the control characters horizontal tab and new-line: no
new-line character is immediately preceded by space characters; and the last character is a new-

30 line character. Whether space characters that are written out immediately before a new-line
character appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record internal
data. Data read in from a binary stream shall compare equal to the data that were earlier written
out to that stream, under the same implementation. Such a stream may. however. have an

35 implementation-defined number of null characters appended to the end of the stream.

Environmental Limits

An implementation shall support text files with lines contaInIng at least 254 characters,

including the tenninating new-line character. The value of the macro BUFSIZ shall be at least
256.

III. An implementation need not distinguish between text streams and binary streams. [n such an implementation.
there need be no new-line characters in a text stream nor allY limit to the length of a line.

4.9.1 AMERICAN NATIONAL STANDARD XJ.159-198'-J 4.9.2

Library

4.9.3 Files

127 Input/Output <stdio . h>

A stream is associated with an external file (which may be a physical device) by opening a
file. which may involve creating a new file. Creating an existing file causes its former contents
to be discarded, if necessary. If a file can support positioning requests (such as a disk file. as

5 opposed to a terminal). then a file position i17dicator 112 associated with the stream is positioned at
the start (character number zero) of the file. unless the file is opened with append mode in which
case it is implementation-defined whether the file position indicator is initially positioned at the
beginning or the end of the file. The file position indicator is maintained by subsequent reads,
writes. and positioning requests. to facilitate an orderly progression through the file. All input

10 takes place as if characters were read by successive calls to th~ fgetc function; all output takes
place as if characters were written by successive calls to the fputc function.

Binary files are not truncated. except as defined in 4.9.5.3. Whether a write on a text stream
causes the associated file to be truncated beyond that point is implementation-defined.

When a stream is unhuffered. characters are intended to appear from the source or at the
15 destination as soon as possible. Otherwise characters may be accumulated and transmitted to or

from the host environment as a block. When a stream is/lIllv huffered. characters are intended to
be transmitted to or from the host environment as a block when a buffer is filled. When a stream
is line huffered. characters are intended to be transmitted to or from the host environment as a
block when a new-line character is encountered. Furthermore. characters are intended to be

20 transmitted as a block to the host environment when a buffer is fi lied. when input is requested on
an unbuffered stream, or when input is requested on a line buffered stream that requires the
transmission of characters from the host environment. Support for these characteristics ;s
implementation-defined, and may be affected via the setbuf and setvbuf functions.

A file may be disassociated from a controlling stream by closing the file. Output streams are
25 flushed (any unwritten buffer contents are transmitted to the host environment) before the stream

is disassociated from the file. The value of a pointer to a FII,E object is indeterminate after the
associated file is closed (including the standard text streams). Whether a file of zero length (on
which no characters have been written by an output stream) actually exists is implementation­
defined.

30 The file may be subsequently reopened. by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at its start). If the main function
returns to its original caller, or if the exit function is called. all open files are closed (hence all
output streams are flushed) before program termination. Other paths to program termination.
such as calling the abort function, need not close all files properly.

35 The address of the FILE object used to control a stream may be significant; a copy of a
FILE object may not necessarily serve in place of the original.

At program startup. three text streams are predefined and n~ed not be opened explicitly -­
standard input (for reading conventional input). standard OIIfPllt (for writing conventional
output), and standard error (for writing diagnostic output). When opened. the standard error

40 stream is not fully buffered; the standard input and standard output streams are fully buffered if
and only if the stream can be determined not to refer to an interactive device.

Functions that open additional (nontemporary) files require a file name. which is a string.
The rules for composing valid file names are implementation-defined. Whether the same file can
be simultaneously open multiple times is also implementation-defined.

112. This is described :n the Base Document as a .fi/e pointer. That term IS not used in this standard to avoid
confusion with a pointer to an object that has type FILE.

4.9.3 AMERICAN NATIONAL STANDARD X3.1W19XLJ 4.9.3

Library

Emironmental Limits

128 Input/Output <stdio. h>

10

20

The value of FOPEN_ MAX shall be at least eight. including the three standard text streams.

Forward references: the exit function (4.10.4.3). the fgetc function (4.9.7.1). the fopen
function (4.9.5.3). the fputc function (4.9.7.3). the setbuf function (4.9.5.5), the setvbuf

5 function (4.9.5.6).

4.9.4 Operations on Files

4.9.4.1 The remove Function

Synopsis

#include <stdio.h>
int remove(const char *filename);

Description

The remove function causes the tile whose name is the string pointed to by filename to
be no longer accessible by that name. A subsequent attempt to open that file using that name
will fail. unless it is created anew. If the fi Ie is open, the behavior of the remove function is

15 implementation-defined.

Returns

The remove function returns zero if the operation succeeds, nonzero if it fails.

4.9.4.2 The rename Function

Synopsis

#include <stdio.h>
int rename(const char *old, const char *new);

Description

The rename function causes the file whose name is the string pointed to by old to be
henceforth known by the name given by the string pointed to by new. The file named old is no

25 longer accessible by that name. If a file named by the string pointed to by new exists prior to

the call to the rename function, the behavior is implementation-defined.

Returns

The rename function returns zero if the operation succeeds. nonzero if it fails. 11J
111 which

case if the file existed previously it is still known by its original name.

30 4.9.4.3 The tmpfile Function

Synopsis

#include <stdio.h>
FILE *tmpfile(void);

Description

35 The tmpfile function creates a temporary binary file that will automatically be removed
when it is closed or at program termination. If the program terminates abnonnally. whether an
open temporary file is removed is implementation-defined. The file is opened for update with
"wb+" mode.

113. Among the reasons the implementation ma} cause the rename function to fail arc that the file is open or that
it is necessary to copy its contents to effectuate its renaming.

4.9.3 AMERICAN NATIONAL STANDARD X3.1V)·14S9 4.9.4.3

Library

Returns

129 Input/Output <stdio. h>

The tmpfiJ.e fum:tion returns a pointer to the stream of the file that it created. If the file
cannot be created, the tmpfile function returns a null pointer.

Forward references: the fopen function (4.9.5.3).

5 4.9.4.4 The tmpnam Function

Synopsis

#include <stdio.h>
char 1ttmpnam (char *s) ;

Description

10 The tmpnam function generates a string that is a valid file name and that is not the same as
the name of an existing file. 114

The tmpnaIll function generates a different string each time it is called, up to TMP_MAX
times. If it is called more than TMP_MAX times, the behavior is implementation-defined.

The implementation shall behave as if no library function calls the tmpnam function.

15 Returns

If the argument is a null pointer, the tmpnam function leave5 its result in an internal static
object and returns a pointer to that object. Subsequent calls to the tmpnam function may modify
the same object. If the argument is not a null pointer, it is aswmed to point to an array of at
least L_ tmpnam chars: the tmpnam function writes its result in that array and returns the

20 argument as its value.

Environmental JLimits

The value of the macro TMP MAX shall be at least 25.

4.9.5 File Access Functions

4.9.5.1 The fc:lose Function

25 Synopsis

#include <stdio.h>
int fc:lose(FILE *stream);

Description

The fcloSE! function causes the stream pointed to by Eitream to be flushed and the
30 associated file to be closed. Any unwritten buffered data for the stream are delivered to the host

environment to be written to the file; any unread buffered data are discarded. The stream is
disassociated from the tile. If the associated buffer was automatically allocated, it is deallocated.

114. Files created using strings generated by the tmpnam function are temporary only in the sense that their names
should not collide with those generated by conventional naming rules for the implementation. [t is still
necessary to use the remove function to remove such files when their use is ended. and before program
termination.

4.9.4.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.5.1

Library

Returns

130 Input/Output <stdio. h>

The fclose function returns zero if the stream was successfully closed. or EOF if any errors
were detected.

4.9.5.2 The fflush Function

5 Synopsis

#include <stdio.h>
int fflush(FILE *stream);

Description

If stream points to an output stream or an update stream in which the most recent operation
10 was not input. the fflush function causes any unwritten data for that stream to be delivered to

the host environment to be written to the file; otherwise. the behavior is undefined.

If stream is a null pointer, the fflush function performs this flushing action on all
streams for which the behavior is defined above.

Returns

IS The fflush function returns EOF if a write error occurs. otherwise zero.

r
w
a
rb
wb
ab
r+
w+
a+
r+b or rb+
w+b or wb+
a+b or ab+

20

25

30

35

Forward references: the fopen function (4.9.5.3). the ungetc function (4.9.7.11).

4.9.5.3 The fopen Function

Synopsis

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Description

The fopen function opens the file whose name is the string pointed to by filename. and
associates a stream with it.

The argument mode points to a string beginning with one of the following sequences: [1'1

open text file for reading
truncate to zero length or create text file for writing
append; open or create text file for writing at end-of-file
open binary file for reading
truncate to zero length or create binary file for writing
append; open or create binary file for writing at end-of-file
open text file for update (reading and writing)
truncate to zero length or create text file for update
append: open or create text file for update. writing at end-of-file
open binary file for update (reading and writing)
truncate to zero length or create binary file for update
append: open or create binary file for update. writing at end-of-file

Opening a file with read mode (' r' as the first character in the mode argument) fails if the
file does not exist or cannot be read.

Opening a file with append mode (' a' as the first character in the mode argument) causes all
40 subsequent writes to the file to be forced to the then current end-of-file, regardless of intervening

J 15. Additional characters may follow these sequences.

4.9.5.1 AMERICAN 'ATIONAL STANDARD X3.159-19g9 4.9.5.3

Library 131 Input/Output <stdio. h>

calls to the fs:eek function. In some implementations, opening a binary file with append mode
(' b' as the second or third character in the above list of mode argument values) may initially
position the fi Ie position indicator for the stream beyond the last data written. because of null
character padding.

5 When a fik is opened with update mode (' +' as the second or third character in the above
list of mode argument values), both input and output may be performed on the associated stream.

However. output may not be directly followed by input without an intervening call to the
fflush function or to a file positioning function (fseek, :fsetpos, or rewind). and input

may not be directly followed by output without an intervening call to a file positioning function,
10 unless the input operation encounters end-of-file. Opening (er creating) a text file with update

mode may instl~ad open (or create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the ~,tream are cleared.

Returns

15 The fopen function returns a pointer to the object controlling the stream. If the open
operation fails, fopen returns a null pointer.

Forward references: file positioning functions (4.9.9).

4.9.5.4 The freopen Function

20

Synopsis

#include <stdio.h>
FILE *freopen (const char *filename, ccmst char *mode,

FILE *stream);

Description

The freopen function opens the file whose name is the string pointed to by filename and
25 associates the stream pointed to by stream with it. The mode argument is used just as in the

fopen function. 1
16

The freopen funcrion first attempts to close any file that is associated with the specified
stream. Failure to close the file successfully is ignored. The error and end-of-file indicators for
the stream are cleared.

30 Returns

The freopen function returns a null pointer if the open operation fails. Otherwise,
freopen returns the value of stream.

4.9.5.5 The setbuf Function

35

Synopsis

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

116. The primary use of the freopen function is to change the 111c associated with a standard text stream
(stderr. stdin, or stdout). as those identifiers need not be modifiable Ivalues to which the value returned
by the fopen function may be assigned.

4.9.5.3 AMERICA" ",AT/ONAL STA]\[)ARD X3.!)l)·19X9 4.9.5.5

Library

Description

Input/Output <stdio. h>

Except that it returns no value. the setbuf function i, equivalent to the setvbuf function
invoked with the values IOFBF t'or mode and BUFSIZ lor size. (JI' (if buf is a null pointer).
with the value IONBF for mode.

5 Returns

The setbuf function returns no value.

Forward references: the setvbuf function (·1.9.5.61.

4.9.5.6 The setvbuf Function

10

Synopsis

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode, size t size);

Description

The setvbuf function may be used only ,tfter the StlT,lI1l pointed to by stream has been
associated with an open tile and before any other ()p,~ratioi1 is performed on the stream. The

15 argument mode determines how stream wi II he bu tlaee!. ciS follows: IOFBF causes
input/output to be fully buffered: __IOLBF cluses input/llutput to be line buffered: IONBF

causes input/output to be unbuffered. If buf i" not a null I"ointer. the array it POlllts to may be
used instead of a buffer allocated by the set'Tbuf luncliol1 I17 The argument size speeincs
the sill' of the array. The contents of the arraylt anv time arc indeterminate.

20 Returns

The setvbuf function returns /ero on success. or nonfero if an invalid value is given for
mode or if the request cannot be honored.

4.9.6 Formatted Input/Output Functions

4.9.6.1 The fprintf Function

25 Synopsis

#include <stdio.h>
int fprintf(FILE *stream, const char * format , ...);

Description

The fprintf function writes output to the stream pointed to by stream. under control of
30 the string pointed to by format that speei tl,~s he,\\' suhsequent arguments are converted for

output. If there are insufficient arguments for the format. the behavior IS undetlned. If the
format is exhausted while arguments remain. the execs, arguments ,ll'l:: evaluated (as always) but
are otherwise ignored. The fprintf function returns when the end of the format string IS
encountered.

35 The format shall be a multibyte character sequence. beginning and ending in its initial shift
state. The format is composed of zero or more directives: ordinary multi byte characters (not %).

which are copied unchanged to the OLltput stream; and conversion specitiultions. cach of which
results in fetching zero or more subsequent argument-;. Each conversion specitication is
introduced by the character %. After the %. the following appear in sequence:

117. The butler must have a lifetimc at least as greal as the open stream. S() fhe ,trcam ',hould be clo,ed before a
buffcr that has automatic slOragc duration is deallocated upon blor.·:'; ,cxit.

4.9.5.5 4.9.6.1

Library 133 Input/Output <stdio . h>

• Zero or more flogs (in any orden that modify the meaning of the conversion specification.

• An optional minimum .field H·idth. If the converted value has fewer characters than the field
width. it will be padded with spaces (by default) on the left (or right. if the left adjustment

ftag. described later. has been given) to the field width. The field width takes the form of an
5 asterisk * (described later) or a decimal integer. I IS

An optional pre<'ilio/l that gives the minimum number of d gits to appear for the d. i. o. u.

x. and X conversions. the number of digits to appear after the decimal-point character for e.
E. and f conversions. the maximum number of significant digits for the g and G conversions.

or the maximum number of characters to be written from a string in s conversion. The
10 precision mkes the form of a period (.) followed either by an asterisk * (described later) or

by an optIOnal decimal integer: if only the period is specifi<.::d. the precision is taken as zero.

If a precision appears with any other conversion specifier. th:' behavior is undefined.

• An optional h specifying that a following d. i. o. u. x. m X conversion specifier applies to a
short i:nt or unsigned short int argument (the argument will have been promoted

IS according to the integral promotions. and its value shall be converted to short int or
unsigned short int before printing): an optional h specifying that a following n
conversion specifier applies to a pointer to a short int argument: an optional 1 (ell)

specifying that a following d. i. o. u. x. or X conversion specifier applies to a long int or

unsigned long int argument: an optional 1 specifying that a following n conversion
20 specifier <Jpplies to a pointer to a long int argument: OJ" an optional L speci fying that a

following e. E. f. g. or G conversion specifier applies to a long double argument. If an
h. 1. or L appears with any other conversion specifier. the behavior is undefined.

• A character that specifics the type of conversion to be applieJ.

As noted above. a field width. or precision. or both. !!lay be indicated by an asterisk. In this

25 case. an int argument supplies the field width or precision. The arguments specifying field

width. or precision. or both. shall appear (in that order) before the argument (if any) to be
converted. A negative field width argument is taken as a -- liag followed by a positive field

width. A neg:ltive precision argument is taken as if the precision were omitted.

The ftag characters and their meanings are

30

+

The result of the conversion will be left-justified within the field. (It will be right-justified

if this ftag is not specified.)

The result of a signed conversion will always begin wilh a plus or minus sign. (It will
begin with a sign only when a negative value is converted if this flag is not specified.)

space If the lirst character of a signed conversion is not a sign. or if a signed conversion results

35 in no characters. a space will be prefixed to the result. If the space and + ftags both

appear.. the space ftag will be ignored.

40

The result is to be converted to an .. alternate form." For 0 conversion. it increases the
precision to force the first digit of the result to be a zero. For x (or X) conversion. a

nonzero result will have Ox (or OX) prefixed to it. For E!. E. f. g. and G conversions. the
result will always contain a decimal-point character. even if no digits follow it.

(Normally. a decimal-point character appears in the result of these conversions only if a
digit follows it.) For g and G conversions. trailing z,~ros will /lot be removed from the

result. For other conversions. the behavior is undefined.

II S. Note thal 0 is takcn as a tlag. not as the bcginning of a field width.

4.9.6.1 .\~1Ef{ICAN :\ATlO!\AL STANDARD A.\.1 ,<"-1,11'9 4.9.6.1

Library 134 Input/Output <stdio . h>

o For d. i. o. u. x. X. e. E. f. g. and G conversions. leading zeros (following any
indication of sign or base) are used to pad to the field width: no space padding is
performed. If the 0 and - flags both appear. the 0 flag will he ignored. For d. i. o. u.
x. and X conversions. if a precision is specified. the 0 flag will be ignored. For other

5 conversions. the behavior is undefined.

The conversion specifiers and their meanings are

d, i The int argument is converted to signed decimal in the style [-Idddd. The
precision specifies the minimum numher of digits to appear; if the value being
converted can be represented in fewer digits. it will be expanded with leading zeros.

10 The default precision is I. The result of converting a zero value with a precision of
zero is no characters.

0, u, x, X The unsigned int argument is converted to unsigned octal (0). unsigned decimal
(u). or unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef
are used for x conversion and the letters ABCDEF for X conversion. The precision

15 specifies the minimum number of digits to appear: if the value being converted can be
represented in fewer digits. it will be expanded with leading zeros. The default
precision is I. The result of converting a zero value with a precision of zero is no

characters.

f The double argument IS converted to decimal notation in the style [-]ddd.ddd.
20 where the number of digits after the decimal-point character is equal to the precision

specification. If the precision is missing. it is taken as 6: if the precision is zero and

the # flag is not specified. no decimal-point character appears. If a decimal-point
character appears. at least one digit appears before it. The value is rounded to the

appropriate number of digits.

25 e, E The double argument is converted in the style [-]d.ddde±dd. where there is one
digit before the decimal-point character (which is nonzero if the argument is nonzero)
and the number of digits after it is equal to the precision; if the precision is missing.
it is taken as 6: if the precision is zero and the # flag is not specified. no decimal­
point character appears. The value is rounded to the appropriate number of digits.

30 The E conversion specifier will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. If the value is zero. the

exponent is zero.

g, G The double argument is converted in style f or e (or in style E in the case of a G
conversion specifier). with the precision specifying the number of significant digits.

35 If the precision is zero. it is taken as I. The style used depends on the value
converted; style e (or E) will be used only if the exponent resulting from such a

conversion is less than -4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result: a decimal·point character appears

only if it is followed by a digit.

40 c The int argument is converted to an unsigned char. and the resulting character

is written.

s The argument shall be a pointer to an array of character type. I I'! Characters from the
array are writtcn up to (but not including) a terminating null character: if the precision

is specified. no more than that many characters are written. If the precision is not
45 specified or IS greater than the size of the array. thc array shall contain a null

character.

II Y. No special provisions arc made for multibyle characters.

4.9.6.1 AMERICA'" NATIO:\AL STA:\DARD X3 I "').j %l) 4.9.0.1

Library 135 Input/Output <stdio . h>

p

n

5

%

The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in an implementation··defined manner.

The argument shall be a pointer to an integer into which is written the number of
characters written to the output stream so far by this call to fprintf. No argument
is converted.

A % is written. No argument is converted. The complete conversion specification
shall be %%.

If a conversion specification is invalid, the behavior is undefmed. 120

If any argument is, or points to, a union or an aggregate (except for an array of character type
10 using %s conversion, or a pointer using %p conversion), the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is Wider than the field width, the field is expanded to contain the conversion result.

Returns

The fprin1~f function returns the number of characters transmitted, or a negative value if an
15 output error occurred.

Environmental Limit

The minimum value for the maximum number of characters produced by any single
conversion shall be 509.

Examples

20 To print a date and time in the form "Sunday, July 3, 10:02" followed by IT to five decimal
places:

#include <math.h>
#include <stdio.h>
/* ... */

25 char *weekday, *month; /* pointers to st,"ings * /
int day, hour, min;
fprintf(stdout, "%s, %s %d, %.2d:%.2d\:n",

weekday, month, day, hour, min);
fprintf(stdout, "pi = %.5f\n", 4 * ata:n(l.O»;

30 4.9.6.2 The fscanf Function

Synopsis

#include <stdio.h>
int fscanf (FILE *stream, const char *f,:>rmat, ...);

Description

35 The fscanlc function reads input from the stream pointed to by stream, under control of
the string pointed to by format that specifies the admissible input sequences and how they are
to be converted for assignment, using subsequent arguments as pointers to the objects to receive
the converted input. If there are insufficient arguments for the format, the behavior is undefined.
If the format is exhausted while arguments remain, the exces:; arguments are evaluated (as

40 always) but are otherwise ignored.

120. See "future library directions" (4.13.6).

4.9.6.1 AMERICAN NATIONAL STANDARD X3.15tJ-1 tJR9 4.9.6.2

Library Input/Output <stdio. h>

The format shall be a multibyte character sequence. beginning and ending in its initial shift
state. The format is composed of zero or more directives: one or more white-space characters: an

ordinary multibyte character (neither % nor a white-space character): or a conversion specification.
Each conversion specification is introduced by the character %. After the %. the following appear

5 in sequence:

• An optional assignment-suppressing character *.

• An optional nonzero decimal integer that specifies the maximum field width.

• An optional h. 1 (ell) or L indicating the size of the receiving object. The conversion

specifiers d. i. and n shall be preceded by h if the corresponding argument is a pointer to
10 short int rather than a pointer to into or by 1 if it is a pointer to long into Similarly.

the conversion specifiers o. u. and x shall be preceded by h if the cotTesponding argument is
a pointer to unsigned short int rather than a pointer to unsigned into or by 1 if it is

a pointer to unsigned long into Finally. the conversion specifiers e. f. and g shall be
preceded by 1 if the corresponding argument is a pointer to double rather than a pointer to

IS float. or by L if it is a pointer to long double. If an h. 1. or L appears with any other
conversion specifier. the behavior is undefined.

A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

The fscanf function executes each directive of the format in turn. If a directive fails. as

20 detailed below. the fscanf function returns. Failures are described as input failures (due to the
unavailability of input characlers). or matching failures (duc to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first

non-white-space character (which remains unread). or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next characters

25 of the stream. If one of the characters differs from one comprising the directive. the directive
fails. and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences. as
described below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are skipped. unless thc

30 specification includes a [. C. or n specifier. 121

An input item is read from the stream. unless the specification includes an n specifier. An

input item is defined as the longest matching sequence of input characters. unless that exceeds a
specified field width. in which case it is the initial subsequence of that length in the sequence.

The first character. if any. after the input item remains unread. If the length of the input item is

35 zero. the execution of the directive fails: this condition is a matching failure. unless an error

prevented input from the stream. in which case it is an input failure.

Except in the case of a % specifier. the input item (or. in the case of a %n directive. the count
of input characters) is converted to a type appropriate to the conversion specifier. If the input

item is not a matching sequence. the execution of the directive fails: this condition is a matching

40 failure. Unless assignment suppression was indicated by a *. the result of the conversion is

placed in the object pointed to by the first argument following the format argument that has not
already received a conversion result. If this object does not have an appropriate type. or if the

result of the conversion cannot be represented in the space provided. the behavior is undefined.

121. These white-space characters are nOI counted againsl a specified lielcl width.

4.9.6.2 A\lERIC:\:si :siATIO!\AL ST;\:siDARD X31)Y-IYXY 4.l).h.2

Library 137 Input/Output <stdio . h>

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the ~ubject sequence of the strtol function with the value 10 for the base argumont.

The corresponding argument shall be a pointer to intefer.

5 i Matches an optionally signed integer. whose format is the same as expected for the

subject sequence of the strtol function with the value 0 for the base argument. The
corresponding argument shall be a pointer to integer.

o

x

10

15

Matches an optionally signed octal integer. whose format is the same as expected for the
subject sequence of the strtoul function with the value 8 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

u Matches an optionally signed decimal integer. whose format is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed hexadecimal integer. whose format is the same as expected
for the subject sequence of the strtoul function with the value 16 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

e, f, g Matches an optionally signed floating-point number. whose format is the same as
expected for the subject string of the strtod funcrion. The correspondmg argument
shall be a pointer to floating.

20 s

25

30

35

c

40 p

45

Matches a sequence of non-white-space characters. l
)] The corresponding argument shall

be a pointer to the initial character of an array large e'lough to accept the sequence and a
terminating null character. which will be added autom]tically.

Matches a nonempty sequence of characters I]' from a set of expected characters (the

sconscr). The corresponding argument shall be a pointer to the initial character of an
array large enough to accept the sequence and a terminating null character. which will be
added automatically. The conversion specifier includes all subsequent characters in the
fOl:mat string. up to and including the matchin.~ right bracket (]). The characters
between the brackets (the scanlisr) comprise the scansel. unless the character after the
left bracket is a circumflex (A). in which case the scanset contains all characters that do
not appear in the scanlist between the circumflex and the right bracket. If the conver~,ion

specifier begins with [] or [A]. the right bracker character is in the scanlist and the
next right bracket character is the matching right bracket that ends the specification:
otherwise the first right bracket character is the one that ends the specification. If a ­
character is in the scanlist and is not the first. nor the second where the first character is
a A., nor the last character. the behavior is implemertation-defined.

Matches a sequence of characters I]] of the number specified by the field width (I i:' no
field width is present in the directive). The corresponding argument shall he a pointer to
the initial character of an array large enough to accem the sequence. No null character
is added.

Matches an implementation-defined set of sequences. which should be the same as the
set of sequences that may be produced by the %p conversion of the fprintf function.
The corresponding argument shall be a pointer to a pointer to void. The interpretation
of the input item is implementation-defined. If The input item is a value converted
earlier during the same program execution. the pointer that results shall compare equal to
that value: otherwise the hehavior of the %p conver~,ion is undefined.

122. No special provisions are made for l11ultibyte characters.

4.9.6.2 Mv1ERICA:'i NAnONAL STAND,\RD X:l.1 ;'i')-19WJ 4.9.6.2

Lihrary Input/Output <stdio . h>

n No input is consumed. The corresponding argument shall be a pointer to integer into
which is to be written the number of characters read from the input stream so far by this
call 10 the fscanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the fscanf function.

5 % Matches a single %: no conversion or assignment occurs. The complete conversion
specitication shall be %%.

If a conversion specification is invalid. the hehavior is undefined. 1c .1

The conversion specifiers E. G. and X arc also valid and hehave the same as. respectively. e.
g. and x.

ICl If end-of-file is encountered during input. conversion is terminated. If end-of-tile occurs
before any characters matching the current directive have heen read (other than leading white
space. where permitted). execution of the current directive terminates with an input failure:
otherwise. unless execution of the current directive is terminated with a matching failure.
execution of the following directive (if anyl is terminated with an input failure.

15 If conversion terminates on a conftieting input character. the offending input character is left
unread in the input stream. Trailing white space (including new-line characters) is left unread
unless matched by a directive. The success or literal matches and suppressed assignments is not
directly determinable other than via the %n directive.

Returns

20 The fscanf function returns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise. the fscanf function returns the number of input items assigned.
which can be fewer than provided for. or even zero. in the event of an early matching failure.

Examples

The call:

25

~Cl

~5

#include <stdio.h>
/* ... */
int n, i; float x; char name[50j;
n = fscanf(stdin, "%d%f%s", &i, &x, name};

with the input line:

25 54.32E-l thompson

will assign to /l the value ~. to { the v<due 25. to .\ the value 5.4~2. and /lomc will contain
thompson\O. Or:

#include <stdio.h>
/* ... */
int i; float x; char name[50];
fscanf (stdin, "%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign to i the value 56 and to .r the value 7R9.0. will skip 0 In. and nomc will contain
40 56\0. The next character read from the input stream will be a.

123, See "future linrary directions" (4.U.6).

4.9.6.2 4.9.6.2

Library 139 Input/Output <stdio. h>

To accept repeatedly from stdin a quantity, a unit of measure and an item name:

#in<:lude <stdio.h>
/* ... */
int count; float quant; char units[21] , item[2l];

5 while (!feof(stdin) && !ferror(stdin»
count = fscanf (stdin, "%f%20s elf %20s",

&quant, units, item);
fscanf(stdin, "%*["\n]");

10 If the stdin stream contains the following lines:

2 quarts of oil
-12,8degrees Celsius
lots of luck
10. ()LBS of

15 fert:ilizer
100E!rgs of energy

the execution of the above example will be analogous to the following assignments:

20

25

quant = 2; strcpy (units, "quarts") ; s:trcpy (item,
count = 3;
quant = -12.8; strcpy (units, "degrees: ") ;
count = 2; /* "C" fails to march "0" */
count = 0; /* "1" fails to match "%f" */
quant = 10.0; strcpy(units, "LBS") ; s;trcpy (item,
count = 3;
count = 0; /* "lOOe" fails to march "%f" 1~ /

count = EOF;

"oil") ;

"fertilizer") ;

Forward reft~rences: the strtod function (4,10.1.4), the strtol function (4.10.1,5), the
strtoul function (4.10.1.6).

4.9.6.3 The printf Function

30 Synopsis

#inc:lude <stdio.h>
int printf(const char *format , , ..);

Description

The printf function is equivalent to fprintf with the argument stdout interposed
35 before the arguments to printf.

Returns

The printf function returns the number of characters transmitted, or a negative value if an
output error occurred.

4.9.6.4 The scanf Function

40 Synopsis

#include <stdio.h>
int scanf(const char *format , ...);

Descri ption

The scanf function is equivalent to fscanf with the argument stdin interposed before
45 the arguments to scanf.

4.9.6.2 AMERICAN NATIONAL STANDARD X3.1 59-1989 4.9.6.4

Library

Returns

140 Input/Output <stdio . h>

The scanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise. the scanf function returns the number of input items assigned. which
can be fewer than provided for. or even zero. in the event of an early matching failure .

.'i 4.9.6.5 The sprintf Function

Synopsis

#include <stdio.h>
int sprintf(char *s, const char * format , ...);

Description

10 The sprintf function is equivalent to fprintf. except that the argument s specifies an
array into which the generated output is to be written. rather than to a stream. A null character is
written at the end of the characters written: it is not counted as part of the returned sum. If
copying takes place between objects that overlap. the behavior is undefined.

Returns

IS The sprintf function returns the number of characters written in the array. not counting the
terminating null character.

4.9.6.6 The sscanf Function

Synopsis

20
#include <stdio.h>
int sscanf(const char *s, const char * format , ...);

Description

The sscanf function is equivalent to fscanf. except that the argument s specifies a string
from which the input is to be obtained. rather than from a stream. Reaching the end of the string
is equivalent to encountering end-of-file for the fscanf function. If copying takes place

25 between objects that overlap. the behavior is undefined.

Returns

The sscanf function returns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise. the sscanf function returns the number of input items assigned.
which can be fewer than provided for. or even zero. in the event of an early matching failure.

30 4.9.6.7 The vfprintf Function

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE *strearn, const char *format, va list arg);

35 Description

The vfprintf function is equivalent to fprintf. with the variable argument list replaced
by argo which shall have been initialized by the va start macro (and possibly subsequent
va_arg cal]s). The vfprintf function does not inv;;-ke the va_end macro. 124

124. As the functions vfprintf. vsprintf. and vprintf invoke the va arg macro. the value of arg after
the return is indeterminate. -

4.9.6.4 AMERICAN ~ A,TIONAL STA:'JDARD X.ll)L)·I L)~L) 4.9.6.7

I jbrary

Returns

141 Input/Output <stdio . h>

The vfprintf function returns the number of characters transmitted. or a negative value if
an output error occurred.

Example

5 The following shows the use of the vfprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

void error(char *function_name , char *format , ...)

10

15

va_list args;

va start (args, format);
/ * print oll! name oj"fi./lU'tiol1 causing erro" */
fprintf(stderr, "ERROR in %s: ", function_name);
/ * print out remainder oj" message */
vfprintf(stderr, format, args);
va_end(args);

4.9.6.8 Tht vprintf Function

20

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vprintf(const char *format , va list arg);

Description

The vprintf function is equivalent to printf. with the variable argument list replaced by
25 argo which shall have been initialized by the va star': macro (and possibly subsequent

va_arg calh). The vprintf function does not inv~e the va_end macro. 124

Returns

The vprintf function returns the number of characters transmitted. or a negative value if an
output error occurred.

30 4.9.6.9 The vsprintf Function

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *s, const char *fol~at, va list arg);

3S Description

The vsprintf function is equivalent to sprintf. with the variable argument list replaced
by argo which shall have been initialized by the va_start macro (and possibly subsequent
va_arg calls). The vsprintf function does not invoke th'2 va_end macroY~4 If copying
takes place between objects that overlap. the behavior is undefined.

40 Returns

The vsprintf function returns the number of characters written In the array. not counting

the terminating null character.

4.9.6.7 AMERICAN NATIONAL STANDARD X3.IS'l-19H9 4.9.6.9

Lihrary 142 Input/Output <stdio . h>

5

4.9.7 Character Input/Output Functions

4.9.7.1 The fgetc Function

Synopsis

#include <stdio.h>
int fgetc(FILE *stream);

Description

30

The fgetc function obtains the next character (if present) as an unsigned char converted
to an int, from the input stream pointed to by stream, and advances the associated tile
position indicator for the stream (if defined).

[0 Returns

The fgetc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file. the end-of-file indicator for the stream is set and fgetc returns

EOF. If a read error occurs. the error indicator for the stream is set and fgetc returns EOF. 125

4.9.7.2 The fgets Function

15 Synopsis

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Description

The fgets function reads at most one less than the number of characters specified by n from
20 the stream pointed to by stream into the array pointed to by s. No additional characters are

read after a new-line character (which is retained) or after end-of-file. A null character is written
immediately after the last character read into the array.

Returns

The fgets function returns s if successful. If end-of-file is encountered and no characters
25 have been read into the array, the contents of the array remain unchanged and a null pointer is

returned. If a read error occurs during the operation. the array contents are indeterminate and a
null pointer is returned.

4.9.7.3 The fputc Function

Synopsis

#include <stdio.h>
int fputc(int c, FILE *stream);

Description

The fputc function writes the character specified by c (converted to an unsigned char)
to the output stream pointed to by stream, at the position indicated by the associated file

35 position indicator for the stream (if defined), and advances the indicator appropriately. If the file
cannot support positioning requests, or if the stream was opened with append mode. the character
is appended to the output stream.

125. An end-of-file and a read error can he distinguished hy use of the feof and ferror lunctions.

4.9.7 AMERICAi\ 'JATtONAL STA'\DARD X.'.159- J 9S9 4.9.7.:\

Library

Returns

143 Input/Output <stdio . h>

The fput,c function returns the character written. If a write error occurs, the error indicator
for the stream is set and fputc returns EOF.

4.9.7.4 The fputs Function

5 Synopsis

#inc:lude <stdio. h>
int fputs(const char *s, FILE *stream);

Description

The fputs function writes the string pointed to by s to the stream pointed to by stream.
10 The terminating null character is not written.

Returns

The fputs function returns EOF if a write error occurs; otherwise it returns a nonnegative
value.

4.9.7.5 The getc Function

15 Synopsis

#inc:lude <stdio.h>
int getc(FILE *stream);

Description

The getc function is equivalent to fgetc, except that If it is implemented as a macro, it
20 may evaluate stream more than once, so the argument should never be an expression with side

effects.

Returns

The getc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns

25 EOF. If a read error occurs. the error indicator for the stream is set and getc returns EOF.

4.9.7.6 The getchar Function

Synopsis

#include <stdio.h>
int getchar(void);

30 Description

The getchar function is equivalent to getc with the argument stdin.

Returns

The getchar function returns the next character from the input stream pointed to by
stdin. If the stream is at end-of-file, the end-of-file indicator for the stream is set and

35 getchar returns EOF. If a read error occurs, the error indicator for the stream is set and
getchar returns EOF.

40

4.9.7.7 The gets Function

Synopsis

#include <stdio.h>
char *gets(char *s);

4.9.7.3 AMERICAN NATIONAL STANDARD X3.159-1'l89 4.9.7.7

Library

Description

144 Input/Output <stdio. h>

The gets function reads characters from the input stream pointed to by stdin. into the
array pointed to by s. until end~of~file is encountered or <l new~line character is read. Any new~

line character is discarded. anc! a null character is written immediately after the last character read

5 into the array.

Returns

The gets function returns s if successful. If end~of~file is encountered and no characters
have been read into the array. the contents of the array remain unchanged and a null pointer is

returned. If a read error occurs during the operation. the array contents arc indeterminate and a
10 null pointer is returned.

4.9.7.8 The putc Function

Synopsis

#include <stdio.h>
int putc(int c, FILE *stream);

15 Description

The putc function is equivalent to fputc. except that if it is implemented as a macro. it

may evaluate stream more than once. so the argument should never be an expression with side

effects.

Returns

20 The putc function returns the character writtcn. If <J write error occurs. thc error indicator

for the stream is set and putc returns EOF.

4.9.7.9 The putchar Function

25

Synopsis

#include <stdio.h>
int putchar(int c);

Description

The putchar function is equivalent to putc with the second argument stdout.

Returns

Thc putchar function rcturns the character written. [f a writc error occurs. the error

30 indicator for the stream is set and putchar returns EOF.

4.9.7.10 The puts Function

Synopsis

#include <stdio.h>
int puts (const char *s);

35 Description

The puts function writcs the string pointed to by s to the stream pointed to by stdout.
and appends a new~line character to the output. The ternlinating null character is not written.

Returns

The puts function returns EOF if a write error occurs: otherwise it returns a nonnegative
40 value.

4.9.7.7 A\tERICA" :"A1101\AL ';TAi\U:'\RD X.l.15<)·I')S') 4.9.7.10

Library 145 Input/Output <stdio . h>

4.9.7.11 The ungetc Function

Synopsis

#include <stdio.h>
int ungetc(int c, FILE *stream);

5 Description

The ung'etc function pushes the character specified by c (converted to an unsigned
char) back onto the input stream pointed to by stream. The pushed-back characters will be
returned by subsequent reads on that stream in the reverse order of their pushing. A successful
intervening call (with the stream pointed to by stream) to a file positioning function (fseek.

10 fsetpos, or rewind) discards any pushed-back characters for the stream. The external storage
corresponding to the stream is unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many times
on the same stream without an intervening read or tile positioning operation on that stream. the
operation may fail.

15 If the va:'ue of c equals that of the macro EOF, the operation fails and the input stream IS

unchanged.

A successful call to the ungetc function clears the end-ol-file indicator for the stream. The
value of the file position indicator for the stream after readng or discarding all pushed-back
characters shall be the same as it was before the characters were pushed back. For a text stream.

20 the value of its file position indicator after a successful call to the ungetc function is
unspecified until all pushed-back characters are read or discarded. For a binary stream. its file
position indicator is decremented by each successful call to the ungetc function: if its value
was zero before a call. it is indeterminate after the call.

Returns

25 The ungetc function returns the character pushed back after conversion. or EOF if the
operation fails.

Forward refierences: file positioning functions (4.9.9).

4.9.8 Direct Input/Output Functions

4.9.8.1 Th{~ fread Function

30 Synopsis

#include <stdio.h>
size_t fread(void *ptr, size t size, size t nmemb,

FILE *stream) ;

Description

35 The fread function reads. into the array pointed to by pl:r. up to nmemb elements whose
size is specified by size, from the stream pointed to by stI:eam. The tile position indicator for
the stream (if defined) is advanced by the number of charaCkrs successfully read. If an error
occurs. the resulting value of the tile position indicator for the stream is indeterminate. If a
partial element is read, its value is indeterminate.

40 Returns

The fread function returns the number of elements successfully read. which may be kss
than nmemb if a read error or end-of-file is encountered. If size or nmemb is lero. fread
returns zero <Jnd the contents of the array and the state of the stream remain unchanged.

4.9.7.11 AMERICA"l NATlO"lAL STAND/\RD X3.1';9-19X9 4.9.8.1

Library

4.9.8.2 The fwrite Function

146 Input/Output <stdio . h>

5

Synopsis

#include <stdio.h>
size_t fwrite(const void *ptr, size t size, size t nmemb,

FILE *stream);

Description

The fwrite function writes. from the alTay pointed to by ptr. up to nmemb elements
whose size is specified by size. to the stream pointed to by stream. The hie position
indicator for the stream (if defined) is advanced by the number of characters successfully written.

[0 If an error occurs. the resulting value of the file position indicator for the stream is indeterminate.

Returns

The fwrite function returns the number of elements successfu[ly written. which will he less
than nmemb only if a write error is encountered.

4.9.9 File Positioning Functions

15 4.9.9.1 The fgetpos Function

Synopsis

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

Description

20 The fgetpos function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains unspecified
information usable by the fsetpos function for repositioning the stream to its position at the
time of the call to the fgetpos function.

Returns

25 If successful. the fgetpos function returns zero: on failure. the fgetpos function returns
nonzero and stores an implementation-defined positive val ue in errno.

Forward references: the fsetpos function (4.9.9.3).

4.9.9.2 The fseek Function

30

Synopsis

#include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);

Description

The fseek function sets the file position indicator for the stream pointed to by stream.

For a binary stream. the new position. measured in characters from the beginning of the file.
35 is obtained by adding offset to the position specihecl by whence. The specified position is

the beginning of the flle if whence is SEEK_SET. the current value of the file position indicator
if SEEK_CUR. or end-of-file if SEEK_END. A binary stream need not Illeaningfully support
fseek calls with a whence value of SEEK END.

For a text stream. either offset shall be lero. or offset shall be a value returned by an
40 earlier call to the ftell function on the same stream and whence shall be SEEK SET.

A successful call to the fseek function clears the end-or-file indicatm lor the stream and
undoes any effects of the ungetc function on the same stream. Arter an fseek c,i11. the next
operation on an update stream Illay he either input or output.

4.9X2 AMERICA'.; NATIO'.;AL STA'~DAR[) X.'.I)l)-!lJX<J 4.9.9.2

Library

Returns

147 Input/Output <stdio. h>

20

The fseek function returns nonzero only for a request that cannot be satisfied.

Forward references: the ftell function (4.9.9.4).

4.9.9.3 The fsetpos Function

5 Synopsis

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Description

The fset]?os function sets the file position indicator for the stream pointed to by stream
10 according to the value of the object pointed to by pos, which shall be a value obtained from an

earlier call to the fgetpos function on the same stream,

A successful call to the fsetpos function clears the end-at-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fsetpos call. the
next operation on an update stream may be either input or output.

15 Returns

If successful, the fsetpos function returns zero; on failure, the fsetpos function returns
nonzero and stores an implementation-defined positive value in errno.

4.9.9.4 The ftell Function

Synopsis

#include <stdio.h>
long int ftell(FILE *stream);

Description

The fteLL function obtains the current value of the file position indicator for the stream
pointed to by stream. For a binary stream, the value is the number of characters from the

25 beginning of the file. For a text stream. its file position indicator contains unspecified
information, usable by the fseek function for returning the file position indicator for the stream
to its position at the time of the ftell call; the difference between two such return values is not
necessarily a meaningful measure of the number of characters written or read.

Returns

30 If successful, the ftell function returns the current value of the file position indicator for
the stream. On failure, the ftell function returns - IL and stores an implementation-defined
positive value in errno.

4.9.9.5 The]~ewind Function

35

40

Synopsis

#incJLude <stdio.h>
void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for the stream pointed to by stream to
the beginning of the file. It is equivalent to

(void)fseek(stream, OL, SEEK_SET)

except that the error indicator for the stream is also cleared.

4.9.9.2 AMERICAN NATIONAL STANDARD X~.159-19:<lJ 4.9.9.5

Library

Returns

The rewind function returns no value.

4.9.10 Error-Handling Functions

4.9.10.1 The clearerr Function

148 Input/Output <stdio. h>

5 Synopsis

#include <stdio.h>
void clearerr(FILE *stream);

Description

The clearerr function clears the end-of-file and error indicators for the stream pointed to
10 by stream.

Returns

The clearerr function returns no value.

4.9.10.2 The feof Function

15

Synopsis

#include <stdio.h>
int feof(FILE *stream);

Description

The feof function tests the end-of-file indicator for the stream pointed to hy stream.

Returns

20 The feof function returns nonzero if and only if the end-of-file indicator is set for stream.

4.9.10.3 The ferror Function

Synopsis

#include <stdio.h>
int ferror(FILE *stream);

25 Description

The ferror function tests the error indicator for the stream pointed to hy stream.

Returns

The ferror function returns nonzero if and only if the error indicator is set for stream.

4.9.10.4 The perror Function

30 Synopsis

#include <stdio.h>
void perror(const char *s);

Description

The perror function maps the error number in the integer expression errno to an error
35 message. It writes a sequence of characters to the standard error stream thus: first (if s is not a

null pointer and the character pointed to by s is not the null character), the string pointed to by s
followed hy a colon (:) and a space; then an appropriate error message string followed by a

new-line character. The contents of the error message strings are the same as those returned by
the strerror function with argument errno, which are implementation-defined.

4.9.9.5 AMERICAN NATIONAL STANDARD X~.159-19K9 4.9.10.4

149Library

Returns

The perrClr function returns no value.

Forward references: the strerror function (4.11.6.2).

Input/Output <stdio. h>

4.9.10.4 AMERICAN NATIONAL STANDARD X3.159-19Rl) 4.9.10.4

Library 150 General Utilities <stdlib. h>

5

10

15

4.10 General Utilities <stdlib. h>

The header <stdlib. h> declares four types and several functions of general utility. and
defines several macros.1 26

The types declared are size_t and wchar_t (both described in 4.1.5).

div t

which is a structure type that is the type of the value returned by the div function. and

ldiv t

which is a structure type that is the type of the value returned by the ldiv function.

The macros defined are NULL (described in 4.1.5);

EXIT FAILURE

and

EXIT SUCCESS

which expand to integral expressions that may be used as the argument to the exit function to
return unsuccessful or successful termination status. respectively. to the host environment;

RAND MAX

which expands to an integral constant expression. the value of which IS the maxImum value

returned by the rand function; and

ME CUR MAX

which expands to a positive integer expression whose value is the maximum numher of bytes in a
20 multibyte character for the extended character set specified by the current locale (category

LC_CTYPE). and whose value is never greater than ME_LEN_MAX.

4.10.1 String Conversion Functions

The functions atof. atoi. and atol need not affect the value of the integer expression
errno on an error. If the value of the result cannot be represented. the behavior is undefined.

25 4.10.1.1 The atof Function

Synopsis

#include <stdlib.h>
double atof(const char *nptr);

Description

30 The atof function converts the initial portion of the string pointed to by nptr to double
representation. Except for the behavior on error. it is equivalent to

strtod(nptr, (char **)NULL)

Returns

The atof function rcturns the converted value.

35 Forward references: the strtod function (4.10.104).

126. See "future library directions" (4.13.7).

4.10 AMERICAN NATIONAL STANDARD X3.159-19X9 4.10.1.1

Library

4.10.1.2 The atei Function

Synopsis

151 General Utilities <stdlib. h>

#inc:lude <stdlib. h>
int atoi(const char *nptr);

5 Description

The atO:L function converts the initial portion of the ~.tnng pointed to by nptr to int
representation. Except for the behavior on error. it is equivalent to

(int) strtol (nptr, (char **)NULL, 10)

Returns

10 The atoi function returns the converted value.

Forward references: the strtol function (4.10.1.5).

4.10.1.3 The atel Function

15

Synopsis

#include <stdlib.h>
lon<;r int atol(const char *nptr);

Description

The atel function converts the initial portion of the string pointed to by nptr to long
int rcprcsentation. Except for the behavior on error. it is equ ivalent to

strtol (nptr, (char **)NULL, 10)

20 Returns

The atol function returns the converted value.

Forward refe.·ences: the strtol function (4.10.1.5).

4.10.1.4 Th(~ strted Function

25

Synopsis

#include <stdlib.h>
double strtod(const char *nptr, char **endptr);

Description

The strtod function converts the initial portion of the string pointed to by nptr to

double representation. First. it decomposes the input string into three parts: an initial. possibly
30 empty. sequen~e of white-space characters (as specified by the isspace function). a subject

sequence resembling a floating-point constant; and a final string of one or more unrecognized
characters. including the tenninating null character of the input string. Then. it attempts to
convert the subject sequence to a floating-point number. and returns the result.

The expected form of the subject sequence is an optional plm or minus sign. then a nonempty
35 sequence of digits optionally containing a decimal-point character. then an optional exponent part

as defincd in 3.1.3.1. but no floating suffix. The subject sequence is defined as the longest initial
subsequence or' the input string. starting with the first non-while-space character. that is of the
expected form. The subject sequence contains no characters if the input string is empty or
consists entirely of white space. or if the first non-white-spaci:: character is other than a sign. a

40 digit. or a decimal-point character.

If the subject sequence has the expected fOml. the sequence of characters starting with the
first digit or the decimal-point character (whichever occurs first) is interpreted as a floating
constant according to the rules of 3.1.3.1. except that the decimal -point character is used in place

4.10.1.2 AMERICAN NATIONAL STANDARD X3.159-19R9 4.10.1.4

Library 152 General Utilities <stdlib. h>

of a period. and that if neither an exponent part nor a decimal-point character appears. a decimal

point is assumed to follow the last digit in the string. If the subject sequence begins with a
minus sign. the value resulting from the conversion is negated. A pointer to the final string is

stored in the object pointed to by endptr. provided that endptr is not a null pointer.

5 In other than the "C" locale. additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected fonn. no conversion IS

performed: the value of nptr is stored in the object pointed to by endptr. provided that
endptr is not a null pointer.

10 Returns

The strtod function returns the converted value. if any. If no conversion could be
performed. zero is returned. If the correct value is outside the range of representable values. plus
or minus HUGE_VAL is returned (according to the sign of the value), and the value of the macro

ERANGE is stored in errno. If the correct value would cause underflow. zero is returned and
IS the value of the macro ERANGE is stored in errno.

4.10.1.5 The strtol Function

Synopsis

#include <stdlib.h>
long int strtol{const char *nptr, char **endptr, int base);

20 Description

The strtol function converts the initial portion of the string pointed to by nptr to long
int representation. First. it decomposes the input string into three parts: an initial. possibly

empty. sequence of white-space characters (as specified by the isspace function). a subject
sequence resembling an integer represented in some radix determined by the value of base. and

25 a final string of one or more unrecognized characters. including the terminating null character of
the input string. Then. it attempts to convert the subject sequence to an integer. and returns the

resu It.

If the value of base is zero. the expected form of the suhject sequence is that of an integer
constant as described in 3.1.3.2. optionally preceded by a plus or minus sign. but not including an

30 integer suffix. If the value of base is between 2 and 36. the expected form of the suhject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base. optionally preceded by a plus or minus sign. but not including an integer suffix. The
letters from a (or A) through z (or Z) are ascribed the values 10 to 35: only letters whose
ascribed values are less than that of base are permitted. If the value of base is 16. the

35 characters Ox or OX may optionally precede the sequence of letters and digits. following the sign
if present.

The subject sequence is defined as the longest initial subsequence of the input string. starting
with the first non-white-space character. that is of the expected form. The subject sequence
contains no characters if the input string is empty or consists entirely of white space. or if the

40 first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero. the sequence of
characters starting with the first digit is interpreted as an integer constant according to the rules of
3.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and
36. it is used as the base for conversion. ascribing to each letter its value as given ahove. If the

45 subject sequence begins with a minus sign. the value resulting from the conversion is negated. A
pointer to the tinal string is stored in the object pointed to by endptr. provided that endptr is

not a null pointer.

4.IO.IA A''vlERICAN NATIONAL STA"iD.>\RD X3.t59·t9WI 4.10.1.5

Library 153 General Utilities <stdlib. h>

In other than the "C" locale. additional implementation-defined subject sequence forms may

be accepted.

If the subject sequence is empty or does not have the expected form. no conversion is
performed: the value of nptr is stored in the object pointed to by endptr. provided that

5 endptr is not a null pointer.

Returns

The strt()l function returns the converted value. if any. If no conversion could be

performed. zero is returned. If the correct value is outsIde the range of representable values.
LONG_MAX or LONG_MIN is returned (according to the sign of the value). and the value of the

10 macro ERANGE is stored in errno.

4.10.1.6 The strtoul Function

15

Synopsis

#include <stdlib.h>
unsig'ned long int strtoul (const char *nptr, char **endptr,

int base);

Description

The strtoul function converts the initial portion of the string pointed to by nptr to
unsigned long int representation. First. it decomposes the input string into three parts: an
initial. possibly empty. sequence of white-space characters (as specified by the isspace

20 function). a subject sequence resembling an unsigned integer represented in some radix
determined by rhe value of base. and a final string of one or more unrecognized characters.
including the terminating null character of the input string. Then. it attempts to convert the
subject sequence to an unsigned integer. and returns the result.

If the value of base is zero. the expected form of the subject sequence is that of an integer
25 constant as described in 3.1.3.2. optionally preceded by a plus or minus sign. but not including an

integer suffix. If the value of base is between 2 and 36. the expected form of the subject
sequence is a sequence of leiters and digits representing an integer with the radix specified by
base. optionally preceded by a plus or minus sign. but not IIlcluding an integer suffix. The
leiters from a lor A) through z (or Z) are ascribed the values IOta 35: only leiters whose

30 ascribed values are less than that of base are permitted. If the value of base is 16. the
characters Ox or ox may optionally precede the sequence of letlers and digits. following the sign
if present.

The subject sequence is defined as the longest initial subsequence of the input string. starting

with the first non-white-space character. that is of the expected form. The subject sequence
35 contains no characters if the input string is empty or consists el11irely of white space. or if the

first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected fornl and the value of base is zero. the sequence of

characters starting with the first digit is interpreted as an integer:onstant according to the rules of
3.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and

40 36. it is used as the base for conversion. ascribing to each leiter its value as given above. If the
subject sequence begins with a minus sign. the value resulting from the conversion is negated. A
pointer to the final string is stored in the object pointed to by endptr. provided that endptr is
not a null pointer.

In other than the "C" locale. additional implementation-defined subject sequence forms may

45 be accepted.

If the subject sequence is empty or does not have the expected form. no conversion is

performed; the value of nptr is stored in the object pointec to by endptr. provided that
endptr is not a null pointer.

4.10.1.5 AMERICAI\ :'oiATIONAL STAI\DARD X3.159-1C,H'J 4.10.1.6

Library

Returns

154 General Utilities <stdlib. h>

The strtoul function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of representable values,
ULONG MAX is returned. and the value of the macro ERANGE is stored in errno.

5 4.10.2 Pseudo-Random Sequence Generation Functions

4.10.2.1 The rand Function

Synopsis

#include <stdlib.h>
int rand(void);

10 Description

The rand function computes a sequence of pseudo-random integers in the range 0 to
RAND MAX.

The implementation shall behave as if no library function calls the rand function.

Returns

15 The rand function returns a pseudo-random integer.

Environmental Limit

The value of the RAND MAX macro shall be at least 32767.

4.10.2.2 The srand Function

20

Synopsis

#include <stdlib.h>
void srand(unsigned int seed);

Description

The srand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand. If srand is then called with the same

25 seed value, the sequence of pseudo-random numbers shall be repeated. If rand is called before
any calls to srand have been made, the same sequence shall be generated as when srand is
first called with a seed value of 1.

The implementation shall behave as if no library function calls the srand function.

Returns

30 The srand function returns no value.

Example

The following functions define a portable implementation of rand and srand.

4.10.1.6 AMERICAN NATIONAL STANDARD X~ 159-19R9 4.10.2.2

Library 155

static unsigned long int next = 1;

General Utilities <stdlib. h>

int rand (void) /* RAND MAX assumed to IJe 32767 */

5

10

next = next * 1103515245 + 1234!>;
return (unsigned int) (next/65536) % 32768;

void srand(unsigned int seed)

next = seed;

4.10.3 Memory Management Functions

The order and contiguity of storage allocated by successive calls to the calloc. malloc,
and realloc functions is unspecified. The pointer returned if the allocation succeeds is suitably
aligned so that it may be assigned to a pointer to any type of object and then used to access such

15 an object or an array of such objects in the space allocated (until the space is explicitly freed or
reallocated). Each such allocation shall yield a pointer to an object disjoint from any other
object. The pointer returned points to the start (lowest byte address) of the allocated space. If
the space cannot be allocated. a null pointer is returned. If the size of the space requested i.;
zero. the behavior is implementation-defined; the value returned shall be either a null pointer or a

20 unique pointer. The value of a pointer that refers to freed space is indeterminate.

4.10.3.1 The calloc Function

Synopsis

#include <stdlib.h>
void *calloc (size_t nmemb, size t sizE!);

25 Description

The callQc function allocates space for an array of nmelllb objects. each of whose size is
size. The space is initialized to all bits zero. 1::>7

Returns

The calloc function returns either a null pointer or a pointer to the allocated space.

30 4.10.3.2 The free Function

Synopsis

#include <stdlib.h>
void free(void *ptr);

Description

35 The free function causes the space pointed to by ptr to be deallocated. that is. made
available for further allocation. If ptr is a null pointer. no action occurs. Otherwise, if the
argument does not match a pointer earlier returned by the c:alloc. malloc, or realloc
function. or if the space has been deallocated by a call to free or realloc. the behavior i~;

undefined.

127, Note that this need not be the same as the representation of floating-point zero or a null pointer constant.

4.10.2.2 AMERICAN NATIONAL STANDARD X3,1.'i'i-I%'i 4.10.3.2

Library

Returns

The free function returns no value.

4.10.3.3 The malloc Function

1.'16 General Utilities <stdlib. h>

5

Synopsis

#inelude <stdlib.h>
void *malloe(size_t size);

Description

15

The malloe function allocates space tor an object whose size is spccilicd b) size and
whose value is indeterminate.

10 Returns

The malloe function returns either a null pointer or a pointer to the allocatee! space.

4.10.3.4 The realloc Function

Synopsis

#inelude <stdlib.h>
void *realloe(void *ptr, size t size);

Description

The realloe function changes the size of the object pointed to by ptr to the-,izl' specified
by size. The contents of the object shall be unchanged up to the lesser of the new ane! old
sizes. If the new size is larger. the value of the newly allocated portion of the object is

20 indetcrminate. If ptr is a null pointer. the realloe function behaves like the malloe
function for the specified size. Otherwise. if ptJ:' docs not match a pointer earlier returned b)
the ealloe, malloe. or realloc function. or if thc space has been deallocated by a call to
the free or realloe function. the behavior is undefined. If the space cannot be allocated. the
object pointed to by ptr is unchanged. If size is zero and ptr is not a null pointer. the oblect

25 it points to is freed.

Returns

The realloe function returns either a IlU II pointer or a poinler to the possibly moved
allocated space.

4.10.4 Communication with the Environment

30 4.10.4.1 The abort Function

Synopsis

#inelude <stdlib.h>
void abort(void);

Description

35 The abort function causes abnormal program termination to occur. unles" the signal
SIGABRT is being caught and the signal handler does not return. Whether open output streams
are flushed or open streams closed or temporary files removed is implementation-defined. AI'!

implementation-defined form of the status 1II1slIccessjili lermi'lL/finll is il?turned to the host
environment by means of the function call raise (SIGABRT) .

40 Returns

The abort function cannot return to its caller.

4.10.3.2 AMERtCAN 1'.ATIO:'\AL STANDARD X.\.I 'iLJ-!%'j 4.1 n.4.!

Library

4.10.4.2 The atexit Function

157 General Utilities <stdlib. h>

15

Synopsis

#include <stdlib.h>
int cLtexit (void (*func) (void)) ;

5 Description

The atexi.t function registers the function pointed to by func. to be called without
arguments at normal program termination.

Implementation Limits

The implementation shall support the registration of at least 32 functions.

10 Returns

The atexi1~ function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the exit function (4.10.4.3).

4.10.4.3 The exit Function

Synopsis

#include <stdlib.h>
void exit(int status);

Description

The exit function causes normal program termination to occur. If more than one call to the
exit function is executed by a program, the behavior is undefined.

20 First, all functions registered by the atexit function are called, in the reverse order of their
registration. In

Next, all open streams with unwritten buffered data are flushed, all open streams are closed,
and all files created by the tmpfile function are removed.

Finally. control is returned to the host environment. If the value of status is zero or
25 EXIT_SUCCESS, an implementation-defined form of the "tatus successful termination is

returned. If the value of status is EXIT_FAILURE:. an implementation-defined form of the
status unsuccessi'ul termination is returned. Otherwise the status returned is implementation­
defined.

Returns

30 The exit function cannot return to its caller.

4.10.4.4 The (Jetenv Function

Synopsis

#include <stdlib.h>
char 'A'getenv (const char *name);

35 Description

The getenv function searches an em'ironment list. provided by the host environment, for a
string that matches the string pointed to by name. The set of environment names and the
method for altering the environment list are implementation-defined.

128. Each function is called as many times as it was registered.

4.10.4.2 AMERICAN NATIONAL STANDARD X3.1 :;9·1989 4.10.4.4

Library 158 General Utilities <stdlib. h>

The implementation shall behave as if no library function calls the getenv function.

Returns

The getenv function returns a pointer to a string associated with the matched list member.
The string pointed to shall not be modified by the program, but may be overwritten by a

5 subsequent call to the getenv function. If the specified name cannot be found, a null pointer is
returned.

10

4.10.4.5 The system Function

Synopsis

#include <stdlib.h>
int system(const char *string);

Description

The system function passes the string pointed to by string to the host environment to be
executed by a command processor in an implementation-defined manner. A null pointer may be
used for string to inquire whether a command processor exists.

IS Returns

If the argument is a null pointer, the system function returns nonzero only if a command
processor is available. If the argument is not a null pointer. the system function returns an
implementation-defined value.

4.10.5 Searching and Sorting Utilities

20 4.10.5.1 The bsearch Function

25

Synopsis

#include <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar) (const void *, const void *»;

Description

The bsearch function searches an array of nmemb objects. the initial element of which is
pointed to by base, for an element that matches the object pointed to by key. The size of each
element of the array is specified by size.

30 The comparison function pointed to by compar is called with two arguments that point to
the key object and to an array element, in that order. The function shall return an integer less
than. equal to, or greater than zero if the key object is considered. respectively, to be less than.
to match. or to be greater than the array element. The array shall consist of: all the elements that
compare less than. all the elements that compare equal to, and all the elements that compare

35 greater than the key object. in that order. 12Y

Returns

The bsearch function returns a pointer to a matching element of the array. or a null pointer
if no match is found. If two elements compare as equal, which element is matched is

unspecified.

129. In practice. the entire array is sorted according to the comparison function.

4.10.4.4 AMERICAN NATIONAL STANDARD X,i 15'J-19X9 4.10.5.1

Library 159 General Utilities <stdlib. h>

5

4.10.5.2 Thl~ qsort Function

Synopsis

#include <stdlib.h>
void. qsort(void 'IIbase, size_t nmemb, size_t size,

int ('IIcompar) (const void'll, const void'll»;

Description

The qsor1t; function sorts an array of nmemb objects. the initial element of which is pointed
to by base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function
10 pointed to by compar, which is called with two arguments that point to the objects being

compared. The function shall return an integer less than, equal to, or greater than zero if the first
argument is considered to be respectively less than, equal to, or greater than the second.

If two elements compare as equal, their order in the sorted array is unspecified.

Returns

15 The qsort: function returns no value.

4.10.6 Intel~er Arithmetic Functions

4.10.6.1 The abs Function

20

Synopsis

#include <stdlib.h>
intabs (int j);

Description

The abs function computes the absolute value of an integer j. If the result cannot be
represented, the behavior is undefined. 130

Returns

25 The abs function returns the absolute value.

4.10.6.2 The div Function

Synopsis

#include <stdlib.h>
div 1: div (int numer, int denom);

30 Description

The div function computes the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the resulting quotient is the
integer of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behavior is undefined; otherwise, quot 'II denom + rem shall equal numer.

35 Returns

The div function returns a structure of type div._t, comprising both the quotient and the
remainder. The structure shall contain the following members. in either order:

130. In a two's complement representation, the absolute value of the most negative number cannot be represented.

4.10.5.2 AMERICAN NATIONAL STANDARD X3.J59-1989 4.10.6.2

Library

int quot;
int rem;

160

I * quotient * I
1* rl'nwinder * I

General Utilities <stdlib . h>

4.10.6.3 The labs Function

Synopsis

#include <stdlib.h>
long int labs (long int j);

Description

The labs function is similar to the abs function, except that the argument and the returned
value each have type long into

10 4.10.6.4 The ldiv Function

Synopsis

#include <stdlib.h>
ldiv t ldiv(long int numer, long int denom);

Description

IS The ldiv function is similar to the div function, except that the arguments and the
members of the retumed structure (which has type ldiv_ t) all have type long into

4.10.7 Multibyte Character Functions

The behavior of the multibyte character functions is affected by the LC_ CTYPE category of
the current locale. For a state-dependent encoding. each function is placed into its initial state by

20 a call for which its character pointer argument. s. is a null pointer. Subsequent calls with s as
other than a null pointer cause the internal state of the function to be altered as necessary. A call
with s as a null pointer causes these functions to return a nonzero value if encodings have state
dependency, and zero otherwise. I.' I Changing the LC_ CTYPE category causes the shift state of

these functions to be indeterminate.

2S 4.10.7.1 The mblen Function

Synopsis

#include <stdlib.h>
int mblen(const char *s, size t n);

Description

30 If s is not a null pointer. the mblen function determines the number of bytes contained in
the multibyte character pointed to by S. Except that the shift state of the mbtowc function is not
affected, it is equivalent to

mbtowc«wchar_t *)0, s, n);

The implementation shall behave as if no library function calls the mblen function.

3S Returns

If s is a null pointer, the mblen function returns a nonzero or zero value. if multi byte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the mblen function either returns 0 (if s points to the null character). or returns the

1~1 If the implementation employs special bytes to change the shift state. these bytes do not produce separate wIele
character codes, but are grouped with an adjacent multibyte character.

4.10.6.2 AMERICAN NATIONAL STANDARD X~.ls9-J989 4.10.7.1

Library 161 General Utilities <stdlib. h>

number of bytes that are contained in the multibyte character (if the next n or fewer bytes form a
valid multibyte character), or returns - I (if they do not form a valid multibyte character).

Forward references: the mbtowc function (4.10.7.2).

4.10.7.2 The :mbtowc Function

5 Synopsis

#include <8tdlib.h>
int mbtowc(wchar_t *pwc, con8t ch.ar *5, size t n);

Description

If s is not a null pointer, the mbtowc function determines the number of bytes that are
10 contained in the multi byte character pointed to by 8. It then determines the code for the value of

type wchar_ t that corresponds to that multi byte character. (The value of the code
corresponding to the null character is zero.) If the multibyte character is valid and pwc is not a
null pointer, the mbtowc function stores the code in the object pointed to by pwc. At most n
bytes of the array pointed to by 8 will be examined.

15 The implementation shall behave as if no library function calls the mbtowc function.

Returns

If 8 is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte
character encodings. respectively, do or do not have state-dependent encodings. If 8 is not a null
pointer, the mbt.owc function either returns 0 (if 8 points to the null character), or returns the

20 number of bytes that are contained in the converted multibyte character (if the next n or fewer
bytes form a valid multibyte character), or returns -I (if they do not form a valid multibyte
character).

In no case will the value returned be greater than n or the value of the MB_CUR_MAX macro.

4.10.7.3 The llctOmb Function

25 Synopsis

#include <stdlib.h>
int wc:tomb (char *8, wchar t wchar);

Description

The wctomb function determines the number of bytes needed to represent the multibyte
30 character corresponding to the code whose value is wchar (including any change in shift state).

It stores the multibyte character representation in the array object pointed to by s (if 8 is not a
null pointer). AI: most MB_CUR_MAX characters are stored. If the value of wchar is zero. the
wctomb function is left in the initial shift state.

The implementation shall behave as if no library function calls The wctomb function.

35 Returns

If s is a null pointer, the wctomb function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer. the wct,:>mb function returns -I if the value of wchar does not correspond to a valid
multibyte character, or returns the number of bytes that are contained in the multibyte character

40 corresponding to the value of wchar.

In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

4.10.7.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.7.3

Library

4.10.8 Multibyte String Functions

162 General Utilities <stdlib. h>

The behavior of the multibyte string functions is affected by the LC_ CTYPE category of the
current locale.

4.10.8.1 The mbstowcs Function

5 Synopsis

#include <stdlib.h>
size t mbstowcs(wchar_t *pwcs, const char *s, size t n);

Description

The mbstowcs function converts a sequence of multi byte characters that begins in the initial
10 shift state from the array pointed to by s into a sequence of corresponding codes and stores not

more than n codes into the array pointed to by pwcs. No multibyte characters that follow a null
character (which is converted into a code with value zero) will be examined or converted. Each
multibyte character is converted as if by a call to the mbtowc function. except that the shift state
of the mbtowc function is not affected.

15 No more than n elements will be modified in the array pointed to by pwcs. If copying takes
place between objects that overlap. the behavior is undefined.

Returns

If an invalid multi byte character is encountered. the mbstowcs function returns
(size t) -1. Otherwise. the mbstowcs function returns the number of arrav elements

20 modified, not including a terminating zero code, if any. 112 .

4.10.8.2 The wcstombs Function

Synopsis

#include <stdlib.h>
size t wcstombs(char *s, const wchar t *pwcs, size t n);

25 Description

The wcstombs function converts a sequence of codes that correspond to multi byte characters
from the array pointed to by pwcs into a sequence of multi byte characters that begins in the
initial shift state and stores these multibyte characters into the array pointed to by s, stopping if a
multibyte character would exceed the limit of n total bytes or if a null character is stored. Each

30 code is converted as if by a call to the wctomb function. except that the shift state of the

wctomb function is not affected.

No more than n bytes will be modified in the array pointed to by s. If copying takes place
between objects that overlap. the behavior is undefined.

Returns

35 If a code is encountered that does not correspond to a valid multibyte character. the
wcstombs function returns (size t) -1. Otherwise, the wcstombs function returns the
number of bytes modified, not includi;g a terminating null character, if any.I'2

132. The array will not be null- or zero-terminated if the value returned is n.

4.10.8 AMERICAN NATIONAL STANDARD X3.1 'i9-19X9 4.10X2

Library 163 String Handling <string. h>

4.11 String; Handling <string. h>

4.11.1 String Function Conventions

The header <string. h> declares one type and several functions. and defines one macro
useful for manipulating arrays of character type and other objects treated as arrays of character

5 type. 133 The type is size_t and the macro is NULL (both described in 4.1.5). Various methods
are used for determining the lengths of the arrays, but in all cases a char * or void *
argument points to the initial (lowest addressed) character of the array. If an array is accessed
beyond the end of an object, the behavior is undefined.

4.11.2 Copying Functions

IO 4.11.2.1 The memcpy Function

Synopsis

#inc.lude <string.h>
void *memcpy(void *sl, const void *s2, size t n);

Description

IS The memcpy function copies n characters from the object pointed to by s2 into the object
pointed to by 5:1. If copying takes place between objects that ov,~rlap, the behavior is undefined.

Returns

The memcpy function returns the value of 51.

4.11.2.2 The memmove Function

20 Synopsis

#include <string.h>
void *memmove(void *51, con5t void *52, 5ize t n);

Description

The memmove function copies n characters from the object pointed to by s2 into the object
25 pointed to by s1. Copying takes place as if the n characters from the object pointed to by 52

are first copied into a temporary array of n characters that does not overlap the objects pointed to
by sl and s2, and then the n characters from the temporary array are copied into the object
pointed to by 51.

Returns

30 The memmove function returns the value of 51.

4.11.2.3 The strcpy Function

Synopsis

#include <5tring.h>
char *5trcpy(char *51, const char *52);

35 Description

The strcpy function copies the string pointed to by 52 (including the terminating null
character) into the array pointed to by 51. If copying takes place between objects that overlap,
the behavior is undefined.

1.'3. See "future library directions" 14.I3.R).

4.11 A'VIERICA'J 'JATIONAL STAI\'DARD X315c)·It)~9 4.11.2.3

Library

Returns

164 String Handling: <string. h>

s

The strcpy function returns the value of s1.

4.11.2.4 The strncpy Function

Synopsis

#include <string.h>
char *strncpy(char *sl, canst char *s2, size t n);

Description

The strncpy function copies not more than n characters (characters that follow a null

character are not copied) from the array pointed to by s2 to the array pointed to by s1. IQ If
10 copying takes place between objects that overlap. the behavior is undefined.

If the array pointed to by s2 is a string that is shorter than n characters. null characters are
appended to the copy in the array pointed to by sl. until n characters in all have been written.

Returns

The strncpy function returns the value of s1.

15 4.11.3 Concatenation Functions

4.11.3.1 The strcat Function

Synopsis

#include <string.h>
char *strcat(char *sl, canst char *s2);

20 Description

The strcat function appends a copy of the string pointed to by s2 (including the
terminating null character) to the end of the string pointed to by s 1. The initial character of s2
overwrites the null character at the end of sl. 1f copying takes place betwccn objects that
overlap. the behavior is undefined.

25 Returns

The strcat function returns the value of s1.

4.11.3.2 The strncat Function

30

Synopsis

#include <string.h>
char *strncat(char *sl, canst char *s2, size t n);

Description

The strncat function appends not more than n characters (a null character and characters

that follow it are not appended) from the array pointed to by s2 to the end of the string pointed

to by sl. The initial character of s2 overwrites the null character at the end of s1. A

35 terminating null character is always appended to the result. 11-' If copying takes place between

objects that overlap. the behavior is undefined.

134. Thus. if there is no null character in the first n characters of the array pointed to by 52. the result will not be
null-terminated.

135. Thus. the maximum number of characters that can end up in the array pointed to by 51 is
5trlen (51) +n+1.

4.11.2.3 AMERICAN NATIONAL STANDARD X.'.15LJ-ILJSLJ 4.11.3.2

Library

Returns

165 String Handling <string. h>

10

The strncat function returns the value of s1.

Forward references: the strlen function (4.11.6.3).

4.11.4 Comparison Functions

5 The sign of a nonzero value returned by the comparison functions memcmp. strcmp. and
strncmp is determined by the sign of the difference between the values of the first pair of
characters (both interpreted as unsigned char) that differ in the objects being compared.

4.11.4.1 The memcmp Function

Synopsis

#inc:lude <string.h>
int memcmp (const void *s1, const: void '~s2, size t n);

Description

The memcmp function compares the first n characters of the object pointed to by s1 to the
first n characters of the object pointed to by S2.1-'6

IS Returns

The memc:mp function returns an integer greater than. equal to. or less than zero. accordingly
as the object pointed to by s1 is greater than. equal to, or less than the object pointed to by s2.

4.11.4.2 Th(~ strcmp Function

20

Synopsis

#include <string.h>
int strcmp (const char *s1, const: char *s2);

Description

The strcmp function compares the string pointed to by s1 to the string pointed to by s2.

Returns

25 The strcmp function returns an integer greater than. equal to. or less than zero, accordingly
as the string pointed to by s1 is greater than. equal to. or less than the string pointed to by s2.

4.11.4.3 Th(~ strcoll Function

30

Synopsis

#include <string.h>
int strcoll(const char *s1, const char *s2);

Description

The strc,)ll function compares the string pointed to by s1 to the string pointed to by s2.
both interpreted as appropriate to the LC_COLLATE category of the current locale.

130. The contents of "holes" used as padding for purposes of alignment within structure objects are indeterminate.
Strings shorter than their allocated space and unions may also cause problems in comparison.

4.11.3.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.11.4.3

Library

Returns

166 String Handling <string. h>

The strcoll function returns an integer greater than. equal to. or less than zero. accordingly
as the string pointed to by s 1 is greater than. equal to. or less than the string pointed to by s2
when both are interpreted as appropriate to the current locale.

5 4.11.4.4 The strncmp Function

Synopsis

#include <string.h>
int strncmp(const char *sl, const char *s2, size t n);

Description

10 The strncmp function compares not more than n characters (characters that follow a null
character are not compared) from the array pointed to by sl to the array pointed to by s2.

Returns

The strncmp function returns an integer greater than. equal to. or less than zero. accordingly
as the possibly null-terminated array pointed to by sl is greater than. equal to. or less than the

15 possibly null-terminated array pointed to by s2.

4.11.4.5 The strxfrm Function

Synopsis

#include <string.h>
size t strxfrm(char *sl, const char *s2, size t n);

20 Description

The strxfrm function transforms the string pointed to by s2 and places the resulting string
into the array pointed to by s1. The transformation is such that if the strcmp function is
applied to two transformed strings. it returns a value greater than. equal to. or less than zero.
corresponding to the result of the strcoll function applied to the same two original strings.

25 No more than n characters are placed into the resulting array pointed to by sl. including the
terminating null character. If n is zero. sl is permitted to be a null pointer. If copying takes
place between objects that overlap. the behavior is undefined.

Returns

The strxfrm function returns the length of the transformed string (not including the
30 terminating null character). If the value returned is n or more. the contents of the array pointed

to by sl are indeterminate.

Example

The value of the following expression IS the size of the array needed to hold the
transformation of the string pointed to by s.

35

40

1 + strxfrm(NULL, s, 0)

4.11.5 Search Functions

4.11.5.1 The memchr Function

Synopsis

#include <string.h>
void *memchr(const void *s, int c, size t n);

4.11.4,3 AMERtCAN '\ATIO\iAL STA'\DARO X"I)')-19S<) 4.11.5.1

Library 167 String Handling <string. h>

Description

The memch:t" function locates the first occurrence of c (converted to an unsigned char) in
the initial n characters (each interpreted as unsigned <=har) of the object pointed to by s.

Returns

5 The memchr function returns a pointer to the located character. or a null pointer if the
character does not occur in the object.

4.11.5.2 The strehr Function

10

Synopsis

#include <string.h>
char *strchr(const char *5, int c);

Description

The strch,t" function locates the first occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

Returns

15 The strchr function returns a pointer to the located character. or a null pointer if the
character does not occur in the string.

20

4.11.5.3 The ,strespn Function

Synopsis

#include <string.h>
size t strcspn(const char *sl, canst char *s2);

Description

The strcspn function computes the length of the maximum initial segment of the string
pointed to by sl which consists entirely of characters not from the string pointed to by s2.

Returns

25 The strcspn function returns the length of the segment.

4.11.5.4 The strpbrk Function

Synopsis

#incl1Jde <string. h>
char '~strpbrk(const char *sl, const char *s2);

30 Description

The strpbl~k function locates the first occurrence in the string pointed to by sl of any
character from the string pointed to by s2.

Returns

The strpb]~k function returns a pointer to the character, or a null pointer if no character
35 from s2 occurs in s1.

4.11.5.5 The strrehr Function

Synopsis

#include <string.h>
char *strrchr(const char *s, int c);

4.11.5.1 AMERICAN NATIONAL STANDARD X3.159-19R9 4.11.5.5

Library 168 String Handling <string. h>

Description

The strrchr function locates the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

Returns

5 The strrchr function returns a pointer to the character, or a null pointer if c does not occur
in the string.

10

4.11.5.6 The strspn Function

Synopsis

#include <string.h>
size t strspn(const char *sl, const char *s2);

Description

The strspn function computes the length of the maximum initial segment of the string
pointed to by sl which consists entirely of characters from the string pointed to by s2.

Returns

15 The strspn function returns the length of the segment.

4.11.5.7 The strstr Function

Synopsis

#include <string.h>
char *strstr(const char *sl, const char *s2);

20 Description

The strstr function locates the first occulTence in the string pointed to by s 1 of the
sequence of characters (excluding the terminating null character) in the string pointed to by s2

Returns

The str5tr function returns a pointer to the located string, or a null pointer if the string is
25 not found. If s2 points to a string with zero length. the function returns 51.

4.11.5.8 The strtok Function

Synopsis

#include <string.h>
char *strtok(char *51, con5t char *52);

30 Description

A sequence of calls to the 5trtok function breaks the string pointed to by sl into a
sequence of tokens, each of which is delimited by a character from the string pointed to by 52.
The first call in the sequence has sl as its first argument. and is followed by calls with a null
pointer as their first argument. The separator string pointed to by s2 may be different from call

35 to call.

The first call in the sequence searches the string pointed to by sl for the first character that is
l10t contained in the cUlTent separator string pointed to by 52. If no such character is found, then
there are no tokens in the string pointed to by sl and the 5trtok function returns a null
pointer, If such a character is found, it is the start of the first token.

40 The strtok function then searches from there for a character that is contained in the cUlTent
separator string. If no such character is found, the current token extends to the end of the string
pointed to by 51, and subsequent searches for a token will return a null pointer. If such a
character is found. it is overwritten by a null character. which terminates the current token. The

4.11.5.5 AMERICAN NATIONAL STANDARD X31.'19·19K9 4.11.5.8

Library 169 String Handling <string. h>

strtok function saves a pointer to the following character, from which the next search for a
token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described abow.

5 The implementation shall behave as if no library function calls the strtok function.

Returns

The strt:ok function returns a pointer to the first character of a token, or a null pointer if
there is no token.

10

Example

#inc~lude <string. h>
static char str[] = "?a???b" ,#e";
cha:r *t;

t = strtok (str, "?") ; /* t points to the token "a" */
t = strtok(NULL, " , ") ; /* t points to the token "??b" */

15 t = strtok(NULL, "#, ") ; /* t points to the token "e" */
t = strtok(NULL, "?") ; /* t is a null pointer */

4.11.6 Miscellaneous Functions

4.11.6.1 The memset Function

20

Synopsis

#include <string.h>
void *memset(void *5, int c, size t n);

Description

The memset function copies the value of c (converted to an unsigned char) into each of
the first n characters of the object pointed to by s.

25 Returns

The memset function returns the value of s.

4.11.6.2 The strerror Function

Synopsis

30
#inc:lude <string. h>
chaJ: *strerror (int errnum);

Description

The strerror function maps the error number ill errnum to an error message string.

The implementation shall behave as if no library function calls the strerror function.

Returns

35 The strtarror function returns a pointer to the string. the contents of which are
implementation-defined. The array pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to the strerror function.

4.11.5.8 AMERICAN NATIONAL STANDARD XJ.159-19H9 4.11.6.2

Library

4.11.6.3 The strlen Function

170 String Handling <string. h>

Synopsis

#include <string.h>
size t strlen(const char *s);

5 Description

The strlen function computes the length of the string pointed to by s.

Returns

The strlen function returns the number of characters that precede the terminating null
character.

4.11.6.3 A'VIERICAN NATIONAL STANDARD XJ.IS9-1989 4.1 J .6.3

Library

4.12 Date and Time <time. h>

4.12.1 Components of Time

171 Date and Time <time. h>

The header <time. h> defines two macros, and declares four types and several functions for
manipulating time. Many functions deal with a calendar time that represents the current date

5 (according to the Gregorian calendar) and time. Some functions deal with local time, which is
the calendar time expressed for some specific time zone, and with Daylight SGl'ing Time, which
is a temporary change in the algorithm for determining local time. The local time zone and

Daylight Saving Time are implementation-defined,

The macros defined are NULL (described in 4.1.5); and

10

15

CLOCKS PER SEC

which is the number per second of the value returned by the c1.c)ck function.

The types declared are size_ t (described in 4.1.5);

clock t

and

time t

which are aritbmetic types capable of representing times; and

struct tm

which holds the components of a calendar time, called the hroken-down time. The structure shall
contain at least the following members, in any order. The semantics of the members and their

20 normal ranges are expressed in the comments. 137

int 'tm sec; /* seconds after the minute - [0. 61] */
int 'tm_min; /* minutes after the hour - [0.59] */
int 'tm hour; /* hours since midnight- [0.23] */
int 'tm_mday; /* day of the month - [I, 3/] */

25 int ·tm_mon; /* months since January - [0. 11] */
int ·tmJear; /* years since 1900 */
int 1tm_wday; /* days since Sunday - [0, 6] */
int 1tmJday; /* days since January 1- rO, 365] */
int 1:m isdst; /* Davlight Sa\'ing Time flag */

30 The value of tm_ isdst is positive if Daylight Saving Time is in effect, zero if Daylight Saving

Time is not in~t'fect, and negative if the information is not available.

4.12.2 Tim(~ Manipulation Functions

4.12.2.1 The clock Function

35

Synopsis

#incJLude <time.h>
clock t clock (void) ;

Description

The clock function determines the processor time used.

137, The range 10,61] for tm_sec allows for as many as two leap seconds.

4.12 AMERICAN NATIONAL STANDARD X3.159-19:J9 4.12.2.1

Library

Returns

172 Date and Time <time. h>

The clock function returns the implementation"s best approximation to the processor time

used by the program since the beginning of an implementation-defined era related only to the

program invocation. To detem1ine the time in seconds. the value returned by the clock
5 function should be divided by the value of the macro CLOCKS_PER_SEC. If the processor time

used i:; not available or its value cannot be represented. the function retul11s the value
(clock_t)-1.13S

4.12.2.2 The difftime Function

10

Synopsis

#include <time.h>
double difftime(time_t timel, time t timeO);

Description

The difftime function computes the difference between two calendar times: timel ­
timeO.

20

15 Returns

The difftime function returns the difference expressed in seconds as a double.

4.12.2.3 The mktime Function

Synopsis

#include <time.h>
time t mktime(struct tm *timeptr);

Description

The mktime function converts the broken-down time. expressed as local time. 111 the
structure pointed to by timeptr into a calendar time value with the same encoding as that of

the values retul11ed by the time function. The original values of the tm_ wday and tm_yday
25 components of the structure are ignored. and the original values of the other components are not

restricted to the ranges indicated above.1.19 On successful completion. the values of the

tm_ wday am! tm_yday components of the structure are set appropriately. and the other

components are set to represent the specified calendar time. but with their values forced to the
ranges indicated above; the final value of tm_ mday is not set until tm_ mon and tm_year are

30 determined.

Returns

The mktime function returns the specified calendar time encoded as a value of type

time t. If the calendar time cannot be represented. the function returns the value

(time_t) -l.

35 Example

What day of the week is July 4. 2001 '?

13R. In order to measure the time spent in a program. the clock function should be called at the start of the
program and its return valuc subtracted from the value rcturned by subsequent calls.

139. Thus. a positive or zero value for tm isdst causes the mktime function to presume initially that Daylight
Saving Time, respectively. is or is not In effect for the specified time. A negative value for tm_ isdst causes
the mktime function to attempt to detennine whether Daylight Saving Time is in effect for the specified time.

4.12.2.1 AMERICAN NATIONAL STANDARD X3.159-19H9 4.12.2.3

Library 173 Date and Time <time. h>

5

#include <stdio.h>
#include <time.h>
stat:ic const char *const wday [] = {

"Sunday", "Monday", "Tuesday", "'Wednesday",
"Thursday", "Friday", "Sat:urday", "-unknown-"

} ;

str'llct tm time str;
/* ... */

10

15

timE!_str. tmyear
timE! str. tm mon- -
timE!_str. tm_ mday
timE! str. tm hour- -
timE! str. tm min- -
timE! str. tm sec- -
timE! str. tm isdst

= 2001 - 1900;
= 7 - 1;

4;
= 0;
= 0;
= 1;

-1;

if (rnktime(&time_str) == -1)
time_str.tm_wday = 7;

printf ("%s\n", wday [time_str. tm__wday]) ;

4.12.2.4 Thle time Function

20 Synopsis

#inc:lude <time.h>
timE! t time (time_ t *timer);

Description

The timE! function determines the current calendar time. The encoding of the value is
25 unspecified.

Returns

The time function returns the implementation's best approximation to the current calendar
time. The value (time_t) -1 is returned if the calendar time is not available. If timer is not
a null pointer, the return value is also assigned to the object it points to.

30 4.12.3 Time Conversion Functions

Except for the strftime function, these functions return values in one of two static objects:
a broken-down time structure and an array of cha:r. Execution of any of the functions may
overwrite the information returned in either of these objects by any of the other functions. The
implementation shall behave as if no other library functions call these functions.

35 4.12.3.1 The asctime Function

Synopsis

#include <time.h>
chaJ:' *asctime (const struct tm *t:imeptr);

Description

40 The asct~ime function converts the broken-down time m the structure pointed to by
timeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm.

4.12.2.3 AMERICAN NATIONAL STANDARD X3.IS9-1989 4.12.3.1

Library 174 Date and Time <time. h>

char *asctime(const struct tm *timeptr)

5

10

15

Returns

static const char wday_name [7] [3] = {

"Sun", "Mon" I "Tue" , "Wed", "Thu", "Fri", "Sat"
} ;

static const char mon_name[12] [3] = {

"Jan" , "Feb" , "Mar" , "Apr", "May", "Jun" ,
"Jul", "Aug" , "Sep", "Oct l1

, 'INov", "Dec"
} ;

static char result[26];

sprintf (result, "%. 3s %. 3s%3d %. 2d: %. 2d: %. 2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;

20 The asctime function returns a pointer to the string.

4.12.3.2 The ctime Function

Synopsis

#include <time.h>
char *ctime(const time t *timer);

25 Description

The ctime function converts the calendar time pointed to by timer to local time in the
form of a string. It is equivalent to

asctime(localtime(timer»

Returns

30 The ctime function returns the pointer returned by the asctime function with that broken-

down time as argument.

Forward references: the localtime function (4.12.3.4).

35

4.12.3.3 The gmtime Function

Synopsis

#include <time.h>
struct tm *gmtime(const time t *timer);

Description

The gmtime function converts the calendar time pointed to by timer into a broken-down
time. expressed as Coordinated Universal Time (UTC).

40 Returns

The gmtime function returns a pointer to that object. or a null pointer if UTC IS not
available.

4.12.3.1 AMERICAN !\ATlONAL STANDARD XJ.\ ~li-\l)Sl) 4.12.3.3

Library

4.12.3.4 The localtime Function

175 Date and Time <time. h>

Synopsis

#include <time.h>
struct tm *localtime (const time ·t *timer);

5 Description

The localtime function converts the calendar time pointed to by timer into a broken­
down time, expressed as local time.

Returns

The localtime function returns a pointer to that object.

10 4.12.3.5 The strftime Function

Synopsis

#include <time,h>
size__t strftime (char *s, size t maxsize,

const char * format , const :struct 'tm *timeptr);

15 Description

The strftime function places characters into the array pointed to by s as controlled by the
string pointed to by format. The format shall be a multibyte character sequence, beginning and
ending in its initial shift state. The format string consists of zero or more conversion specifiers
and ordinary multibyte characters. A conversion specifier consists of a % character followed by a

20 character that determines the behavior of the conversion specifier. All ordinary multibyte
characters (including the terminating null character) are copied unchanged into the array. If
copying takes place between objects that overlap, the behavior is undefined. No more than
maxsize characters are placed into the array. Each conversion specifier is replaced by
appropriate characters as described in the following list. The appropriate characters are

25 determined by the LC_TIME category of the current locale and by the values contained in the
structure pointed to by timeptr.

%a is replaced by the locale's abbreviated weekday name.
%A is replaced by the locale's full weekday name.
%b is replaced by the locale's abbreviated month name.

30 %B is replaced by the locale's full month name.
%c is replaced by the locale's appropriate date and time representation.
%d is replaced by the day of the month as a decimal number (01-31).
%H is replaced by the hour (24-hour clock) as a decimal number (00-23).
%I is replaced by the hour (I2-hour clock) as a decimal number (01-12).

35 %j is replaced by the day of the year as a decimal number (001-366).
%m is replaced by the month as a decimal number 101-12).
%M is replaced by the minute as a decimal number (00-59).
%p is replaced by the locale's equivalent of the AM/pM designations associated with a 12·

hour clock.
40 %5 is replaced by the second as a decimal number (00-61).

%U is replaced by the week number of the year (the first Sunday as the first day of week 1)
as a decimal number (00-53).

%w is replaced by the weekday as a decimal number (0-6), where Sunday is O.
%W is replaced by the week number of the year (the first Monday as the first day of week 1)

45 as a decimal number (00-53).

%x is replaced by the locale's appropriate date representation.
%X is replaced by the locale's appropriate time representation.
%y is replaced by the year without century as a decimal number (00-99).
%Y is replaced by the year with century as a decimal number.

4.12.3.4 AMERICAN NATIONAL STANDARD X3.159-19g9 4.12.3.5

Library 176 Date and Time <time. h>

%Z is replaced by the time zone name or abbreviation. or by no characters if no time zone is
determinable.

%% is replaced by %.

If a conversion specifier is not one of the above, the behavior is undefined.

5 Returns

If the total number of resulting characters including the terminating null character is not more
than maxsize, the strftime function returns the number of characters placed into the array
pointed to by s not including the terminating null character. Otherwise, zero is returned and the
contents of the array are indeterminate.

4.12.3.5 AMERICA:" NATIONAL STANDARD X'.I ';'1-1 '1~l) 4.12.3.5

Library

4.13 Future Library Directions

177 Future Library Directions

The following names are grouped under individual headers for convenience. All external
names described below are reserved no matter what headers are included by the program.

4.13.1 Errors <errno . h>

5 Macros that begin with E and a digit or E and an uppercase letter (followed by any
combination of digits, letters, and underscore) may be added to the declarations in [he
<errno . h> header.

4.13.2 Character Handling <ctype . h>

Function names that begin with either is or te>, and a lowercase letter (followed by any
10 combination of digits, letters, and underscore) may be added to the declarations in the

<ctype. h> header.

4.13.3 LO(~alization <locale. h>

Macros that begin with LC_ and an uppercase letter (followed by any combination of digits.
letters, and underscore) may be added to the definitions in the <locale. h> header.

15 4.13.4 Mathematics <math. h>

The names of all existing functions declared in the <math, h> header. suffixed with f or 1.
are reserved respectively for corresponding functions with float and long double arguments
and return values.

4.13.5 Siglilal Handling <signal. h>

20 Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter
(followed by any combination of digits, letters, and underscore) may be added to the definitions
in the <signal. h> header.

4.13.6 Input/Output <stdio . h>

Lowercase letters may be added to the conversion specifiers in fprintf and fscanf.
25 Other characters may be used in extensions.

4.13.7 General Utilities <stdlib. h>

Function names that begin with str and a lowercase letter (followed by any combination of
digits, letters, and underscore) may be added to the declarations in the <stdlib. h> header.

4.13.8 String Handling <string. h>

30 Function names that begin with str, memo or wc:s and a lowercase letter (followed by any
combination of digits. letters. and underscore) may be added to the declarations in the
<string. h> header.

4.13 AMERICAN NATIONAL STA'\DARD X3,IS9-19R9 4.13.8

Appendixes 178 Language Syntax SUI1ll1lal\

Appendixes (These Appendixes are not part of American "ational Standard X~.I:il)-ll)~L). bLn arc inclulbl

for information only.)

These appendixes collect information that appears in the standard. and are not nece,sarily complete.

A. Language Syntax Summary
The notation is descrihed in the introduction to Section 3 (Language).

A.I Lexical Grammar

A.I.! Tokens

(3.1) token:
keyword
identifier

constant
string-literal

operator
punctuator

(3.1) preprocessing-token'
header-name
identifier
pp-numher
character-col1sta11t
string -IItera I
operator
punctuator
each non-white-space character that cannot be one of the above

A.1.2 Keywords

(3.1.1) keyword: one of
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

A.1.3 Identifiers

(3.1.2) identifier:
nondigit
identifier nOl1digit

identifier digit

(3.1.2) nondigit: one of

a b c d e f g h i j k 1 m
n 0 p q r s t u v w x y z
A B C D E F G H I J K L M

N 0 p Q R S T U V W X Y Z

(3.1.2) digit: one of

0 1 2 3 4 5 6 7 8 9

A. AMERICA!" NATIONAL ST ANDARD X:\.! :il)-ll)~l) A.l.3

Appendixes

A.1.4 Constants

(3. 1.3) constant:
jloating-constant
integer-constant
enumeration-constant
character-constant

179 Language Syntax Summary

(3.1.3.1) jloating-constant:
fractional-constant exponent-part jfoatinJ?-sufjixopt ' opt
digit-sequence exponent-part jfoating-suffixopt

(3.1.3.1) fractional-constant:
diJ?it-sequence . digit-sequence

,.' . opt
Q/gtt-sequence

(3.1.3.1) exponent-part:
e, siJ?n, opt
E, sir;n, opt

(3. I .3.1) sign: one of

+

digit-sequence
digit-sequence

(3.1.3.1) digit-sequence:
digit
digit-sequence digit

(3.1.3.1) .ttoating-suffix: one of
f 1 F L

(3.1.3.2) integer-constant:
decimal-constant inteoer-suffHx

" . J' opt
octal-constant inte~er-sujfix, opt
hexadecimaI-constant inter;er-suffix, opt

(3.1.3.2) decimal-constant:
nonzero-digit
decimal-constant digit

(3.1.3.2) octal-constant:
o
octal-constant octal-digit

(3.1.3.2) hexadecimal-constant:
OJ' hexadecimal-digit
O}C hexadecimal-digit
hexadecimal-constant hexadecimal-digit

(3. I.3.2) nonzero-digit: one of
1 2 3 4 5 6 7 8 9

(3.1.3.2) octal-digit. one of
0 1 2 3 4 5 6 7

(3.1.3.2) hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

A.IA AMERICAN NATIONAL STANDARD X3.159-19X9 A.IA

Appendixes

(3. 1.~ ..2) i/ltcger-slIffix.

/11/ si r; /lcd-sllfti.1" IO/l r; -slIffi'x, . . ,. . opl
Ion r; -slIffix II 1I.li r; /lcd -slIffi.r'., , .. Olil

(3.1.3 ..2) IIl1signcd-slIflix: one of
u U

(3.1.3 ..2) IlIlIg-slIffir: one of
1 L

C1I.3.3) c/lllmcration-constallt:

idcntlficr

(3.1.3.4) c!wracter-col/.I!ant:

, c-('!Jar-scqllcllcc'

L' c-cliar-sccIIICI/('C'

(3.1.3.4) c-cliar-.lccIIICIICC:

c-cliar

c-c!w/'-.Icqllcncc c-cliar

(3.1.3.4) c-cliar'

IRO Language Syntax Summary

any member of the source character set except
the single-quote' . backslash \. or new-line character

cSI'allc-scq lieI/CC

(3.1.3.4, cscapC-,I'Cilllcncc:

si11111/c-esl '(}llC-SCq lie111'1'

01 'ta l-c,l'collc-seq Ill'nce

lic.wdcl' imaI-csi 'al)c- sell Ill' ncc

(3.1.3.4) si11I171e-es('0171' -seqIll'nce:

\' \" \?
\a \b \f

one of

\\
\n \r \t \v

(3.1.3.4) IIclal-e,l('(Jlle-,lecl"ence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit

(3. 1.3.4) lie.wdccilllal-escof7c-seqllellce:

\x hexwiecill/ol-lligit

he.wdcI 'inw l-csI'apc-sell1I0/IC he.will'I 'illla I-dig i t

A.1.5 String Literals

(3.1.4) string-literal:

"s-c!wr-scqllencc "
liP!

L" s-char-sequellce "
OIl!

(3.1.4) ,I-c!wr-sclluence:

s-cliar

s-char-sequencc .I-char

(3.1.4) .I-char:

any member of the source character set except

the double-quote". backslash \. or new-line character
es('ape-sei/lle III 'e

A.I.4 A'vIFRICA!\ :siATIONAL ST!\NDARD X3.15lJ-19X'! A.I.5

Appendixes

A.1.6 Operators

l~ I Language Syntax Summary

(3.1.5) opc}"(/tor: one of

[

++
/ %

) ->
& * + si2:eof

« » < > <= >= --- != A && I I
?

= *= /= %= += -= «= »= &= "= 1=
##

A.1.7 Punctuators

(3.1.6) pUllctuator: one of
[] (

A.1.8 Header Names

(3.1.7) header-namc:
<h-('Iwr-sequc/u'c>
"q-char-sequence"

(3.1.7) h-char-sequcnce:

h-char
h-char-scquencc h-c/wr

(3.1.7) h-char:

* #

aEy member of the source character set ex,:epl
the new-line character and>

(3.1.7) q-char-sequellcc:
q-char

q-char-scqucncc q-char

(3.1.7) q-char:
any member of the source character sel except

the new-line character and"

A.1.9 Preprocessing Numbers

(3.1./1) pp-Ilumhcr:

digit
. digit

pp-Ilumhcr digit
pp-numher nO/ldigit
pp-Ilumhcr e sign
pp-Ilumhcr E sign

PIHllImhtr

A.1.6 AMERICAN NATIOf\;AL STANDARD X3.15'J-I'!slJ A.I.9

Appendixes

A.2 Phrase Structure Grammar

A.2.1 Expressions

(3.3.1) primarr-expressioll:
ide II tijier
COl/stallt
striIlg -Iitera I
(e.rpressio/1

lR2 Language Syntax Summary

(:1.3.2) postjix-expressi0/1:
prinwrr-expression
postjix-expressi01/

postji.r-e.lpressi0/1
piIstfi.r -express iOil
PI)Stji.r-e.rpressio /1
11ostji.r-e.rpre.IsilI /1

liiJStjix-e.lpress iOil

[expression]
(ar\illme/1t-expressio/1-list. opt
. ide/1tijier
-> identijier
++

(3.3.2) arglime /1 t-('xpressio/1-list:
assig/1me /1t-e.lpressil ill
arg111711'1/t-npressiOI/-1ist , assig /1mell t-expressiOIl

(3.3.3) IIIwn'-expressio/1:
postjix-e.rpre.ISio/1
++ lll1an'-expressioll
-- lI/1arr-e.lpressio/1
IIIWry-operator cast-expressioll
sizeof lI/1an'-e.lpressio/1
sizeof (trpe-/1ame

(3.3.3) IIIwly-operaror: one or
& * +

(3.3.4) cast-expressio/1:
III/arr-e.rpressioll
(t11Je-/1ame) cast-l'.\pressio/1

(3.3.S) mII Itiplicm ire-c.rpressio/1:
('a st-e.lpressio/1
I1Il1ltiplicatire-expressioi1 * cast-npressio/1
111111tiplicatire-express iOi1 / ('ast-e.lpressiOil
11I/1ltiplicatire-expressioi1 % (·ast-e.rpressioll

(3.3.n) additij'e-elpressio/1:
111/11tiplicati j'e-expressiOil
additi \'e-expressiOil + m/litiplica ti \'e-express iOIl
addi tire-express i0/1 - mIIltipIicati j'e-express iOil

(3.3.7) shifi-expressioi1:
additil ·e-e.lpressio/1
shiji-c.rpressioll « additij'e-expressio/1
shijr-c.rpressio/1 » additi\'e-e.lprcssio/1

A.2 AMERICAN "ATlONAL STANDARD X.\l'iLJ-l<)X<) A.2.1

Appendixes 183 Language Syntax Summary

(3.3.8) relational-e.lpression:
.I'lliti-e.rpression
relational-c-lpression < sh!'{t-e.IJJression
relational-e.lpression > shijt-e.lpression
relational-e.lpression <= shift-expression
relational-e.rpression >= shiji-e.rplession

(3.3.9) equality-e.rpression:
relational-expression
equality-expression == relational-expression
equality-expression! = relational-expressIOn

(3.3.10) AND-e.rpression:
equaIity-expression
AND-expression & equality-e.rpression

(3.3.11) exc!usil·e-OR-e.rpression:
AND-expression
e.lclusil'e-OR-e.rpression A AND-e.rpression

(3.3.12) inc!usil'e-OR-e.rpression:
e.rl 'Iusi I '1'-0R-e.rpression
illclusi\'e-OR-expression I exc!usil'e-OR-expression

(3.3.13) logical-A/IID-expression:
inclusi I 'e-OR-e.\pression
logical-AND-expression && inelusil'e-OR-expression

(3,3.14) logical-OR-expression.-
logicaI-AND-expression
!ogical-OR-e.rpression I 1 logiCiil-AND-e.rpression

(3.3.15) conditional-expression:
loX icaI-OR-e.\pression
logical-OR-expression ? expression conditional-expression

(3.3.16) assignmell!-expression:
c'0 liditiollaI-e.rpres .I'ion
llnarv-e.rpression assignment-ollerator assignment-cxpression

(3.3.10) assignment-operator: one of
= *= /= %= += «= >:>= &= A= 1=

(3.3.17) expression,'
assignment-expression
expression , assignment-expression

(3,4) constant-e.\pression:
cOl1ditiona!-expression

A.2.2 Declarations

(3.5) declaration:
dec/aration-specifiers init-del'larator-!istopt

(3.5) declaration-specifiers:
stora ge-c!ass-spec'ifier dec!aration-specifie1'.1', opt
ty!) e-s!Jeciher declaration -S!Jec i{le1'.1'../' . opt
type-qualifter dec!aration-s!Jecihers., ./' opt

A.2.1 AMERICAN "lAT10NAL STANDAR 0 XJ.159-1989 A.2.2

Appendixes 184 Language Syntax Summary

(3.5) init-dec!arator-liSI:
in it-declarator
illft-declarator-list , init-declarator

(3.5) inil-declarator:
dec!armor
declaralor = initiali::.cr

(3.5.1) storage-c/a.\s-specijicr:
typedef
extern
static
auto
register

(3.5.2) tlpe-specijier:
void
char
short
int
long
float
double
signed
unsigned
Strlfct-or-IInioll-spec'ijier
ellllm-specijier
t\'pedernal7le

(3.5.2.1) struct-or-lIl1ioll-specifier:
struct-or-llnioll idenrifier {strucI-deciaration-list}. opt
struct-or-lIl1ion idelltljier

(3.5.2.1) struct-or-llnion:
struct
union

(3.5.2.1) struet-declaratioll-lisl:
strlfi·t-dee!aratiOil
.1'1ruet-dei'!aration-!ist struct-dcelaration

(3.5.2.1) struet-declaratioll:
spec'ijier-q110!ijier-Ifst stnlet-dei'10ralor-list

(3.5.2.1) specifier-qllalifier-list:
t\'/)e-sneei{1er s/Jeei{1er-nua!(her-! ist
. 1', ,'1 J' opt
t\'ne-nltalifr'er s/Jcci{1er-G]lIa liher-lis t
. I' '1. . J' 0IJI

(3.5.2.1) struct-declarator-list·
slnfi't-dec!arator
slruer-declarator-list , strller-declarator

(3.5.2.1) struet-declarator:
declarator
declaratoropl constant-expression

(3.5.2.2) ellum-specifier:
enurn identifier {enumerator-list}, Opl
enurn identifier

A.2.2 AMERICAN NATIO'\iAL STANDARD X3.159·1989 A.2.2

Appendixes

(3.5.2.2) enumerator-list:
enumerator
enumerator-list , enumerator

185 Language Syntax Summary

(3.5.2.2) enumerator:
enumeration-constant
enumeration-constant

(3.5.3) type-qualifier:
co:nst
volatile

canstant-e.\pressi0/1

(3.5.4) declarator:
pointer direct-declarator

opt

(3.5.4) direct-declarator:
identifier
(declarator)

direct-declarator constant-e.rpression
opt

direct-declarator parameter-type-list)
direct-declarator identifier-list)

opt

(3.5.4) pointer:
* tVTle-qualifier-list

. J . opt
* tvpe-qualifier-Iist pointer. opt

(3.5.4) type-qual(fier-list:
type-qualifier
type-qualifier-Iist type-qualifier

(3.5.4) parameter-type-list:
parumeter-Iist
parameter-list ,

(3.5.4) parameter-list:
parameter-declaration
parameter-list , parameter-declaration

(3.5.4) parameter-declaration:
dei'laratioi1-spei'ifiers
declaration-specifiers

declarator
ahstract-declarator

opt

(3.5.4) identifier-list:
identifier
identifier-list , identifier

(3.5.5) type-name:
spec ifier-qualifier-Iist ahstrGi't-dei'larator

opt

(3.5.5) abstract-declarator:
pointer
pointer direct-abstract-declaratoropt

(3.5.5) direct-abstract-declarator:
(ahstract-declarator)

dire('t-ahstract-declarator constant-expression]
opt Opl

direet-abstract-declarator parameter-t\'pe-list)
opt - opt

(3.5.6) typedef-name:
ident(fier

A.2.2 AMERICAN NATIONAL STANDARD X3.159-1%9 A.2.2

Appendixes 186 Language Syntax Summary

0.5.7) initia/i:er:
assignment-e.\]Jression
(initiali:er-/ist }
{ initiali:er-list ,

(3.5.7) initia/i:er-/ist:
initiali::er
initiali::er-list , initiali::er

A.2.3 Statements

(3.6) statement:
laheled-statement
compound-statement
expression-statement
selection-statemen t
iteration-statement
jump-statement

(3.6.1) laheled-statement:
identifier : statement
case constant-expression
default : statement

staiemen!

(3.6.2) compound-statement:
{declaration-list statement-list

opt opt

(3.6.2) declaration-list:
declaration
declaration-list declaration

(3.6.2) statement-list:
statement
statement-list statement

expression) statement
opt

statement
expression
expression

opt

(3.6.6)

(3.6.5)

(3.6.3) expression-statement:
expression

opt

(3.6.4) selection-statement:
if (expression) statement
if (e.\pression) statement else statement
switch (expression) statement

iteration-statemen t:
while (expression)
do statement while (
for (expressionopt

jump-statement:
goto identifier
continue ;
break ;
return expression

opt

A.2.2 AMERICAN NATIONAL STANDARD X:l!5l)-1l)8lJ /\.2.3

Appendixes

A.2.4 External Definitions

187 Language Syntax Summary

(3.7) translation-unit:

external-declaration
translatirm-unit external-declaration

(3.7) external-declaration:

jUl1ction-definition
declaration

(3.7.1) junction-definition:
declaration-specifiers declarator declaration-list compound-statement. opt opt

A.3 Preprocessing Directives

(3.8) preprocessing-file:

groupopr

(3.8) group:
group-part
group group-part

(3.8) group-part:
pp-tokens new-line

opt
if-section
cOl1trol-line

(3.8.1) irsection:
iF-,I~roup elif-r::roul)S else-r::roUI) endiUine
J. . , opt ' opt .

(3.8.1) if-group:

#
#
#

if
ifdef
ifndef

constant-expression new-line "rou/)" . opt
idellfiher new-line "rou/)./' "opt
idelllifier new-line "roup. "opt

(3.8. I) e/if-groups:
elij~group

elij~groups elif-group

(3.8. I) elif-group:

,~lif ('onsta /It-e.\jJress ion new-line grouPopl

(3.8.1) else-group:

12lse new-line grouPllpr

(3.8.1) endij~line :

Emdif new-line

(3.8.2)
(3.8.3)
(3.8.3)
(3.8.3)
(3.8.4)
(3.8.5)
(3.8.6)
(3.8.7)

(3.8.3)

control-line:
include
define
define
\lndef
line
E!rrOr
pragma
#

Iparerl:

pp-tokens new-line
identifier replacement-list new-line
idelllifier I/)aren identifier-list. . opt
idemifier new-line
pp-tokens new-line
pp-tokens new-lineIIpt
pp-tokens new-line

IIpt
nfw-Iine

replacement-list new-line

A.2.4

the left-parenthesis character without preceding white space

Al\,.1ERICAN NATIONAL STANDARD X~.159-19g9 A.3

Appendixes

(3.8.3) replacemcnt-list.·

pp-tokcn.1
opt

(3.8) pp-tokcns:

prcprocessing -tokeII

pp-tokens prcproccssing-token

(3.8) ncw-linc:

the new-line character

188 Language Syntax SUll1lnarV

A.3 AMERICA1\ NATIONAL STANDARD X,. 159-19X9 A ..~

Appendixes

B. Sequence lPoints

189 Sequence Points

The following are the sequence points described in 2.1.2.3.

• The call to a function, after the arguments have been evaluated (3.3.2.2).

• The end of the first operand of the following operators: logical AND && (3.3.13); logical OR I I
(3.3.14); conditional? (3.3.15); comma I (3.3.17).

• The end of a full expression: an initializer (3.5.7); the expression in an expression statement (3.6.3);
the controlling expression of a selection statement (if or switch) (3.6.4); the controlling
expression of a 'ifhile or do statement (3.6.5); each of the three expressions of a for statement
(3.6.5.3); the expression in a return statement (3.6.6.4).

B. AMERICAN NATIONAL STANDARD X3.159-1lJR9 B.

Appendixes

c. Library Summary
Col Errors <errno . h>

EDOM
ERANGE
errno

190 Library Summary

Co2 Common Definitions <stddef . h>

NULL
offsetof (type, memher-designator)
ptrdiff_t
size t
wchar t

Co3 Diagnostics <assert. h>

NDEBUG
void assert (int expression);

C.4 Character Handling <ctype . h>

int isalnum(int c);
int isalpha(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
int tolower(int c);
int toupper(int c);

C.S Localization <locale 0 h>

LC ALL
LC COLLATE
LC CTYPE
LC MONETARY
LC NUMERIC
LC TIME
NULL
struct lconv
char *setlocale(int category, const char *locale);
struct lconv *localeconv(void);

c. AMERICAN NATIONAL STANDARD X3.I59-1989 c.s

Appendixes

C.6 Mathematics <math. h>

HUGE VAL

191 Library Summary

-
double acos(double x);
double asin(double x);
double atan(double x);
double atan2(double y, double x);
double cos(double x);
double sin(double x);
double tan(double x);
double cosh(double x);
double sinh(double x);
double tanh(double x);
double exp(double x);
double frexp (double value, int *eXF');
double ldexp(double x, int exp);
double log(double x);
double log10(double x);
double :modf (double value, double *iptr);
double pow(double x, double y);
double sqrt{double x);
double ceil(double x);
double fabs{double x);
double floor(double x);
double frnod{double x, double y);

C.7 Nonlocal Jrumps <setjmp. h>

jrnp_buf
int setjrnp{jrnp_buf env);
void lOlllgjrnp (jrnp_ buf env, int val);

C.8 Signal Handling <signal. h>

sig_atomic_t
SIG DFL
SIG ERR
SIG IGN
SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM
void (*ldgnal (int sig, void (*func) (int») (int) ;
int raise(int sig);

c.s AMERICAN NATIONAL STANDARD X3.159-1989 c.s

Appendixes 192 Library Summary

C.9 Variable Arguments <stdarg . h>

va list
void va_start (va_list ap, parmN);
t\'pe va_arg(va_list ap, type);

void va_end(va_list ap);

C.1O Input/Output <stdio. h>

IOFBF
IOLBF
IONBF

BUFSIZ
EOF
FILE
FILENAME MAX
FOPEN MAX
fpos_t
L_tmpnam
NULL
SEEK CUR
SEEK END
SEEK SET
size t

stderr
stdin
stdout
TMP MAX
int remove(const char *filename);
int rename(const char *old, const char *new);
FILE *tmpfile(void);
char *tmpnam(char *s);
int fclose(FILE *stream);
int fflush(FILE *stream);
FILE *fopen(const char *filename, const char *mode);
FILE *freopen(const char *filename, const char *mode,

FILE *stream) ;
void setbuf(FILE *stream, char *buf);
int setvbuf(FILE *stream, char *buf, int mode, size t size);
int fprintf(FILE *stream, const char *format , " .);
int fscanf(FILE *stream, const char *format , ...);
int printf(const char *format ,);
int scanf(const char * format ,);
int sprintf(char *s, const char * format , ...);
int sscanf(const char *s, const char * format , " .);
int vfprintf(FILE *stream, const char *format , va_list arg);
int vprintf(const char *format, va_list arg);
int vsprintf(char *s, const char *format , va_list arg);
int fgetc(FILE *stream);
char *fgets(char *s, int n, FILE *stream);
int fputc(int c, FILE *stream);
int fputs(const char *s, FILE *stream);
int getc(FILE *stream);
int getchar(void);
char *gets(char *s);
int putc(int c, FILE *stream);

C.9 AMERICAN NATIONAL STA!\DARD X3.15'i-I'iX'i C.IO

Appendixes 193 Library Summary

C.IO

int putchar (int c);
int puts (const char *s);
int unge1:c (int c, FILE *stream);
size_t fl:"ead(void *ptr, size_t size, size t nmemb,

FILE *stream);
size_t fl"rite (const void *ptr, size_'t size, size t nmemb,

FILE *stream);
int fgetpos(FILE *stream, fpos_t *pos);
int fseek(FILE *stream, long int offset, int whence);
int fsetpos (FILE *stream, const fpos._t *pos);
long int ftell(FILE *stream);
void rewind (FILE *stream) ;
void clenrerr(FILE *stream);
int feof(FILE *stream);
int ferr()r (FILE *stream);
void per]~or(const char *s);

AMERICAN NATIONAL STANDARD X3159-19g9 C.IO

Appendixes

C.ll General Utilities <stdlib . h>

194 Library Summary

C.IO

EXIT FAILURE
EXIT SUCCESS
MB CUR MAX
NULL
RAND MAX
div t
ldiv t
size t
wchar t
double atof(const char *nptr);
int atoi(const char *nptr);
long int atol(const char *nptr);
double strtod(const char *nptr, char **endptr);
long int strtol(const char *nptr, char **endptr, int base);
unsigned long int strtoul(const char *nptr, char **endptr,

int base);
int rand (void) ;
void srand(unsigned int seed);
void *calloc(size_t nmemb, size t size);
void free(void *ptr);
void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
void abort(void);
int atexit(void (*func) (void»;
void exit (int status);
char *getenv(const char *name);
int system(const char *string);
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar) (const void *, const void *»;

void qsort(void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *»;

int abs (int j);

div_t div(int numer, int denom);
long int labs(long int j);
ldiv_t ldiv(long int numer, long int denom);
int mblen(const char *s, size_t n);
int mbtowc(wchar_t *pwc, const char *s, size_t n);
int wctomb(char *s, wchar_t wchar);
size_t mbstowcs(wchar_t *pwcs, const char *s, size t n);
size t wcstombs(char *s, const wchar t *pwcs, size t n);

AMERICA", NATIONAL STA"lDARD X3.159-1989 C.ll

Appendixes

C.12 String Handling <string. h>

195 Library Summary

NULL
size t
void *me!mcpy(void *sl, const void *1;2, size_t n);
void *memunove (void *s1, const void 'ts2, size t n);
char *strcpy(char *sl, const char *s2);
char *st~rncpy(char *s1, const char 'ts2, size t n);
char *strcat(char *s1, const char *s2);
char *st~rncat (char *sl, const char 'ts2, size_t n);
int memc:mp(const void *sl, const void *s2, size_t n);
int strc:mp(const char *sl, const char *s2);
int strc:011 (const char *sl, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);
size_t strxfrm(char *sl, const char *s2, size_t n);
void *me!mchr (const void *s, int c, size_t n);
char *strchr(const char *s, int c);
size_t strcspn(const char *sl, const char *s2);
char *st~rpbrk(const char *sl, const char *s2);
char *strrchr(const char *s, int c);
size_t strspn(const char *sl, const char *s2);
char *strstr(const char *s1, const char *s2);
char *strtok(char *sl, const char *s2);
void *me!mset (void *s, int c, size t n);
char *st~rerror (int errnum);
size_t strlen(const char *s);

C.13 Date and Time <time. h>

CLOCKS PER SEC
NULL
clock t
time t
size t
struct t:m
clock_t clock(void);
double clifftime (time_t time1, time 1: timeD);
time_t n~time(struct tm *timeptr);
time_t t:ime (time_t *timer);
char *asctime(const struct tm *timeptr);
char *ct~ime (const time_t *timer);
struct t~m *gmtime (const time_t *timlar);
struct t~m *localtime (const time_t *1:imer);
size_t strftime (char *s, size_t max:size,

ccmst char *format, const struct tm *timeptr);

Cll A'vIERICA'\ "iATlONAL STANDARD X.1.159-19R9 cn

Appendixes

D. Implementation Limits

196 Implementation Limits

The contents of a header <limits. h> are given below. in alphabetic order. The mmimum
magnitudes shown shall be replaced by implementation-defined magnitudes with the same sign. The
values shall all be constant expressions suitable for use in #if preprocessing directives. The
components are described further in 2.2.4.2.1.

#define CHAR BIT
#define CHAR MAX
#define CHAR MIN
#define INT MAX
#define INT MIN
#define LONG MAX
#define LONG MIN
#define MB LEN MAX
#define SCHAR MAX
#define SCHAR MIN
#define SHRT MAX
#define SHRT MIN
#define UCHAR MAX
#define UINT MAX
#define ULONG MAX
#define USHRT MAX

8
UCHAR MAX or SCHAR MAX

o or SCHAR MIN
+32767
-32767

+2147483647
-2147483647

1

+127
-127

+32767
-32767

255
65535

4294967295
65535

The contents of a header <float. h> are given below. The value of FLT_RADIX shall be a
constant expression suitable for use in #if preprocessing directives. Values that need not be constant
expressions shall be supplied for all other components. The components are described further in
2.2.4.2.2.

#define FLT_ROUNDS

The values given in the following list shall be replaced by implementation-defined expressions that
shall be equal or greater in magnitude (absolute value) to those shown, with the same sign:

#define DBL DIG 10
#define DBL MANT DIG- -
#define DBL MAX 10 EXP +37- --
#define DBL MAX EXP
#define DBL MIN 10 EXP -37

- --
#define DBL MIN EXP
#define FLT DIG 6
#define FLT MANT DIG- -
#define FLT MAX 10 EXP +37- --
#define FLT MAX EXP- -
#define FLT MIN 10 EXP -37- --
#define FLT MIN EXP- -
#define FLT RADIX 2
#define LDBL DIG 10
#define LDBL MANT DIG- -
#define LDBL MAX 10 EXP +37- --
#define LDBL MAX EXP- -
#define LDBL MIN 10 EXP -37- --
#define LDBL MIN EXP

The values given in the following list shall be replaced by implementation-defined expressions that
shall be equal to or greater than those shown:

D. AMERICAN NATIONAL STANDARD X31)9-19~9 D.

Appendixes

#define! DBL MAX
#define! FLT MAX
#define! LDBL MAX

197

lE+3'7
lE+3'7
lE+3'7

Implementation Limits

The values given in the following list shall be replaced by implementation-defined expressions that
shall be equal to or less than those shown:

#definE! DBL EPSILON
#definE! DBL MIN
#definE! FLT EPSILON
#definE! FLT MIN
#definE! LDBL EPSILON

#definE! LDBL MIN

lE-9
lE-3'7

lE-S
lE-37

lE-9
lE-37

D. AMERICAN NATIO;-../AL STANDARD X3.159-1989 D.

Appendixes

E. Common Warnings

19X Common Warnings

An implementation may generate warnings in many situations, none of which is specified as part of
the standard, The following are a few of the more common situations.

• A block with initialization of an object that has automatic storage duration is jumped into (3.1.2.4).

• An integer character constant includes more than one character or a \vide character constant includes
more than one multibyte character (3.1.3.4).

• The characters /* are found in a comment (3,1.7).

• An implicit narrowing conversion is encountered. such as the assignment of a long int or a
double to an into or a pointer to void to a pointer to any type other than a character type (3.2).

• An "unordered" binary operator (not comma, && or I I) contains a side-effect to an lvalue in one
operand, and a side-effect to. or an access to the value of. the identical Ivaluc in the other operand
(3.3),

• A function is called but no prototype has been supplied (3.3.2.2),

• The arguments in a function call do not agrec in number and type with those of the parameters in a
function definition that is not a prototype (3.3.2.2).

• An object is defined but not used (3.5).

• A value is given to an object of an enumeration type other than by assignmcnt of an enumeration
constant that is a member of that type. or an enumeration variable thai has the same Iype. or the
value of a function that returns the same enumenltion type (3.5.2,2),

• An aggregate has a partly bracketed initialization (3.5,7),

• A statement cannot be reached (3.6).

• A statement with no apparent effect is encountered (3.6).

• A constant expression is used as the controlling expression of a selection statement (3,6.4).

• A function has return statements with and without expressions (3.6.6.4).

An incorreclly formed preprocessing group is encountered while skipping a preprocessing group
(3.8, I),

• An unrecognized #pragma directive is encountered (3.8.6).

E. r\MERtCAN NATIO"iAL sTANDARD \.1.\ S"J\l)X') E.

Appendixes

F. Portability Issues

199 Portability Issues

This appendix collects some infonnation about portability that appears in the standard.

F.l Unspecified Behavior

The following are unspecified:

• The manner and timing of static initialization (2.1.2).

• The behavior if a printable character is written when the active position is at the final position of a
line (2.2.2).

• The behavior if a backspace character is written when the active position is at the initial position of
a line (2.2.2).

• The behavior if a horizontal tab character is written when the active position is at or past the last
defined horizontal tabulation position (2.2.2).

• The behavior if a vertical tab character is written when the active position is at or past the last
defined vertical tabulation position (2.2.2).

• The representations of floating types (3.1.2.5).

• The order in which expressions are evaluated - in any order confonning to the precedence rules,
even in the preSt~nce of parentheses (3.3).

• The order in which side effects take place (3.3).

• The order in which the function designator and the arguments in a function call are evaluated
(3.3.2.2).

• The alignment of the addressable storage unit allocated to hold a bit-field (3.5.2.1).

• The layout of storage for parameters (3.7.1).

• The order in which # and ## operations are evaluated during macro substitution (3.8.3.3).

• Whether errno is a macro or an external identifier (4.1.3).

• Whether setjmp is a macro or an external identifier (4.6.1.1).

• Whether va_end is a macro or an external identifier (4.8.1.3).

• The value of the file position indicator after a successful call to the ungete function for a text
stream, until all pushed-back characters are read or discarded (4.9.7.11).

• The details of the value stored by the fgetpos function on success (4.9.9.1).

• The details of the value returned by the fte11 function for a text stream on success (4.9.9.4).

• The order and contiguity of storage allocated by the e.1.110e, ma11oe, and rea110e functions
(4.10.3).

• Which of two elements that compare as equal is returned by the bseareh function (4.10.5.1).

• The order in an array sorted by the qsort function of two elements that compare as equal
(4.10.5.2).

• The encoding of the calendar time returned by the time function (4.12.2.3).

F. AMERICAN NATIONAL STANDARD X3.159-1989 F.I

Appendixes

F.2 Undefined Behavior

200 Portahility Issues

The behavior in the following circumstances is undefined:

• A nonempty source file does not end in a new-line character, ends in new-line character
immediately preceded by a backslash character, or ends in a partial preprocessing token or comment
(2.1. I.2).

• A character not in the required character set is encountered in a source file, except in a
preprocessing token that is never converted to a token. a character constant. a string literal. a header
name, or a comment (2.2.1).

• A comment, string literal. character constant, or header name contains an invalid multibyte character
or does not begin and end in the initial shift state (2.2.1.2).

• An unmatched' or " character is encountered on a logical source line during tokenization (3.1).

• The same identifier is used more than once as a label in the same function (3.1.2.1).

• An identifier is used that is not visible in the current scope (3.1.2.1).

Identifiers that are intended to denote the same entity differ in a character beyond the minimal
significant characters (3.1.2).

• The same identifier has both internal and external linkage in the same translation unit (3.1.2.2).

• The value stored in a pointer that referred to an object with automatic storage duration is used
(3.1.2.4).

• Two declarations of the same object or function specify types that are not compatible (3.1.2.6).

• An unspecified escape sequence is encountered in a character constant or a string literal (3.1.3.4).

• An attempt is made to modify a string literal of either form (3.1.4).

• A character string literal token is adjacent to a wide string literal token (3.1.4).

• The characters' . \. ", or /* are encountered between the < and> delimiters or the characters'
\. or /* are encountered between the" delimiters in the two forms of a header name preprocessing
token (3.1.7).

• An arithmetic conversion produces a result that cannot be represented in the space provided (3.2.1).

• An Ivalue with an incomplete type is used in a context that requires the value of the designated
object (3.2.2.1).

• The value of a void expression is used or an implicit conversion (except to void) is applied to a
void expression (3.2.2.2).

• An object is modified more than once. or is modified and accessed other than to determine the new
value, between two sequence points (3.3).

• An arithmetic operation is invalid (such as division or modulus by 0) or produces a result that
cannot be represented in the space provided (such as overflow or underflow) (3.3).

• An object has its stored value accessed by an Ivalue that does not have one of the following types:
the declared type of the object. a qualified version of the declared type of the object, the signed or
unsigned type corresponding to the declared type of the object. the signed or unsigned type
corresponding to a qualified version of the declared type of the object, an aggregate or union type
that (recursively) includes one of the aforementioned types among its members, or a character type
(3.3).

• An argument to a function is a void expression (3.3.2.2).

• For a function call without a function prototype. the number of arguments does not agree with the
number of parameters (3.3.2.2).

F.2 AMERICAN NATIONAL STANDARD X3.15'!-19X9 F.2

Appendixes 201 Portability Issues

• For a function call without a function prototype, if the function is defined without a function
prototype, and the types of the arguments after promotion do not agree with those of the parameters
after promotion (3.3.2.2).

• If a function i, called with a function prototype and the function is not deflned with a compatible
type (3.3.2.2).

• A function that accepts a variable number of arguments is called without a function prototype that
ends with an ellipsis (3.3.2.2).

• An invalid array reference, null pointer reference, or reference to an object declared with automatic
storage duration in a terminated block occurs (3.3.3.2).

• A pointer to a function is converted to point to a function of a different type and used to call a
function of a type not compatible with the original type (3.3.4).

• A pointer to a function is converted to a pointer to an object or a pointer to an object is converted
to a pointer to a function (3.3.4).

• A pointer is converted to other than an integral or pointer type (3.3.4).

• A pointer that does not behave like a pointer to an element of an array object is added to or
subtracted from (3.3.6).

• Pointers that do not behave as if they point to the same array object are subtracted (3.3.6).

• An expression is shifted by a negative number or by an amount greater than or equal to the width in
bits of the expression being shifted (3.3.7).

• Pointers are compared using a relational operator that do not point to the same aggregate or union
(3.3.8).

• An object is assigned to an overlapping object (3.3.16.1).

• An identifier for an object is declared with no linkage and the type of the object is incomplete after
its declarator, or after its in it-declarator if it has an initializer (3.5).

• A function is declared at block scope with a storage-class specifier other than extern (3.5.1).

• A structure or lInion is defined as containing only unnamed members (3.5.2.1).

• A bit-field is d,~clared with a type other than int, signed into or unsigned int 13.5.2.1).

• An attempt is made to modify an object with const-qualified type by means of an Ivalue with non­
const-qualified type (3.5.3).

• An attempt is made to refer to an object with volatile-qualified type by means of an lvalue with
non-volatile-qualified type (3.5.3).

The value of an uninitialized object that has automatic storage duration IS used before a value IS

assigned (3.5.7).

An object with aggregate or union type with static storage duration has a non-brace-enclosed
initializer, or an object with aggregate or union type with automatic storage duration has either a
single expression initializer with a type other than that of the object or a non-brace-enclosed
initializer (3.5.7).

• The value of a function is used, but no value was returned (3.6.6.4).

• An identifier with external linkage is used but there does not exist exactly one external definition in
the program for the identifier (3.7).

• A function that accepts a variable number of arguments is defined without a parameter type list that
ends with the ellipsis notation (3.7.1).

F.2 AMERICAN NATIONAL SIANOARO X3.15'J-I'!X'! F.2

Appendixes 202 Portability Issues

• An identifier for an object with internal linkage and an incomplete type is declared with a tentative
definition (3.7.2) .

• The token defined is generated during the expansion of a #if or #elif preprocessing directive
(3.8.1).

• The #include preprocessing directive that results after expansion does not match one of the two
header name forms (3.8.2).

• A macro argument consists of no preprocessing tokens (3.8.3).

• There are sequences of preprocessing tokens within the list of macro arguments that would
otherwise act as preprocessing directive lines (3.8.3).

• The result of the preprocessing operator I is not a valid character string literal (3.8.3.2).

• The result of the preprocessing concatenation operator II is not a valid preprocessing token
(3.8.3.3).

The Iline preprocessing directive that results after expansion does not match one of the two
well-defined forms (3.8.4).

• One of the following identifiers is the subject of a Idefine or #undef preprocessing directive:
defined. LINE__, __FILE__, __DATE__, __TIME__, or STDC (3.8.8).

• An attempt is made to copy an object to an overlapping object by use of a library function other
than memmove (section 4).

• The effect if the program redefines a reserved external identifier (4.1.2).

• The effect if a standard header is included within an external definition; is included for the first time
after the first reference to any of the functions or objects it declares, or to any of the types or
macros it defines: or is included while a macro is defined with a name the same as a keyword
(4.1.2).

• A macro definition of errno is suppressed to obtain access to an actual object (4.1.3).

• The parameter member-designator of an offsetof macro is an invalid right operand of the
operator for the type parameter or designates bit-field member of a structure (4.1.5).

• A library function argument has an invalid value, unless the behavior is specified explicitly (4.1.6).

• A library function that accepts a variable number of arguments is not declared (4.1.6).

• The macro definition of assert is suppressed to obtain access to an actual function (4.2).

• The argument to a character handling function is out of the domain (4.3).

• A macro definition of setjmp is suppressed to obtain access to an actual function (4.6).

• An invocation of the set jmp macro occurs in a context other than as the controlling expression in
a selection or iteration statement, or in a comparison with an integral constant expression (possibly
as implied by the unary ! operator) as the controlling expression of a selection or iteration
statement, or as an expression statement (possibly cast to void) (4.6.1.1).

• An object of automatic storage class that does not have volatile-qualified type has been changed
between a setjrnp invocation and a longjrnp call and then has its value accessed (4.6.2.1).

• The longjmp function is invoked from a nested signal routine (4.6.2.1).

• A signal occurs other than as the result of calling the abort or raise function, and the signal
handler calls any function in the standard library other than the signal function itself or refers to
any object with static storage duration other than by assigning a value to a static storage duration
variable of type volatile sig_atomic_t (4.7.1.1).

F.2 AMERICAN NATIONAL STANDARD X3.159-19H9 F.2

Appendixes 203 Portability Issues

• The value of errno is referred to after a signal occurs other than as the result of calling the
abort or raise function and the corresponding signal handler calls the signal function such
that it returns the value SIG_ERR (4.7.1.1).

• The macro va_.arg is invoked with the parameter ap that was passed to a function that invoked
the macro va_ cLrg with the same parameter (4.8).

• A macro definition of va_start, va_ arg, or va_end or a combination thereof is suppressed to
obtain access to an actual function (4.8.1).

• The parameter parmN of a va_start macro is declared with the register storage class, or
with a function or array type, or with a type that is not compatible with the type that results after
application of the default argument promotions (4.8.1.1).

• There is no actual next argument for a va_ arg macro invocation (4.8.1.2).

• The type of the actual next argument in a variable argument list disagrees with the type specified by
the va_arg macro (4.8.1.2).

• The va end macro is invoked without a corresponding invocation of the va start macro
(4.8.1.3).

• A return occurs from a function with a variable argument list initialized by the va_start macro
before the va_ Elnd macro is invoked (4.8.1.3).

• The stream for ::he fflush function points to an input stream or to an update stream in which the
most recent operation was input (4.9.5.2).

• An output operation on an update stream is followed by an input operation without an intervening
call to the fflush function or a file positioning function, or an input operation on an update
stream is followed by an output operation without an intervening call to a file positioning function
(4.9.5.3).

• The format for the fprintf or fscanf function does not match the argument list (4.9.6).

• An invalid conversion specification is found in the format for the fprintf or fscanf function
(4.9.6).

• A %% conversion specification for the fprintf or fscanf function contains characters between
the pair of % characters (4.9.6).

• A conversion specification for the fprintf function contains an h or 1 with a conversion specifier
other than d, i, n, 0, u, x, or X, or an L with a conversion specifier other than e, E, f, g, or G
(4.9.6.1).

• A conversion specification for the fprintf function contains a # flag with a conversion specifier
other than 0, x, X, e, E, f, g, or G (4.9.6.1).

• A conversion specification for the fprintf function contains a 0 flag with a conversion specifier
other than d, i, 0, u, x, X, e, E, f, g, or G (4.9.6.\).

• An aggregate or union, or a pointer to an aggregate or union is an argument to the fprintf
function, except for the conversion specifiers %s (for an array of character type) or %p (for a pointer
to void) (4.9.6.1).

A single conversion by the fprintf function produces more than 509 characters of output
(4.9.6.1).

• A conversion specification for the fscanf function contains an h or 1 with a conversion specifier
other than d, i, n, 0, u, or x, or an L with a conversion specifier other than e, f, or g (4.9.6.2).

A pointer value printed by %p conversion by the fprintf function during a previous program
execution is the argument for %p conversion by the fscanf function (4.9.6.2).

F.2 AMERICAN NATIONAL STANDARD X3.159-1989 F.2

Appendixes 204 Portability Issues

• The result of a conversion by the fseanf function cannot be represented in the space provided, or
the receiving object does not have an appropriate type (4,9.6.2).

• The result of converting a string to a number by the atof, atoi, or atol function cannot be
represented (4, IOJ).

• The value of a pointer that refers to space deallocated by a call to the free or realloe function
is referred to (4,10.3).

• The pointer argument to the free or realloe function does not match a pointer earlier returned
by ealloe, malloe, or realloe, or the object pointed to has been deallocated by a call to
free or realloe (4.10,3),

• A program executes more than one call to the exit function (4.10.4.3).

• The result of an integer arithmetic function (abs, div, labs, or Idiv) cannot be represented
(4.10.6),

• The shift states for the mblen, mbtowe, and wetomb functions are not explicitly reset to the
initial state when the LC_CTYPE category of the current locale is changed (4.10.7).

• An array written to by a copying or concatenation function is too small (4,11.2, 4.11.3).

• An invalid conversion specification is found in the format for the strftime function (4.12.3,5),

F.3 Implementation-Defined Behavior

Each implementation shall document its behavior in each of the areas listed in this section. The
following are implementation-defined:

F.3.1 Translation

• How a diagnostic is identified (2. L 1,3).

F.3.2 Environment

• The semantics of the arguments to main (2.1,2.2.1),

• What constitutes an interactive device (2.1.2,3),

F.3.3 Identifiers

• The number of significant initial characters (beyond 31) in an identifier without external linkage
(3.1.2).

• The number of significant initial characters (beyond 6) in an identifier with external linkage (3, I,2),

• Whether case distinctions are significant in an identifier with external linkage (3.1,2),

F.3.4 Characters

• The members of the source and execution character sets, except as explicitly specified In the
standard (2.2.1).

• The shift states used for the encoding of multibyte characters (2.2, I ,2),

• The number of bits in a character in the execution character set (2.2.4.2.1).

• The mapping of members of the source character set (in character constants and string literals) to
members of the execution character set (3.1.3.4).

• The value of an integer character constant that contains a character or escape sequence not
represented in the basic execution character set or the extended character set for a wide character
constant (3,1,3.4),

• The value of an integer character constant that contains more than one character or a wide character
constant that contains more than one multibyte character (3,1.3.4).

F.2 AMERICAN NATIONAL STANDARD X3.159-1989 F.3.4

Appendixes 205 Portability Issues

• The current locale used to convert multibyte characters into corresponding wide characters (codes)
for a wide character constant (3.1.3.4).

• Whether a "plain" char has the same range of values as signed char or unsigned char
(3.2.1.1).

F.3.5 Integers

• The representations and sets of values of the various types of integers (3.1.2.5).

• The result of converting an integer to a shorter signed integer, or the result of converting an
unsigned integer to a signed integer of equal length, if the value ,~annot be represented (3.2.1.2).

• The results of bitwise operations on signed integers (3.3).

• The sign of the remainder on integer division (3.3.5).

• The result of a right shift of a negative-valued signed integral type (3.3.7).

F.3.6 Floating: Point

• The representations and sets of values of the various types of floating-point numbers (3.1.2.5).

• The direction of truncation when an integral number is converted to a floating-point number that
cannot exactly represent the original value (3.2.1.3).

• The direction of truncation or rounding when a floating-point number is converted to a narrower
floating-point number (3.2.1.4).

F.3.7 Arrays and Pointers

The type of integer required to hold the maximum size of an array - that is, the type of the
sizeof oper2itor, size_ t (3.3.3.4, 4.1.1).

• The result of casting a pointer to an integer or vice versa (3.3.4).

• The type of integer required to hold the difference between two pointers to elements of the same
array, ptrdiH_t (3.3.6,4.1.1).

F.3.8 Registers

• The extent to which objects can actually be placed in registers by use of the register storage­
class specifier (3.5.1).

F.3.9 StructUl'es, Unions, Enumerations, and Bit-Fields

• A member of a union object is accessed using a member of a different type (3.3.2.3).

• The padding and alignment of members of structures (3.5.2.1). This should present no problem
unless binary data written by one implementation are read by another.

• Whether a "plain" int bit-field is treated as a signed int bit-field or as an unsigned int
bit-field (3.5.2.1).

• The order of allocation of bit-fields within a unit (3.5.2.1).

• Whether a bit-field can straddle a storage-unit boundary (3.5.2.1).

• The integer type chosen to represent the values of an enumeration type (3.5.2.2).

F.3.4 AMERICA"J NATIONAL STANDARD X3.15S·-J989 FJ.9

Appendixes

F.3.10 Qualifiers

206 Portability bsues

• What constitutes an access to an object that has volatile-qualified type (3.5.5.3).

F.3.11 Declarators

• The maximum number of declarators that may modify an arithmetic, structure. or union type (3.5.4).

F.3.12 Statements

• The maximum number of case values in a switch statement (3.6.4.2).

F.3.13 Preprocessing Directives

Whether the value of a single-character character constant 111 a constant expression that controls

conditional inclusion matches the value of the same character constant in the execution character
set. Whether such a character constant may have a negative value (l.tI.I).

• The method for locating includable source files (3.tI.2).

• The support of quoted names for includable source flIes (3X2).

• The mapping of source file character sequences (3.8.2).

• The behavior on each recognized #pragma directive (3.8.6).

• The definitions for DATE

are not available (3.8.8).

F.3.14 Library Functions

and TIME when respectively. the date and time of translation

• The null pointer constant to which the macro NULL expands (4.1.5).

• The diagnostic printed by and the termination behavior of the assert function (4.2).

• The sets of characters tested for by the isalnum. isalpha. iscntrl. islower. isprint.
and isupper functions (4.3.1).

• The values returned by the mathematics functions on domain errors (4.5. I).

Whether the mathematics functions set the integer expression errno to the value of the macro

ERANGE on underflow range errors (4.5.1).

• Whether a domain error occurs or zero is returned when the fmod function has a second argument
of zero (4.5.6.4).

• The set of signals for the signal function (4.7.1.1).

• The semantics for each signal recognized by the signal function (4.7.1.1).

• The default handling and the handling at program startup for each signal recognized by the signal
function (4.7.1.1).

If the equivalent of signal (sig, SIG_DFL); is not executed pnor to the call of a signal
handler. the blocking of the signal that is performed (4.7.1.1).

• Whether the default handling is reset if the SIGILL signal is received by a handler specified to the
signal function (4.7.1.1).

• Whether the last line of a text stream requires a terminating new-line character (4.9.2).

• Whether space characters that are written out to a text stream immediately before a new-line

character appear when read in (4.9.2).

• The number of null characters that may be appended to data written to a binary stream (4.9.2).

• Whether the file position indicator of an append mode stream is initially positioned at the beginning
or end of the file (4.9.3).

F3.IO A\1ERICA:\ NATIONAL Sll\:\DARD X.'; 15')-1 LJKLJ F.314

Appendixes 207 Portability Issues

o Whether a write on a text stream causes the associated tile to be truncated beyond that point (4.9.3).

o The characteristics of file buffering (4.9.3).

o Whether a zero·length file actually exists (4.9.3).

o The rules for composing valid file names (4.lJ.3).

• Whether the same file can be open multiple times (4.9.3).

• The effect of the remove function on an open file (4.9.4.1).

• The effect if a file with the new name exists prior to a call to the rename function (4.9.4.2).

• The output for %p conversion in the fprintf function (4.9.6.1).

• The input for %p conversion in the fseanf function (4.9.6.2).

• The interpretation of a - character that is neither the first nor the last character in the scanlist for
%[conversionm the fscanf function (4.9.6.2).

• The value to which the macro errno is set by the fgetpos or ftell function on failure
(4.9.9.1,4.9.9.4).

• The messages generated by the perror function (4.9.10.4).

• The behavior of the ealloc, malloe, or realloc function if the size requested is zero (4.10.3).

• The behavior of the abort function with regard to open and temporary files (4.10.4.1).

o The status returned by the exit function if the value of the argument is other than zero,
EXIT_SUCCESS, or EXIT_FAILURE (4.10.4.3).

The set of environment names and the method for altering the environment list used by the
getenv function (4.10.4.4).

• The contents and mode of execution of the string by the system function (4.10.4.5).

o The contents of the enrol' message strings returned by the strer:r:or function (4.11.6.2).

• The local time zone and Daylight Saving Time (4.12.1).

• The era for the clock function (4.12.2.1).

FA Locale-Sp(~cificBehavior

The following characteristics of a hosted environment are locale-specific:

o The content of the execution character set, in addition to the required members (2.2.1).

• The direction of printing (2.2.2).

• The decimal-point character (4.1.1).

o The implementation-defined aspects of character testing and case mapping functions (4.3).

• The collation sequence of the execution character set (4.11.4.4).

• The formats for time and date (4.12.3.5).

F.3.14 AMERICAN NATIONAL STANDA.RD X3.159-1989 F.4

Appendixes

F.5 Common Extensions

20X Portahility Is,ues

The following extensions are widely used in many systems, hut are not portahle tll all

implementations, The inclusion of any extension that may cause a strictly conforming program to

become invalid renders an implementation nonconforming, Examples of such extensions are 11e\\

keywords, or library functions declared in standard headers or predefined macros with names that do

not begin with an underscore,

F.5.1 Environment Arguments

[n a hosted environment. the main funetion receives a third argument. char *envp [] , that points
to a null-terminated array of pointers to char, each of which points to a string that provides
information about the environment for this execution of the process (2.1.2.2.1).

F.5.2 Specialized Identifiers

Characters other than the underscore _. letters. and digits. that are not defined in the required Sllurce
character set (such as the dollar sign $. or characters in national character sets) may appear JT1 an
identifier (3.1.2).

F.5.3 Lengths and Cases of Identifiers

All characters in identifiers (with or without external linkage) are significant and case distinctions
are observed (3.1.2).

F.5.4 Scopes of Identifiers

A function identifier. or the identifier of an object tbe declaration of which contains the keyword

extern. has file scope (3.1.2.1).

F.5.5 Writable String Literals

String literals are modifiable. Identical string literals shall be distinct (3.1.4).

F.5.6 Other Arithmetic Types

Other arithmetic types. such as long long into and their appropriate conversions are defined
(3.2.2.1).

F.5.7 Function Pointer Casts

A pointer to an object or to void may be cast to a pointer to a function. allowing data to be
invoked as a function (3.3.4). A pointer to a function may be cast to a pointer to an object or to void.
allowing a function to be inspected or modified (for example. by a debugger) (3.3.4).

F.5.8 Non-int Bit-Field Types

Types other than into unsigned into or signed int can be declared as bit-fields. with
appropriate maximum widths (3.5.2.1).

F.5.9 The fortran Keyword

The fortran declaration specifier may be used in a function declaration to indicate that calls

suitable for FORTRAN should be generated. or that different representations for external names are to be
generated (3.5.4.3).

F.5 AMERICAN NATIONAL STANDARD X.'.15LJ-ILJXLJ

Appendixes

F.5.10 The asm Keyword

209 Portability Issues

The asm keyword may be used to insert assembly language code directly into the translator ou:put.
The most common implementation is via a statement of the form

asm (character-string-literal);

(3.6).

F.5.1l Multiple External Definitions

There may be more than one external definition for the identifier of an object. with or without the
explicit use of the keyword extern, If the definitions disagree, or more than one is initialized, the
behavior is undefined (3.7.2),

F.5.12 Empty Macro Arguments

A macro argument may consist of no preprocessing tokens (3.8.:).

F.5.13 Predefined Macro Names

Macro names that do not begin with an underscore, describing the translation and execution
environments, may be defined by the implementation before translation begins (3.8.8).

F.5.14 Extra Arguments for Signall Handlers

Handlers for ~,pecific signals may be called with extra arguments in addition to the signal number
(4.7.1.1).

F.5.15 Additilrmal Stream Types and File-Opening Modes

Additional mappings from files to streams may be supported (4.9.2), and additional file-opening
modes may be specified by characters appended to the mode argument of the fopen function
(4.9.5.3).

F.5.16 Defined File Position Indicator

The file position indicator is decremented by each successful call to the ungetc function for a text
stream. except if its value was zero before a call (4.9.7.11:,.

F.5.10 AMERICAN NATIONAL STANDARD X3.159-1 <JX9 F.5 16

C Standard

Index
Only major references are listed.

logical negation operator. 3.3.3.3
!= inequality operator. 3.3.9

operator. 3.1.5. 3.8.3.2
punctuator. 3.1.0. 3.8
operator. 3.1.5. 3.8.3.3

% remainder operator. 3.3.5
%= remainder assignment operator. 3.3.16.2

& address operator. 3.3.3.2
& bitwise AND operator. 3.3.10
&& logical AND operator. 3.3.13
&= bitwise AND assignment operator. 3.3.16.2

cast operator. 3.3.4
function-call operator. 3.3.2.2
parentheses punctuator. 3.1.6. 3.5.4.3

* indirection operator, 3.3.3.2
* multiplication operator. 3.3.5
* asterisk punctuator. 3.1.6. 3.5.4.1
*= multiplication assignment operator. 3.3.16.2

+ addition operator. 3.3.6
+ unary plus operator. 3.3.3.3
++ postfix increment operator. 3.3.2.4
++ prefix increment operator, 3.3.3.1
+= addition assignment operator. 3.3.16.2

, comma operator. 3.3.17
... ellipsis. unspecified parameters. 3.5.4.3

- subtraction operator. 3.3.6
- unary minus operator. 3.3.3.3
-- postfix decrement operator, 3.3.2.4
-- prefix decrement operator. 3.3.3.1
-= subtraction assignment operator. 3.3.16.2
-> structure/union pointer operator, 3.3.2.3

. structure/union member operator. 3.3.2.3

... ellipsis punctuator. 3.1.6, 3.5.4.3

/ division operator. 3.3.5
/ * * / comment delimiters. 3.1.7
/= division assignment operator. 3.3.16.2

colon punctuator. 3.1.6. 3.5.2.1

semicolon punctuator. 3.1.6. 3.5. 3.6.3

210 Inel(:\.

< less-than operator. 3.3.8
« left-shift operator. 3.3.7
«= left-shift assignment operator. 3.3.16.2
<= less-than-or-equal-to operator. 3.3.8

= equal-sign punctuator. 3.1.6.3.5.3.5.7
= simple assignment operator. 3.3.16.1
== equal-to operator. 3.3.9

> greater-than operator. 3.3.8
>= greater-than-or-equal-to operator. 3.3.8
» right-shift operator. 3.3.7
»= right-shift assignmem operator. 3.3.16.2

? : conditional operator. 3.3.15
??! trigraph sequence. I. 2.2.1.1
??' trigraph sequence. A. 2.2.1.1
?? (trigraph sequence. [. 2.2.1.J
??) trigraph sequence.]. 2.2.1.1
??- trigraph sequence. -. 2.2.1.1
?? / trigraph sequence. \. 2.2.1.1
??< trigraph sequence. {. 2.2.1.1
??= trigraph sequence. #. 2.2.1.1
??> trigraph sequence. }. 2.2.1.1

array subscript operator, 3.3.2.1
brackets punctuator. 3.1.6. 3.3.2.1. 3.5.4.2

\ backslash character. 2.2.1
\" double-quote-character escape sequence. 3.1.3.4
\' single-quote-eharacter escape sequence. 3.1.3.4
\ ? question-mark escape sequence. 3.1.3.4
\ \ backslash-character escape sequence. 3.1.3.4
\ 0 null character. 2.2. I. 3.1.3.4. 3.1.4
\a alert escape sequence. 2.2.2. 3.1.3.4
\b backspace escape sequence, 2.2.2. 3.1.3.4
\f form-feed escape sequence. 2.2.2. 3.1.3.4
\n new-line escape sequence. 2.2.2. 3.1.3.4
\O('f(j/ digits octal-character escape sequence.

3.1.3.4
\r carriage-return escape sequence. 2.2.2. 3.1.3.4
\t horizontal-tab escape sequence. 2.2.2. 3.1.3.4
\v vertical-tab escape sequence, 2.2.2. 3.1.3.4
\xhc.wdccima/ digits hexadecimal-character escape

sequence, 3.1.3.4

A exclusive OR operator. 3.3.11
A= exclmlve OR assignment operator. 3.3.16.2

{ } braces punctuator. 3.1.6. 3.5.7. 3.6.2

AMERICAN NATIO\;AL STAKDARD X3.15'!-19X'!

C Standard 211 Index

I inclusive OR operator, 3.3.12
I = inclusive OR a~signment operator, 3.3.16.2
I I logical OR operator, 3.3.14

- bitwise complement operator, 3.3.3.3

DATE macro, 3.8.8
FILE macro, 3.8.8, 4.2.1
LINE macro, 3.8.8, 4.2. I
STDC macro, 3.8.8
TIME macro, 3.8.8

_IOFBF macro, 4.9.1, 4.9.5.6
_ IOLBF macro, 4.9, I, 4.9.5.6
_ IONBF macro, 4.9, I, 4.9.5.6

abort function, 4.2,1.1, 4.10.4.1
abs function, 4.10.6.1
absolute-value functions, 4.5.6.2, 4.10.6.1, 4.10.6.3
abstract declarator, type name, 3.5.5
abstract machine, 2.1.2.3
abstract semantics, 2.1.2.3
acos function, 4.5.2.1
active position, 2.2.2
addition assignmem operator, +=, 3.3.16.2
addition operator, +, 3.3.6
additive expressions, 3.3.6
address operator, &. 3.3.3.2
aggregate type, 3.1.2.5
alert escape sequence, \a, 2.2.2, 3.1.3.4
alignment, definition of, 1.6
alignment of structure members, 3.5.2.1
AND operator, bitwise, &, 3.3.10
AND operator, logical, &&,3.3.13
argc parameter, main function, 2.1.2.2.1
argument, function, 3.3.2.2
argument, 1.6
argument promotion, default, 3.3.2.2
argv parameter, main function, 2.1.2.2.1
arithmetic conversions, usuaL 3.2.1.5
arithmetic operaton., unary. 3.3.3.3
arithmetic type, 3.1.2.5
array declarator, 3.5.4.2
array parameter, 3.7.1
array subscript operator, [], 3.3.2.1
array type, 3.1.2.5
array type conversion, 3.2.2.1
arrow operator, ->, 3.3.2.3
ASCII character set. 2.2.1.1
asctime function. 4.12.3.1
asin function, 4.5.2.2
assert macro, 4.2.1.1
assert. h header. 4.2
assignment operators, 3.3.16
asterisk punctuator. *. 3.1.6. 3.5.4.1
atan function, 4.5.2.3

ata:n2 function, 4.5.2.4
ate:xit function. 4.10.4.2
atof function, 4.10.1.1
atoi function, 4.10.1.2
atol function, 4.10.1.3
auto storage-class specifier. 3.5.1
automatic storage, reentrancy. 2.1.2.3. 2.2.3
automatic storage duration, 3.1.2.4

backslash character. \. 2.1.1.2, 2.2.1
backspace escape sequence, \b, 2.2.2, 3.1.3.4
base documents, 1.5
basic character set, 1.6, 2.2.1
basic type. 3.1.2.5
binary stream, 4.9.2
bit. definition of. 1.6
bit, high-order. 1.6
bit, low-order, 1.6
bit-field structure member, 3.5.2.1
bitwise operators, 3.3,3.3.7,3.3.10,3.3.11,3 ..3.12
block. 3.6.2
block identifier scope, 3.1.2.1
bold type convention, Section 3.
braces punctuator, { }. 3.1.6, 3.5.7, 3.6.2
brackets punctuator, [], 3.1.6, 3.3.2.1, 3.5.4.2
bre.ak statement, 3.6.6, 3.6.6.3
broken-dawn-time type, 4.12.1
bse.arch function, 4.10.5.1
BUFSIZ macro, 4.9.1, 4.9.2,4,9.5.5
byte, definition of, 1.6

C program, 2.1.1.1
C St..iI1dard, definition of terms, 1.6
C Standard, organization of document, 1.4
C Standard, purpose of. 1.1
C Standard, references, 1.3
C Standard, scope, restrictions and limits, 1.2
callac function, 4.10.3.1
carriage-return escape sequence, \r, 2.2.2, 3.1.3.4
cas,e label, 3.6.1, 3.6.4.2
case mapping functions, 4.3.2
cast expressions, 3.3.4
cast operator, (), 3.3.4
ceil function. 4.5.6.1
cha:r type, 3.1.2.5, 3.2.1. I, 3.5.2
CHAJR_BIT macro, 2.2.4.2.1
CHAR_MAX macro, 2.2.4.2.1
CHAR MIN macro, 2.2.4.2.1
character, 1.6
character case mapping functions, 4.3.2
character constant. 2.1.1.2. 2.2.1. 3.1.3.4
character display semantics, 2.2.2
character handling header, 4.3
character input/output functions, 4.9.7
character sets, 2.2.1

AY1ERICt\;\ NATlO'JAL STANDARD X3.IS9-19t-:9

C Standard

character string literal. 2.1.1.2. 3.1.4
character testing functions. 4.3.1
character type. 3.1.2.5. 3.2.2.1. 3.5.7
character type conversion. 3.2.1.1
clearerr function. 4.9.10.1
clock function. 4.12.2.1
CLOCKS PER SEC macro. 4.12.1. 4.12.2.1
clock_t type. 4.12.1. 4.12.2.1
collating sequence. character set. 2.2.1
colon punctuator. :. 3.1.6. 3.5.2.1
comma operator. I • 3.3.17
command processor. 4.10.4.5
comment delimiters. 1* *1.3.1.9
comments. 2.1.1.2. 3.1. 3.1.9
common extensions. 1".5
common initial sequence. 3.3.2.3
common warnings. Appendix E.
comparison functions. 4.11.4
compatible type. 3.1.2.6. 3.5.2. 3.5.3. 3.5.4
complement operator. -. 3.3.3.3
compliance. 1.7
composite type. 3.1.2.6
compound assignment operators. 3.3.] 6.2
compound statement. 3.6.2
concatenation functions. 4.11.3
conceptual models. 2.1
conditional inclusion. 3.8.1
conditional operator.? :. 3.3.15
confonning freestanding implementation. 1.7
confonning hosted implementation. 1.7
conforming implementation. 1.7
confonning program. 1.7
const-qualified type. 3.1.2.5. 3.2.2.1.3.5.3
const type qualifier. 3.5.3
constant. character. 3.1.3.4
constant. enumeration. 3.1.2. 3.1.3.3
constant. floating. 3.1.3.1
constant. integer. 3.1.3.2
constant. primary expression. 3.3.1
constant expressions. 3.4
constants. 3.1.3
constraints. definition of. 1.6
content. structure/union/enumeration. 3.5.2.3
contiguity. memory allocation. 4.10.3
continue statement. 3.6.6. 3.6.6.2
control characters. 2.2.1. 4.3. 4.3.1.3
conversion. arithmetic operands. 3.2.1
conversion. array. 3.2.2.1
conversion. characters and integers. 3.2.1.1
conversion. explicit. 3.2
conversion. floating and integral. 3.2.1.3
conversion. floating types. 3.2.1.4. 3.2.1.5
conversion. function. 3.2.2.1
conversion. function arguments. 3.3.2.2. 3.7.1
conversion. impiicit. 3.2

212 Index

conversion. pointer. 3.2.2.1. 3.2.2.3
conversion. signed and unsigned integers. 3.2.1.2
conversion. void type. 3.2.2.2
conversions. 3.2
conversions. usual arithmetic. 3.2.1.5
copying functions. 4.11.2
cos function. 4.5.2.5
cosh function. 4.5.3.1
ctime function. 4.12.3.2
ctype. h header. 4.3

data streams. 4.9.2
date and time header. 4.12
DBL macros. 2.2.4.2.2
decimal constant. 3.1.3.2
decimal digits. 2.2.1
decimal-point character. 4.1.1
dec laration speci fiers. 3.5
declarations. 3.5
declarators. 3.5.4
declarator type derivation. 3.1.2.5. 3.5.4
decrement operator. postfix. --. 3.3.2.4
decrement operator. prefix. --. 3.3.3.1
default argument promotions. 3.3.2.2
default label. 3.6.1. 3.6.4.2
#define preprocessing directive. 3.8.3
defined preprocessing operator. 3.8.1
definition. 3.5
derived declarator types. 3.1.2.5
derived types. 3.1.2.5
device jnput/output. 2.1..2.3
diagnostics. 2.1.1.3
diagnostics. assert. h.. 4.2
difftime function. 4.12.2.2
direct input/output functions. 4.9.8
display device. 2.2.2
div function. 4.10.6.2
div_t type. 4.10
division assignment operator. 1=. 3.3.16.2
division operator. I. 3.3.5
do statement. 3.6.5. 3.6.5.2
documentation of implementation. 1.7
domain error. 4.5.1
dot operator. " 3.3.2.3
double type. 3.1.2.5. 3.1.3.1. 3.5.2
double type conversion. 3.2.1.4. 3.2.1.5
double-precision arithmetic. 2.1.2.3

element type. 3.1.2.5
EDaM macro. 4.1.3. 4.5. 4.5.1
#elif preprocessing directive. 3.8.1
ellipsis. unspecified parameters. I •••• 3.5.4.3
#else preprocessing directive. 3.8.1
else statement. 3.6.4. 3.6.4.1
end-of-file macro. EOF. 4.3. 4.9.1

A\IFRICA\, \,;\TIONAL STAi\DARD x.' 1'iY·!lJSlJ

C Standard 213 Index

end-of-file indicator, 4.9.1. 4.9.7.1
end-of-line indicator, 2.2.1
#endif preproces"ing directive, 3.8.1
enum type, 3.1.2.5, 3.5.2, 3.5.2.2
enumerated types, 3.1.2.5
enumeration constant, 3.1.2, 3.1.3.3
enumeration content, 3.5.2.3
enumeration members, 3.5.2.2
enumeration specifiers, 3.5.2.2
enumeration tag, 3.5.2.3
enumerator, 3.5.2.2
environment, Section 2.
environment functions, 4.10.4
environment list, 4.1l0.4.4
environmental considerations, 2.2
environmental limits, 2.2.4
EOF macro, 4.3, 4.9.1
equal-sign punctuator. =, 3.1.6, 3.5, 3.5.7
equal-to operator, ==, 3.3.9
equality expressions, 3.3.9
ERANGE macro, 4.1.3, 4.5, 4.5.1, 4.10, 4.10.1
errno macro, 4.1.3, 4.5.1, 4.7.1.1, 4.9.10.4, 4.10.1
errno . h header. 4.1.3
error, domain, 4.5.1
error, range, 4.5.1
error conditions, 4.5.1
error handling functions, 4.9.10,4.11.6.2
error indicator, 4.9.1. 4.9.7.1,4.9.7.3
terror preprocessmg directive. 3.8.5
escape sequences, 2.2.1, 2.2.2, 3.1.3.4
evaluation, 3.1.5, 3.3
exception, 3.3
exclusive OR assignment operator, A=, 3.3.16.2
exclusive OR operator, A, 3.3.11
executable program, 2.1.1.1
execution environment, character sets, 2.2.1
execution environment limits, 2.2.4.2
execution environments, 2.1.2
execution sequence, 2.1.2.3, 3.6
exit function, 2.l.2.2.3, 4.10.4.3
EXIT_FAILURE macro, 4.10, 4.10.4.3
EXIT_SUCCESS macro, 4.10, 4.10.4.3
explicit conversion, 3.2
exp function, 4.5.4.1
exponent part, floating constant, 3.1.3.1
exponential functions, 4.5.4
expression, 3.3
expression, full. 3.6
expression, primary, 3.3.1
expression, unary, 3..3.3

expression statement, 3.6.3
extended character set, 1.6, 2.2.1.2
extern storage-class specifier, 3.1.2.2, 3.5.1. 3.7
external definitions, 3.7
external identifiers, underscore, 4.1.2

external linkagl?, 3.1.2.2
external name, 3.1.2
external object definitions, 3.7.2

fabs function, 4.5.6.2
fclc>se function, 4.9.5.1
feof function, 4.9.10.2
ferror function, 4.9.10.3
fflush function, 4.9.5.2
fget:c function, 4.9.7.1
fget:pos function, 4.9.9.1
fget:s function, 4.9.7.2
FILE:NAME MAX, 4.9.1
file, closing, 4.9.3
file, creating, 4,,9.3
file, opening, 4,,9.3
file access functions, 4.9.5
file identifier scope, 3.1.2.1. 3.7
tile name, 4.9.3
FILE: object type, 4.9.1
fi Ie operations. 4.9.4
file position inel icator. 4.9.3
file positioning functions, 4.9.9
files, 4.9.3
floa.t type, 3.1.2.5, 3.5.2
floa,t type conversion, 3.2.1.4, 3.2.1.5
float. h header, 1.7, 2.2.4.2.2, 4.1.4
floating arithmetic functions, 4.5.6
floating constants, 3.1.3.1
floating suffix, :E or F, 3.1.3.1
floating types, 3.1.2.5
floating-point numbers, 3.1.2.5
floor function, 4.5.6.3
FLT_, macros, 2.2.4.2.2
frnod function, 4.5.6.4
fopen function, 4.9.5.3
FOPEN MAX macro, 4.9.1, 4.9.3
for statement, 3.6.5, 3.6.5.3
form-feed character. 2.2.1, 3.1
form-feed escape sequence, \f, 2.2.2, 3.1.3.4
formatted input/output functions, 4.9.6
forward references, deli nition of. 1.6
fpos_t object type, 4.9.1
fprintf function, 4.9.6.1
fputc functior, 2.2.2, 4.9.7.3
fputs function, 4.9.7.4
fread function, 4.9.8.1
free function, 4.10.3.2
freestanding execution environment. 2.1.2, 2.1.2.1
freopen function, 4.9.5.4
frexp function, 4.5.4.2
fsca:nf function, 4.9.6.2
fseek function. 4.9.9.2
fsetpos function, 4.9.9.3
ftell function, 4.9.9.4

AMERICAN NATIONAL STANDARD X~.l5lJ-lq~'J

C Standard

full expression. 3.6
fully buffered stream. 4.9.3
function. recursive calL 3.3.2.2
function argument. 3.3.2.2
function body. 3.7. 3.7.1
function calL 3.3.2.2
function call. library. 4.1.6
function declarator. 3.5.4.3
function definition. 3.5.4.3. 3.7.1
function designator. 3.2.2.1
function identifier scope. 3.1.2.1
function image. 2.2.3
function library. 2.1.1.1. 4.1.6
function parameter. 2.1.2.2. I. 3.3.2.2
function prototype. 3.1.2.1. 3.3.2.2. 3.5.4.3. 3.7.1
function prototype identifier scope. 3.1.2.1
function return. 3.6.6.4
function type. 3.1.2.5
function type conversion. 3.2.2.1
function-call operator. (). 3.3.2.2
future directions. 1.8. 3.9. 4.13
future language directions. 3.9
future library directions. 4.13
fwrite function. 4.9.8.2

general utility library. 4.10
getc function. 4.9.7.5
getchar function. 4.9.7.6
getenv function. 4.10.4.4
gets function. 4.9.7.7
gmtime function. 4.12.3.3
goto statement. 3.1.2. I. 3.6.1. 3.6.6. 3.6.6.1
graphic characters. 2.2.1
greater-than operator. >. 3.3.8
greater-than-or-equal-to operator. >=. 3.3.8

header names. 3.1. 3.1.7. 3.8.2
headers. 4.1.2
hexadecimal constant. 3.1.3.2
hexadecimal digit. 3.1.3.2. 3.1.3.4
hexadecimal escape sequence. 3.1.3.4
high-order bit, 1.6
horizontal-tab character. 2.2.1. 3.1
horizontal-tab escape sequence. \t. 2.2.2. 3.1.3.4
hosted execution environment. 2.1.2. 2.1.2.2
HUGE VAL macro. 4.5. 4.5.1. 4.10.1.4
hyperbolic functions. 4.5.3

identifier. 3.1.2. 3.3.1
identifier. maximum length. 3.1.2
identifier. reserved. 4.1.2.1
identifier linkage. 3.1.2.2
identifier list, 3.5.4
identifier name space. 3.1.2.3
identifIer scope. 3.1.2.1

214 Index

identifier type. 3.1.2.5
IEEE floating-point arithmetic standard. 2.2.4.2.2
#if preprocessing directive. 3.8. 3.8.1
if statement, 3.6.4. 3.6.4.1
#ifdef preprocessing directive. 3.8. 3.8.1
#ifndef preprocessing directive. 3.8. 3.8.1
implementation. definition of. 1.6
implementation limits. 1.6. 2.2.4. Appendix D.
implementation-defined behavior. 1.6. F.3

implicit conversion. 3.2
implicit function declaration. 3.3.2.2
#include preprocessing directive. 2.1.1.2. 3.8.2
inclusive OR assignment operator. 1=. 3.3.16.2
inclusive OR operator. I. 3.3.12
incomplete type. 3.1.2.5
increment operator. postfix. ++. 3.3.2.4
increment operator. prefix. ++. 3.3.3.1
indirection operator. *. 3.3.3.2
inequality operator. ! =. 3.3.9
initialintion. 2.1.2. 3.1.2.4. 3.2.2.1. 3.5.7. 3.6.2
initializeI'..string literal. 3.2.2.1. 3.5.7
initial izer hraces. 3.5.7
initial shift state. 2.2.1.2.4.10.7
input/output. device. 2.1.2.3
input/output header. 4.9
int type. 3.1.2.5. 3.1.3.2. 3.2.1.1. 3.2.1.2. 3.5.2
INT MAX macro. 2.2.4.2.1
INT_MIN macro. 2.2.4.2.1
integer arithmetic functions. 4.10.6
integer character constant, 3.1.3.4
integer constants. 3.1.3.2
integer suffix. 3.1.3.2
integer type. 3.1.2.5
integer type conversion. 3.2.1.1. 3.2.1.2
integral constant expression. 3.4
integral promotions. 2.1.2.3. 3.2.1.1
integral type. 3.1.2.5
integral type conversion. 3.2.1.3
interactive device. 2.1.2.3. 4.9.3. 4.9.5.3
internal linkage. 3.1.2.2
internal name. 3.1.2
isalnum function. 4.3.1.1
isalpha function. 4.3.1.2
iscntrl function. 4.3.1.3
isdigit function. 4.3.1.4
isgraph function. 4.3.1.5
islower function. 4.3.1.6
ISO 4217: 1987 Currencies and Funds Representation.

1.3. 4.4.2.1
ISO 646: 1983 Invariant Code Set. 1.3. 2.2.1.1
isprint function. 2.2.2. 4.3.1.7
ispunct function. 4.3.1.8
isspace function. 4.3.1.9
isupper function. 4.3.1.10
isxdigit function. 4.3.1.11

AMERICAN NATIONAL STANDARD \.1.1 ,,9-191'9

C Standard

italic t\'fJP convention, Section 3.
iteration statement~;, 3.6.5

jmp_buf array, 4.6
jump statements, 3.6.6

keywords, 3.1.1

L tmpnam macro 4.9.1
label name. 3.1.2.1, 3.1.2.3
labeled statements, 3.6.1
labs function, 4.1 0.6.3
language. Section 3.
language, future directions, 3.9
language syntax summary, Appendix A.
LC ALL,4.4
LC COLLATE, 4.4
LC CTYPE, 4.4
LC_MONETARY, 4..4
LC NUMERIC, 4.4
LC TIME,4.4
lconv structure type, 4.4
LDBL_ macros, 2.2.4.2.2
Idexp function, 4.5.4.3
Idiv function, 4.10.6.4
Idiv_t type, 4.10
leading underscore in identifiers, 4.1.2
left-shift assignment operator, «=, 3.3.16.2
left-shift operator, «, 3.3.7
length function, 4.11.6.3
less-than operator, <, 3.3.8
less-than-or-equal-to operator, <=, 3.3.8
letter, 4.1.1
lexical elements, 2.1.1.2, 3.1
library, 2.1.1.1, Section 4.
library, future directions, 4.13
library functions, Uie of, 4.1.6
library summary, Appendix C.
library terms, 4.1.1
limits, environmental, 2.2.4
limits, numerical, 2.2.4.2
limits, translation, 2.2.4.1
limit s . h header. 1.7, 2.2.4.2.1, 4.1.4
line buffered stream, 4.9.3
line number, 3.8.4
#line preprocessing directive, 3.8.4
lines, 2.1.1.2, 3.8, 4.9.2
lines, logical, 2.1.1.2
lines. preprocessing directive, 3.8
linkages of identifiers, 3.1.2.2
locale, definition of, 1.6
locale-specific behavior, 1.6, F.4
locale. h header. 4.4
localeconv function, 4.4.2.1
localization. 4.4

215 Index

localtime function, 4.12.3.4
log' function, 4.5.4.4
10g10 function, 4.5.4.5
logarithmic functions, 4.5.4
logical AND operator. &&, 3.3.13
logical negation operator, !, 3.3.3.3
logical OR operator, I I, 3.3.14
logical source lines, 2.1.1.2
long double suffix, 1 or L, 3.1.3.1
long double type, 3.1.2.5, 3.1.3.1, 3.5.2
long double type conversion, 3.2.1.4, 3.2.1.5
long int type, 3.1.2.5, 3.2.1.2, 3.5.2
long integer suffix, 1 or L, 3.1.3.2
LONG MAX macro, 2.2.4.2.1
LONG_MIN macro, 2.2.4.2.1
longjmp function, 4.6.2.1
low-order bit, 1.6
Ivalue, 3.2.2.1 3.3.1, 3.3.2.4, 3.3.3.1, 3.3.16

macro function vs. definition, 4.1.6
macro name definition. 2.2.4.1
macro names, predefined, 3.8.8
macro, redefinition of, 3.8.3
macro replacement, 3.8.3
main function, 2.1.2.2.1 2.1.2.2.3
ma110e function, 4.10.3.3
math. h header, 4.5
MB CUR MAX. 4.10
MB LEN MAX. 2.2.4.2.1
mb1en function, 4.10.7.1
mbstowes function, 4.10.8.1
mbtowe function, 4.10.7.2
member-access operators, . and ->, 3.3.2.3
memchr function, 4.11.5.1
memcmp function, 4.11.4.1
memcpy function, 4.11.2.1
memmove function. 4.11.2.2
memory management functions, 4.10.3
memset function. 4.11.6.1
minus operator. unary, -. 3.3.3.3
mkt ime function, 4.12.2.3
modf function. 4.5.4.6
modifiable lvalue, 3.2.2.1
modulus function, 4.5.4.6
multibyte characters, 2.2.1.2, 3.1.3.4. 4.10.7. 4.10.8
multibyte functions, 4.10.7, 4.10.8
multiplication assignment operator, *=, 3.3.16.2
multiplication operator, *, 3.3.5
multiplicative expressions, 3.3.5

name, file, 4.9.3
name spaces of identifiers, 3.1.2.3
NDElBUG macro, 4.2
nearest-integer functions. 4.5.6
new-line character, 2.1.1.2, 2.2.1, 3.1. 3.8, 3.8.4

AMERICAN NATIONAL STANDARD X3.! 59-1989

C Standard

new-line escape sequence, \n, 2.2.2, 3.1.3.4
nongraphic characters, 2.2.2, 3.1.3.4
non local jumps header, 4.6
not-equal-to operator, ! =, 3.3.9
null character padding of binary streams, 4.9.2
null character. \0, 2.2.L 3.1.3.4, 3.1.4
NULL macro, 4.1.5
null pointer, 3.2.2.3
null pointer constant. 3.2.2.3
null preprocessing directive, 3.8.7
null statement 3.6.3
number, floating-point, 3.1.2.5
numerical limits, 2.2.4.2

object, definition of. 1.6
object type, 3.1.2.5
obsolescence, 1.8, 3.9, 4.13
octal constant 3.1.3.2
octal digit. 3.1.3.2, 3.1.3.4
octal escape sequence. 3.1.3.4
offsetof macro, 4.1.5
operand, 3.1.5, 3.3
operating system, 2.1.2.1, 4.10.4.5
operator, unary, 3.3.3
operators, 3.1.5, 3.3
OR assignment operator. exclusive, "=. 3.3.16.2
OR assignment operator, inclusive. 1=, 3.3.16.2
OR operator. exclusive, ", 3.3.11
OR operator, inclusive, I. 3.3.12
OR operator, logical. 1I, 3.3.14
order of memory allocation, 4.10.3
order of evaluation of expression, 3.3
ordinary identifier name space. 3.1.2.3

padding, null character, 4.9.2
parameter, ellipsis., , .. , 3.5.4.3
parameter. function, 3.3.2.2
parameter, main function. 2.L2.2.1
parameter, 1.6
parameter type list. 3.5.4.3
parameters. program, 2.1.2.2.1
parentheses punctuator, (), 3.1.6, 3.5.4.3
parenthesized expression, 3.3.1
perror function, 4.9.10.4
physical source lines. 2.1.1.2
plus operator. unary, +. 3.3.3.3
pointer. null. 3.2.2.3
pointer declarator. 3.5.4.1
pointer operator, ->, 3.3.2.3
pointer to function returning type, 3.3.2.2
pointer type, 3.1.2.5
pointer type conversion, 3.2.2.1. 3.2.2.3
portability of implementations, 1.7
position indicator, file, 4.9.3
postfix decrement operator. --, 3.3.2.4

216 Index

postfix expressions, 3.3.2
postfix increment operator, ++, 3.3.2.4
pow function, 4.5.5.1
power functions, 4.5.5
#pragrna preprocessing directive. 3.8.6
precedence of expression operators. 3.3
precedence of syntax rules. 2.1.1.2
predefined macro names. 3.8.8
prefix decrement operator, --, 3.3.3.1
prefix increment operator. ++, 3.3.3.1
preprocessing concatenation, 2.1.1.2. 3.8.3.3
preprocessing directives, 2.1.1.2. 3.8
preprocessing numbers, 3.1. 3.1.8
preprocessing tokens, 2.1.1.2. 3.1. 3.8
primary expressions. 3.3.1
printf function. 4.9.6.3
printing characters, 2.2.2, 4.3, 4.3.1.7
program. conforming, 1.7
program, strictly confonning, 1.7
program diagnostics, 4.2.1
program execution. 2.1.2.3
program file, 2.1.1.1
program image. 2.1.1.2

program name, argv [0] , 2.1.2.2.1
program parameters, 2.1.2.2.1
program startup. 2.1.2, 2.1.2.1, 2.1.2.2.1
program structure, 2.1.1.1
program termination. 2.1 .2, 2.1.2.1. 2.1.2.2.3, 2.1.2.3
promotions. default argument, 3.3.2.2
promotions, integral. 2.1.2.3. 3.2.1.1
prototype. function, 3.1.2.].3.3.2.2,3.5.4.3, 3.7.1
pseudo-random sequence functions, 4.10.2
ptrdiff_t type. 4.1.5
punctuators. 3.1.6
putc function, 4.9.7.8
putchar function, 4.9.7.9
puts function, 4.9.7.10

qsort function, 4.10.5.2
qualified types. 3.1.2.5
qualified version, 3.1.2.5

raise function. 4.7.2.1
rand function, 4.10.2.1
RAND MAX macro. 4.10, 4.10.2.1
range error, 4.5.1
realloc function, 4.10.3.4
recursive function call. 3.3.2.2
redefinition of macro, 3.8.3
reentrancy. 2.1.2.3, 2.2.3
referenced type, 3.1.2.5
register storage-class specifier. 3.5.1
relational expressions, 3.3.8
reliability of data, interrupted. 2.1.2.3
remainder assignment operator. %=. 3.3.16.2

A\lERICAN NATIONAL STA:\DARD Xl1'i'J-IYX()

C Standard

remainder operator, %, 3.3.5
remove function, 4.9.4.1
rename function, 41.9.4.2
restore calling environment function. 4.6.2.1
reserved identifiers, 4.1.2.1
return statement, 3.6.6. 3.6.6.4
rewind function, 4.9.9.5
right-shift assignment operator. »=. 3.3.16.2
right-shift operator, », 3.3.7
rvalue, 3.2.2.1

save calling environment function. 4.6.1.1
scalar type, 3.1.2.5
scanf function, 4.9.6.4
SCHAR MAX macro, 2.2.4.2.1
SCHAR MIN macro, 2.2.4.2.1
scope of identifiers. 3.1.2.1
search functions. 4.10.5.1. 4.11.5
SEEK CUR macro, 4.9.1
SEEK END macro, 4.9.1
SEEK SET macro. 4.9.1
selection statements, 3.6.4
semicolon punctuator, ;. 3.1.6. 3.5. 3.6.3
sequence points, 2.1.2.3. 3.3. 3.6, Appendix B.
setbuf function. 4.9.5.5
set jmp macro. 4.6,,1.1
set jmp. h header, 4.6
set locale function. 4.4.1.1
setvbuf function, 4.9.5.6
shift expressions. 3.3.7
shift states. 2.2.1.2, 4.10.7
short int type, 3.1.2.5. 3.5.2
short int type conversion, 3.2.1.1
SHRT MAX macro. 2.2.4.2.1
SHRT MIN macro. 2.2.4.2.1
side effects. 2.1.2.3, 3.3
sig_atomic_t type, 4.7
SIG DFL macro. 4.7
SIG ERR macro. 4.7
SIG IGN macro, 4.7
SIGABRT macro, 4.7, 4.10.4.1
SIGFPE macro, 4.7
SIGILL macro, 4.7
SIGINT macro. 4.7
SIGSEGV macro, 4.7
SIGTERM macro, 4.7
signal function. 4.7.1.1
signal handler, 2.1.2.3. 2.2.3, 4.7.1.1
signal. h header. 4.7
signals, 2.1.2.3. 2.2.3. 4.7
signed char. 3.1.2.5
signed char type conversion. 3.2.1.1
signed integer types, 3.1.2.5. 3.1.3.2, 3.2.1.2
signed type. 3.1.2.:5. 3.5.2
significand part. floating constant. 3.1.3.1

217 Index

simple assignment operator. =. 3.3.16.1
sin function. 4.5.2.6
single-precision arithmetic. 2.1.2.3
sinh function, 4.5.3.2
sizE!_t type. 4.1.5
SiZE!of operator, 3.3.3.4
sort function. 4.10.5.2
source character set. 2.2.1
source file inclusion. 3.8.2
source files. 2.1.1.1
source text, 2.1.1.2
space character. 2.1.1.2, 2.2.1. 3.1
sprintf function, 4.9.6.5
sqrt function. 4.5.5.2
sran.d function. 4.10.2.2
ssca,nf function. 4.9.6.6
standard streams. 4.9.1, 4.9.3
standard header, float. h. 1.7. 2.2.4.2.2. 4.1.4
standard header. limits. h. 1.7. 2.2.4.2.1, 4.1.4
standard header. stdarg. h. 1.7.4.8
standard header. stddef. h. 1.7.4.1.5
standard headers, 4.1.2
state-dependent encoding. 2.2.1.2. 4.10.7
statements. 3.6
static storage duration, 3.1.2.4
static storage-class specifier.

3.1.2.2.3.1.2.4.3.5.1,3.7
stdarg. h header. 1.7.4.8
stddef. h header. 1.7.4.1.5
stderr file. 4.9.1, 4.9.3
stdin file. 4.9.1. 4.9.3
stdio . h header. 4.9
stdlib. h header. 4.10
stdout file. 4.9.1. 4.9.3
storage duration, 3.1.2.4
storage-class specifier. 3.5.1
strcat function. 4.11.3.2
strchr function. 4.11.5.2
strc:mp function, 4.11.4.2
strcoll function, 4.11.4.3
strcpy function, 4.11.2.3
strcspn function, 4.11.5.3
stream. fully buffered. 4.9.3
stream. line buffered. 4.9.3
stream, standard error. stderr, 4.9.1, 4.9.3
streall'. standard input, stdin, 4.9.1. 4.9.3
stream. standard output. stdout. 4.9.1, 4.9.3
stream. unbuffered. 4.9.3
streams. 4.9.2
stre:rror function. 4.11.6.2
strf1:ime function. 4.12.3.5
strictly conforming program, 1.7
string. 4.1.1
string conversion functions. 4.10.1
string handling header. 4.11

AMERICA" NATIONAL STANDARD XJ,I.'i9-IS,s9

C Standard

string length, 4.1.1. 4.11.6.3
string literaL 2.1.1.2, 2.2.1, 3.1.4, 3.3.1. 3.5.7
string, h header. 4.11
strlen function. 4.11.6.3
strncat function, 4.11.3.2
strncmp function, 4.11.4.4
strncpy function. 4.11.2.4
strpbrk function, 4.11.5.4
strrchr function, 4.11.5.5
strspn function, 4.11.5.6
strstr function, 4.11.5.7
strtod function, 4.10.1.4
strtok function, 4.11.5.8
strtol function, 4.10.1.5
strtoul function, 4.10.1.6
structure/union arrow operator. ->. 3.3.2.3
structure/union content, 3.5.2.3
structure/union dot operator, " 3.3.2.3
structure/union member name space, 3.1.2.3
structure/union specifiers, 3.5.2.1
structure/union tag, 3.5.2.3
structure/union type, 3.1.2.5, 3.5.2.1
strxfrm function, 4.11.4.5
subtraction assignment operator, -=, 3.3.16.2
subtraction operator, -, 3.3.6
suffix, floating constant, 3.1.3.1
suffix, integer constant, 3.1.3.2
switch body, 3.6.4.2
switch case labeL 3.6.1. 3.6.4.2
switch default labeL 3.6.1, 3.6.4.2
switch statement, 3.6.4, 3.6.4.2
syntactic categories, Section 3.
syntax notation, Section 3.
syntax rules, precedence of. 2.1.1.2
syntax summary, language, Appendix A.
system function, 4.10.4.5

tab characters, 2.2.1
tabs, white space. 3.1
tag, enumeration, 3.5.2.3
tag, structure/union, 3.5.2.3
tag name space, 3.1.2.3
tan function, 4.5.2.7
tanh function, 4.5.3.3
tentative definitions, 3.7.2
text stream, 4.9.2
time components, 4.12.1
time conversion functions, 4.12.3
time function, 4.12.2.4
time manipulation functions, 4.12.2
time. h header, 4.12
time_t type, 4.12.1
tm structure type, 4.12.1
TMP_MAX macro, 4.9.1
tmpfile function, 4.9.4.3

218 Index

tmpnam function, 4.9.4.4
tokens, 2.1.1.2. 3.1. 3.8
tolower function. 4.3.2.1
toupper function, 4.3.2.2
translation environment, 2.1.1
translation limits, 2.2.4.1
translation phases, 2.1.1.2
translation unit. 2.1.1.1, 3.7
trigonometric functions. 4.5.2
trigraph sequences, 2.1.1.2, 2.2.1.1
type, character, 3.1.2.5. 3.2.2.1. 3.5.7
type, compatible, 3.1.2.6. 3.5.2, 3.5.3. 3.5.4
type, composite, 3.1.2.6
type, const-qualified. 3.1.2.5, 3.5.3
type. function. 3.1.2.5
type, incomplete, 3.1.2.5
type, object. 3.1.2.5
type. qualified. 3.1.2.5
type, unqualified, 3.1.2.5
type. volatile-qualified, 3.1.2.5. 3..'1.3
type category, 3.1.2.5
type conversions, 3.2
type defil1ltions, 3.5.6
type names, 3.5.5
type specitiers, 3.5.2
type qualiliers, 3.5.3
typedef specifier, 3.5.1, 3.5.2, 3.5.6
types, 3.1.2.5

UCHAR MAX macro. 2.2.4.2.1
UINT MAX macro, 2.2.4.2.1
ULONG_MAX macro, 2.2.4.2.1
unary arithmetic operators. 3.3.3.3
unary expressions, 3.3.3
unary minus operator, -. 3.3.3.3
unary operators, 3.3.3
unary plus operator, +. 3.3.3.3
unbuffered stream, 4.9.3
#undef preprocessing directive, 3.8, 3.8.3, 4.1.6
undelined behavior, 1.6, F.2
underscore, leading, in identifiers, 4.1.2.1
ungetc function. 4.9.7.11
union initialization, 3.5.7
union tag, 3.5.2.3
union type specifier. 3.1.2.5, 3.5.2. 3.5.2.1
unqualified type, 3.1.2.5
unqualified version, 3.1.2.5
unsigned integer suffix. u or U, 3.1.3.2
unsigned integer types. 3.1.2.5. 3.1.3.2
unsigned type conversion. 3.2.1.2
unsigned type. 3.1.2.5, 3.2.1.2. 3.5.2
unspecified behavior, 1.6. F.I
USHRT MAX macro, 2.2.4.2.1
usual arithmetic conversions, 3.2.1.5

AMERICAN NATIONAL STANDARD X.U ~l)-Il)X9

C Standard

va_ arg macro, 4.8.1.2
va_end macro, 4.8.1.3
va_list type, 4.8
va start macro. 4.8.1.1
variable arguments header, 4.8
vertical-tab character, 2.2.1, 3.1
vertical-tab escape sequence, \ v, 2.2.2. 3.1.3.4
vfprintf function, 4.9.6.7
visibility of identifiers, 3.1.2.1
void expression, 3.2.2.2
void function parameter, 3.5.4.3
void type, 3.1.2.5, 3.5.2
void type conversion, 3.2.2.2
volatile storage, 2.1.2.3
volatile-qualified typ<:, 3.1.2.5, 3.5.3
volatile type qualifier, 3.5.3
vprintf function, 4.9.6.8
vsprintf function, 4.9.6.9

wchar_ t type, 3.1.3.4, 3.1.4, 3.5.7. 4.1.5, 4.10
wcstombs function, 4.10.8.2
wctomb function, 4.110.7.3
while statement, 3.6.5, 3.6.5.1
white space, 2.1.1.2, 3.1, 3.8, 4.3.1.9
wide character, 3.1.3.4
wide character constant, 3.1.3.4
wide string literal, 2.1.1.2, 3.1.4

219 Index

Rationale for
American National Standard

for Information Systems ­
Programming Language ­

C

(This Rationale is not part of American National Standard X3.159-1989, but is included for infonnation only.)

UNIX is a registered trademark of AT&T.
DEC and PDP-ii are trademarks of Digital Equipment Corporation.
POSIX is a trademark of IEEE.

Conte~nts

1 INTRODUCTION
1.1 Purpose ..
1.2 Scope .
1.3 References....
1.4 Organization of the document
1.5 Base documents. . .
1.6 Definitions of terms.
1.7 Compliance . . .
1.8 Future directions

2 ENVIRONMENT
2.1 Conceptual models .

2.1.1 Translation environment.
2.1.2 Execution environments

2.2 Environmental considerations ..
2.2.1 Character sets .
2.2.2 Character display semantics.
2.2.3 Signals and interrupts
2.2.4 Environmental limits .

3 LANGUAGE
3.1 LexicaJl Elements

3.1.1 Keywords
3.1.2 Identifiers
3.1.3 Constants
3.1.4 String literals
3.1.5 Operators ..
3.1.6 Punctuators.
3.1.7 Header names.
3.1.8 Preprocessing numbers.
3.1.9 Comments .

3.2 Conversions .
3.2.1 Arithmetic operands

iii

1

1
4
4
4
5
5
6
8

9

9
9

11
13
13
16
16
17

19
19
19
19
28
31
32

33
33
33
33
34
34

iv

3.2.2 Other operands .
3.3 Expressions .

3.3.1 Primary expressions
3.3.2 Postfix operators
3.3.3 Unary operators ..
3.3.4 Cast operators . . .
3.3 ..5 Multiplicative operators
3.3.6 Additive operators ..
3.3.7 Bitwise shift operators
3.3.8 Relational operators .
3.3.9 Equalityoperators ..
3.3.10 Bitwise AND operator
3.3.11 Bitwise exclusive OR operator
3.3.12 Bitwise inclusive OR operator .
3.3.13 Logical AND operator
3.3.14 Logical OR operator .
3.3.1.5 Conditional operator .
3.3.16 Assignment operators
3.3.17 Comma operator

3.4 Constant Expressions
3..5 Declarations.......

3.5.1 Storage-class specifiers
3.5.2 Type specifiers
3.5.3 Type qualifiers
3.5.4 Declarators ..
3.5 ..5 Type names ..
3.5.6 Type definitions
3.5.7 Initialization ..

3.6 Statements .
3.6.1 Labeled statements.
3.6.2 Compound statement, or block
3.6.3 Expression and null statements
3.6.4 Selection statements
3.6.5 Iteration statements
3.6.6 Jump statements ..

3.7 External definitions.
3.7.1 Function definitions
3.7.2 External object definitions.

3.8 Preprocessing directives ...
3.8.1 Conditional inclusion.
3.8.2 Source file inclusion
3.8.3 11acro replacement
3.8.4 Line control ..
3.8.5 Error directive ..

CONTENTS

36
38
40
41
43
44
4.5
45
46
47
47
47
47
47
47
47
47
48

49
49
.50
.51
51
52
54
57
57
57
.58
58
58
58
59
59
59
60
60
61
61
62
63
64
68
68

CONTENTS

3.8.6 Pragma directive
3.8.7 Null directive .
3.8.8 Predefined macro names

3.9 Future language directions .
3.9.1 External names .
3.9.2 Character escape sequences
3.9.3 Storage-class specifiers
3.9.4 Function declarators
3.9.5 Function definitions
3.9.6 Array parameters.

v

68
68
68
69
69
69
69
69
69
69

4 LIBRARY 71
4.1 Introduction......... 71

4.1.1 Definitions of terms 71
4.1.2 Standard headers . . 71
4.1.3 Errors <errno.h> 73
4.1.4 Limits <float.h> and <limits.h> 73
4.1.5 Common definitions <stddef .h> 74
4.1.6 Use of library functions 75

4.2 Diagnostics <assert. h> 76
4.2.1 Program diagnostics . . 76

4.3 Character Handling <ctype .h> 76
4.3.1 Character testing functions 77
4.3.2 Character case mapping functions 78

4.4 Localization <locale. h> 78
4.4.1 Locale control. 80
4.4.2 Numeric formatting convention inquiry 80

4.5 Mathematics <math. h>. 80
4.5.1 Treatment of error conditions 81
4.5.2 Trigonometric functions . . . 82
4.5.3 Hyperbolic functions 83
4.5.4 Exponential and logarithmic functions 83
4.5.5 Power functions. 83
4.5.6 Nearest integer, absolute value, and remainder functions 84

4.6 Nonlocal jumps <setjmp .h> 84
4.6.1 Save calling environment 85
4.6.2 Restore calling environment 85

4.7 Signal Handling <signal.h> 86
4.7.1 Specify signal handling. . 86
4.7.2 Send signal 87

4.8 Variable Arguments <stdarg. h> 87
4.8.1 Variable argument list access macros 87

4.9 Input/Output <stdio.h> 88
4.9.1 Introduction 89

RATIONALE

VI

4.9.2 Streams .
4.9.3 Files .
4.9.4 Operations on files
4.9.5 File access functions
4.9.6 Formatted input/output functions
4.9.7 Character input/output functions.
4.9.8 Direct input/output functions.
4.9.9 File positioning functions
4.9.10 Error-handling functions ..

4.10 General Utilities <stdlib .h> ...
4.10.1 String conversion functions
4.10.2 Pseudo-random sequence generation functions.
4.10.3 Memory management functions
4.10.4 Communication with the environment
4.10.5 Searching and sorting utilities .
4.10.6 Integer arithmetic functions .
4.10.7 Multibyte character functions
4.10.8 Multibyte string functions.

4.11 STRING HANDLING <string.h>
4.11.1 String function conventions
4.11.2 Copying functions ...
4.11.3 Concatenation functions
4.11.4 Comparison functions .
4.11..5 Search functions
4.11.6 Miscellaneous functions

4.12 DATE AND TIME <time .h> .
4.12.1 Components of time ..
4.12.2 Time manipulation functions
4.12.3 Time conversion functions

4.13 Future library directions .
4.13.1 Errors <errno. h> .
4.13.2 Character handling <ctype. h>
4.13.3 Localization <locale .h>
4.13.4 Mathematics <math. h>
4.13.5 Signal handling <signal.h> .
4.13.6 Input/output <stdio .h>
4.13.7 General utilities <stdlib .h>
4.13.8 String handling <string. h> .

5 APPENDICES

INDEX

CONTENTS

90
91
92
93
95
97
98
99

100
100
100
101
101
102
104
104
105
10.5

105
105
106
106
107
107
108
108
108
108
110
111
111
ll1
111
111
111
111
111
111

113

115

Sectioll 1

INTR,ODUCTION

This Rationale summarizes the deliberations of X3Jll, the Technical Committee
charged by ANSI with devising a standard for the C programming language. It has
been published along with the draft Standard to assist the process of formal public
revIew.

The X3Jll Committee represents a cross-section of the C community: it con­
sists of about Mty active members representing hardware manufacturers, vendors
of compilers and other software development tools, software designers, consultants,
academics, authors, applications programmers, and othErs. In the course of its
deliberations, it has reviewed related American a.nd international standards both
published and ;n progress. It has attempted to be responsive to the concerns of the
broader community: as of September 1988, it had received and reviewed almost 200
letters, including dozens of formal comments from the first public review, suggesting
modifications and additions to the various prelimlnary drafts of the Standard.

Upon publication of the Standard, the primary role of the Committee will be to
offer interpretations of the Standard. It will consider and respond to all correspon­
dence received.

1.1 Purpose

The Committee's overall goal was to develop a clear, consistent, and unambiguous
Standard for the C programming language which codifies t he common, existing def­
inition of C and which promotes the portability of user programs across C language
environments.

The X3Jll charter clearly mandates the Committee to codify common existing
practice. The Committee has held fast to precedent wherever this was clear and
unambiguous. The vast majority of the language defined by the Standard is precisely
the same as is defined in Appendix A of The C Programming Language by Brian
Kernighan and Dennis Ritchie, and as is implemented in almost all C translators.
(This document is hereinafter referred to as K& R.)

K&R is not the only source of "existing practice." Much work has been done over

1

2 Section 1. INTRODUCTION

the years to improve the C language by addressing its weaknesses. The Committee
has formalized enhancements of proven value which have become part of the various
dialects of C.

Existing practice, however, has not always been consistent. Various dialects
of C have approached problems in different and sometimes diametrically opposed
ways. This divergence has happened for several reasons. First, K&R, which has
served as the language specification for almost all C translators, is imprecise in some
areas (thereby allowing divergent interpretations), and it does not address some
issues (such as a complete specification of a library) important for code portability.
Second, as the language has matured over the years, various extensions have been
added in different dialects to address limitations and weaknesses of the language;
these extensions have not been consistent across dialects.

One of the Committee's goals was to consider such areas of divergence and to
establish a set of clear, unambiguous rules consistent with the rest of the lan1Sua1Se.
This effort included the consideration of extensions made in various C dialects, the
specification of a complete set of required library functions, and the development of
a complete, correct syntax for C.

The work of the Committee was in large part a balancing act. The Committee

has tried to improve portability while retaining the definition of certain features of
C as machine-dependent. It attempted to incorporate valuable new ideas without
disrupting the basic structure and fabric of the language. It tried to develop a clear
and consistent language without invalidating existing programs. All of the goals were
important and each decision was weighed in the light of sometimes contradictory
requirements in an attempt to reach a workable compromise.

In specifying a standard language, the Committee used several guiding principles,
the most important of which are:

Existing code is important, existing implementations are not. A large body
of C code exists of considerable commercial value. Every attempt has been made
to ensure that the bulk of this code will be acceptable to any implementation con­
forming to the Standard. The Committee did not want to force most programmers
to modify their C programs just to have them accepted by a conforming translator.

On the other hand, no one implementation was held up as the exemplar by which
to define C: it is assumed that all existing implementations must change somewhat
to conform to the Standard.

C code can be portable. Although the C language was originally born with the
UNIX operating system on the DEC PDP-H, it has since been implemented on a
wide variety of computers and operating systems. It has also seen considerable use
in cross-compilation of code for embedded systems to be executed in a free-standing
environment. The Committee has attempted to specify the languagE? and the library
to be as widely implementable as possible, while recognizing that a system must meet
certain minimum criteria to be considered a viable host or target for the language.

C code can be non-portable. Although it strove to give programmers the op­
portunity to write truly portable programs, the Committee did not want to force

1.1. Purpose 3

programmers into writing portably, to preclude the use of C as a "high-level as­
sembler": the ability to write machine-specific code is OIle of the strengths of C.
It is this principle which largely motivates drawing the distinction between strictly
conforming program and conforming program (§1.7).

A void "quiet changes." Any change to widespread practice altering the meaning
of existing code causes problems. Changes that cause code to be so ill-formed as to
require diagnostic messages are at least easy to detect. As much as seemed possible
consistent with its other goals, the Committee has avoided changes that quietly
alter one valid program to another with different semantics, that cause a working
program to work differently without notice. In important places where this principle
is violated, the Rationale points out a QU lET CHANGE.

A standard is a treaty between implementor and programmer. Some nu­
merical limits have been added to the Standard to give both implementors and
programmers a better understanding of what must be provided by an implemen­
tation, of what can be expected and depended upon to exist. These limits are
presented as minimum maxima (Le., lower limits placed on the values of upper lim­
its specified by an implementation) with the understanding that any implementor is
at liberty to provide higher limits than the Standard mandates. Any program that
takes advantage of these more tolerant limits is not strictly conforming, however,
since other implementations are at liberty to enforce the mandated limits.

Keep the spirit of C. The Committee kept as a major goal to preserve the
traditional spirit of C. There are many facets of the spirit of C, but the essence is
a community sentiment of the underlying principles upon which the C language is
based. Some of the facets of the spirit of C can be summarized in phrases like

• Trust the programmer.

• Don't prevent the programmer from doing what needs to be done .

• Keep the language small and simple.

• Provide only one way to do an operation.

• A1ake it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient code
generation is one of the most important strengths of C. To help ensure that no code
explosion occurs for what appears to be a very simple operation, many operations
are defined to be how the target machine's hardwal'e does it rather than by a general
abstract rule. An example of this willingness to live with what the machine does can
be seen in the rules that govern the widening of char objects for use in expressions:
whether the values of char objects widen to signed or unsigned quantities typically
depends on whi ch byte operation is more efficient on the target machine.

One of the goals of the Committee was to avoid interfering with the ability
of translators to generate compact, efficient code. In several cases the Committee
has introduced features to improve the possible efficiency of the generated code;
for instance, floating point operations may be performed in single-precision if both
operands are f:.oat rather than double.

RATIONALE

4 Section 1. INTRODUCTION

1.2 Scope

This Rationale focuses primarily on additions, clarifications, and changes made to
the language as described in the Base Documents (see §1..5). It is not a rationale for
the C language as a whole: the Committee was charged with codifying an existing
language, not designing a new one. No attempt is made in this Rationale to defend
the pre-existing syntax of the language, such as the syntax of declarations or the
binding of operators.

The Standard is contrived as carefully as possible to permit a broad range of im­
plementations, from direct interpreters to highly optimizing compilers with separate
linkers, from ROM-based embedded microcomputers to multi-user multi-processing
host systems. A certain amount of specialized terminology has therefore been cho­
sen to minimize the bias toward compiler implementations shown in the Base Doc­
uments.

The Rationale discusses some language or library features which were not

adopted into the Standard. These are usually features which are popular in some C
implementations, so that a user of those implementations might question why they
do not appear in the Standard.

1.3 References

1.4 Organization of the docUluent

This Rationale is organized to parallel the Standard as closely as possible, to facil­
itate finding relevant discussions. Some subsections of the Rationale comprise just
the subsection title from the Standard: this indicates that the Committee thought
no special comment was necessary. \t\There a given di scussion tou ches on several
areas, attempts have been made to include cross-references within the text. Such
references, unless they specify the Standard or the Rationale, are deliberately am­
biguous.

As for the organization of the Standard itself, Base Documents existed only for
Sections 3 (Language) and 4 (Library) of the Standard. Section 1 (Introduction)
was modeled after the introductory matter in several other standards for procedural
languages. Section 2 (Environment) was added to fill a need, identified from the
start, to place a C program in context and describe the way it interacts with its
surroundings. The Appendices were added as a repository for related material not
included in the Standard itself, or to bring together in a single place information
about a topic which was scattered throughout the Standard.

Just as the Standard proper excludes all examples, footnotes. references, and
appendices, this rationale is not part of the Standard. The C language is defined
by the Standard alone. If any part of this RationaIe is not in accord with that
definition, the Committee would very much like to be so informed.

TL1TIO.VALE

1.5. Base documents

1.5 Base documents

5

The Base Document for Section 3 (Language) was "The C Reference Manual" by
Dennis M. Ritchie, which was used for several years within AT&T Bell Laborato­
ries and reflects enhancements to C within the UNIX environment. A version of
this manual was published as Appendix A of The C Programming Language by
Kernighan and Ritchie (K&R). Several deviations in the Base Document from K&R
were challenged during Committee deliberations, hut most changes from K&R ulti­
mately included in the Standard were readily endorsed by the Committee since they
were widely known and accepted outside the UNIX user community.

The Base Document for Section 4 (Library) was the 19S4 /usr/group Standard.
(/usr/group is a UNIX system users group.) In defining what a UNIX-like environ­
ment looks like to an applications programmer writing in C, /usr/group was obliged
to describe library functions usable in any C environment. The Committee found
/usr/group's work to be an excellent codification of existing practice in defining
C libraries, once the UNIX-specific functions had been removed.

The work begun by /usr/group is being continued by the IEEE Committee 1003
to define a portable operating system interface ("P 0 SIX") based on the UNIX
environment. The X3Jll Committee has been working with IEEE 1003 to resolve
potential areas of overlap or conflict between the two Committees. The result of
this coordination has been to divide responsibility for standardizing library functions
into two areas. Those functions needed for a C implementation in any environment
are the responsibility of X3Jll and are included in the Standard. IEEE 1003 retains
responsibility for those functions which arc opcrating-system-specific; the (POSIX)
standard will refer to the ANSI C Standard for C library function definitions.

Many of the discussions in this Rationale employ the formula "feature X has
been changed (added, removed) because... ." The changes (additions, removals)
should be understood as being with respect to the appropriate Base Document.

1.6 Definitions of terms

The definitions of object, bit, byte, and alignment reflect a strong consensus, reached
after considerable discussion, about the fundamental nature of the memory organi­
zation of a C e:llvironment:

• All objects in C must be representable as a contiguous sequence of bytes, each
of which is at least 8 bits wide .

• A char (or signed char or unsigned char) occupies exactly one byte.

(Thus, for inst;wce, on a machine with 36-bit words, a byte can be defined to consist
of 9, 12, 18, or :l6 bits, these numbers being all the exact divisors of 36 which are not
less than 8.) These strictures codify the widespread presumption that any object
can be treated as an array of characters, the size of which is given by the sizeof
operator with that object's type as its operand.

RATIONALE

6 Section 1. INTRODUCTION

These definitions do not preclude "holes" in struct objects. Such holes are in
fact often mandated by alignment and packing requirements. The holes simply do
not participate in representing the (composite) value of an object.

The definition of object does not employ the notion of type. Thus an object has
no type in and of itself. However, since an object may only be designated by an
lvalue (see §3.2.2.1), the phrase "the type of an object" is taken to mean, here and
in the Standard, "the type of the lvalue designating this object," and "the value of
an object" means "the contents of the object interpreted as a value of the type of
the lvalue designating the object."

The concept of multi-byte character has been added to C to support very large
character sets. See §2.2.1.2.

The terms unspecified behavior, undefined behavior, and implementation-defined be­
havior are used to categorize the result of writing programs whose properties the
Standard does not, or cannot, completely describe. The goal of adopting this cate­
gorization is to allow a certain variety among implementations which permits quality
of implementation to be an active force in the marketplace as well as to allow certain
popular extensions, without removing the cachet of conformance to the Standard.
Appendix F to the Standard catalogs those behaviors which fall into one of these
three categories.

Unspecified behavior gives the implementor some latitude in translating pro­
grams. This latitude does not extend as far as failing to translate the program.

Undefined behavior gives the implementor license not to catch certain program
errors that are difficult to diagnose. It also identifies areas of possible conforming
language extension: the implementor may augment the language by providing a
definition of the officially undefined behavior.

Implementation-defined behavior gives an implementor the freedom to choose
the appropriate approach, but requires that this choice be explained to the user.
Behaviors designated as implementation-defined are generally those in which a user
could make meaningful coding decisions based on the implementation definition.
Implementors should bear in mind this criterion when deciding how extensive an
implementation definition ought to be. As with unspecified behavior, simply failing
to translate the source containing the implementation-defined behavior is not an
adequate response.

1.7 Compliance

The three-fold definition of compliance is used to broaden the population of con­
forming programs and distinguish between conforming programs using a single im­
plementation and portable conforming programs.

A strictly conforming program is another term for a maximally portable program.
The goal is to give the programmer a fighting chance to make powerful C programs
that are also highly portable, without demeaning perfectly useful C programs that
happen not to be portable. Thus the adverb strictly.

1.7. Compliance 7

By defining conforming implementations in terms of the programs they accept,
the Standard leaves open the door for a broad class of extensions as part of a
conforming implementation. By defining both conforming hosted and conforming
freestanding implementations, the Standard recognizes the use of C to write such
programs as operating systems and ROM-based applications, as well as more conven­
tional hosted applications. Beyond this two-level scheme, no additional subsetting
is defined for C, since the Committee felt strongly that too many levels dilutes the
effectiveness of a standard.

Conforming progmm is thus the most tolerant of all categories, since only one
conforming implementation need accept a program to rule it conforming. The pri­
mary limitation on this license is §2.1.1.3.

Diverse sections of the Standard comprise the "treaty" between programmers
and implementors regarding various name spaces - if the programmer follows the
rules of the Standard the implementation will not impose any further restrictions or
surprises:

• A strictly conforming program can use only a restricted subset of the identifiers
that begin with underscore (§4.1.2). Identifiers and keywords are distinct
(§3.1.1) .. Otherwise, programmers can use whatever internal names they wish;
a conforming implementation is guaranteed not to use conflicting names of
the form reserved to the programmer. (Note, however, the class of identifiers
which are identified in §4.13 as possible future library names.)

• The external functions defined in, or called within, a portable program can be
named whatever the programmer wishes, as long as these names are distinct
from the external names defined by the Standard library (§4). External names
in a maximally portable program must be distinct within the first 6 characters
mapped into one case (§3.1.2).

• A maximally portable program cannot, of course, assume any language key­
words other than those defined in the Standard.

• Each function called within a maximally portable program must either be
defined within some source file of the program or else be a function in the
Standard library.

One proposal long entertained by the Committee was to mandate that each im­
plementation have a translate-time switch for turning off extensions and making
a pure Standard-conforming implementation. It was pointed out, however, that
virtually every translate-time switch setting effl~ctjvely creates a different "imple­
mentation," however close may be the effect of translating with two different switch
settings. Whether an implementor chooses to offer a family of conforming imple­
mentations, or to offer an assortment of non-conforming implementations along with
one that conforms, was not the business of the Committee to mandate. The Stan­
dard therefore confines itself to describing conformance, and merely suggests areas
where extensions will not compromise conformance.

8 Section 1. INTRODUCTION

Other proposals rejected more quickly were to provide a validation suite, and to
provide the source code for an acceptable library. Both were recognized to be major
undertakings, and both were seen to compromise the integrity of the Standard by
giving concrete examples that might bear more weight than the Standard itself. The
potential legal implications were also a concern.

Standardization of such tools as program consistency checkers and symbolic
debuggers lies outside the mandate of the Committee. However, the Committee
has taken pains to allow such programs to work with conforming programs and
implementations.

1.8 Future directions

SectioIL 2

ENVIRONMENT

Because C has seen widespread use as a cross-compiled language, a clear distinction
must be made between translation and execution environments. The preprocessor,
for instance, is permitted to evaluate the expression in a lif statement using the
long integer arithmetic native to the translation environment: these integers must
comprise at least 32 bits, but need not match the number of bits in the execution
environment. Other translate-time arithmetic, however, such as type casting and
floating arithmetic, must more closely model the execution environment regardless
of translation environment.

2.1 Conceptual models

The as if principle is invoked repeatedly in this Rationale. The Committee has found
that describing; various aspects of the C language, library, and environment in terms
of concrete models best serves discussion and presentation. Every attempt has been
made to craft the models so that implementors are constra.ined only insofar as they
must bring about the same result, as if they had implemented the presentation
model; often enough the clearest model would make for the worst implementation.

2.1.1 Translation environment

2.1.1.1 Program structure

The terms source file, external linkage, linked, libraries, and executable progmm all
imply a conventional compiler-linker combination. All of these concepts have shaped
the semantics of C, however, and are inescapable even in an interpreted environment.
Thus, while implementations are not required to support separate compilation and
linking with libraries, in some ways they must behave as if they do.

2.1.1.2 Translation phases

Perhaps the greatest undesirable diversity among existing C implementations can be
found in preprocessing. Admittedly a distinct and primitive language superimposed

9

10 Section 2. ENVIRONMENT

upon C, the preprocessing commands accreted over time, with little central direction,
and with even less precision in their documentation. This evolution has resulted in
a variety of local features, each with its ardent adherents: the Base Document offers
little clear basis for choosing one over the other.

The consensus of the Committee is that preprocessing should be simple and
overt, that it should sacrifice power for clarity. For instance, the macro invocation
f(a, b) should assuredly have two actual arguments, even if b expands to c, d;
and the formal definition of f must call for exactly two arguments. Above all,
the preprocessing sub-language should be specified precisely enough to minimize or
eliminate dialect formation.

To clarify the nature of preprocessing, the translation from source text to tokens
is spelled out as a number of separate phases. The separate phases need not actually
be present in the translator, but the net effect must be as if they were. The phases
need not be performed in a separate preprocessor, although the definition certainly
permits this common practice. Since the preprocessor need not know anything
about the specific properties of the target, a machine-independent implementation
is permissible.

The Committee deemed that it was outside the scope of its mandate to require
the output of the preprocessing phases be available as a separate translator output
file.

The phases of translation are spelled out to resolve the numerous questions
raised about the precedence of different parses. Can a #define begin a comment?
(No.) Is backslash/new-line permitted within a trigraph? (No.) Must a comment
be contained within one #include file? (Yes.) And so on. The Rationale section
on preprocessing (§3.8) discusses the reasons for many of the particular decisions
which shaped the specification of the phases of translation.

A backslash immediately before a new-line has long been used to continue string
literals, as well as preprocessing command lines. In the interest of easing machine
generation of C, and of transporting code to machines with restrictive physical
line lengths, the Committee generalized this mechanism to permit any token to be
continued by interposing a backslash/new-line sequence.

2.1.1.3 Diagnostics

By mandating some form of diagnostic message for any program containing a syntax
error or constraint violation, the Standard performs two important services. First, it
gives teeth to the concept of erroneous program, since a conforming implementation
must distinguish such a program from a valid one. Second, it severely constrains
the nature of extensions permissible to a conforming implementation.

The Standard says nothing about the nature of the diagnostic message, which
could simply be "syntax error", with no hint of where the error occurs. (An
implementation must, of course, describe what translator output constitutes a di­
agnostic message, so that the user can recognize it as such.) The Committee ulti-

2.1. Conceptual models 11

mately decided that any diagnostic activity beyond this level is an issue of quality of
implementation, and that market forces would encourage more useful diagnostics.
Nevertheless, the Committee felt that at least some significant class of errors must
be diagnosed, and the class specified should be recognizable by all translators.

The Standard does not forbid extensions, but such extensions must not inval­
idate strictly conforming programs. The translator must diagnose the use of such
extensions, or allow them to be disabled as discussed in (Rationale) §1.7. Other­
wise, extensions to a conforming C implementation lie in such realms as defining
semantics for syntax to which no semantics is ascribed hy the Standard, or giving
meaning to undefined behavior.

2.1.2 Execution environments

The definition of program startup in the Standard is designed to permit initialization
of static storage by executable code, as well as by data translated into the program
image.

2.1.2.1 Freestanding environment

As little as possible is said about freestanding environments, since little is served by
constraining them.

2.1.2.2 Hosted environment

The properties required of a hosted environment are spelled out in a fair amount of
detail in order to give programmers a reasonable chance of writing programs which
are portable among such environments.

The behavior of the arguments to main, and of the interaction of exit, main
and atexit (see §4.10A.2) has been codified to curb some unwanted variety in the
representation of argv strings, and in the meaning of values returned by main.

The specification of argc and argv as arguments to main recognizes extensive
prior practice. argv [argc] is required to be a null pointer to provide a redundant
check for the end of the list, also OLl the basis of common practice.

main is tIe only function that may portably be declared either with zero or two
arguments. (The number of arguments must ordinarily match exactly between invo­
cation and definition.) This special case simply recognizes the widespread practice
of leaving off the arguments to main when the program does not access the program
argument strings. vVhile many implementations support more than two arguments
to main, such practice is neither blessed nor forbidden by the Standard; a program
that defines main with three arguments is not strictly conforming. (See Standard
Appendix F.;5.l.)

Command line I/O redirection iii not mandated by the Standard; this was deemed
to be a feature of the underlying operating system rather than the C language.

RATfONALE

12 Section 2. ENVIRONMENT

2.1.2.3 Program execution

Because C expressions can contain side effects, issues of sequencing are importan t
in expression evaluation. (See §3.3.) Most operators impose no sequencing require­
ments, but a few operators impose sequence points upon the evaluation: comma,
logical-AND, logical-OR, and conditional. For example, in the expression (i = 1,
a[i] = 0) the side effect (alteration to storage) specified by i = 1 must be com­
pleted before the expression a [i] = 0 is evaluated.

Other sequence points are imposed by statement execution and completion of
evaluation of a full expression. (See §3.6). Thus in fn(++a), the incrementation of
a must be completed before fn is called. In i = 1; a [i] = 0; the side-effect of
i = 1 must be complete before a[i] = 0 is evaluated.

The notion of agreement has to do with the relationship between the abstract
machine defining the semantics and an actual implementation. An agreement point
for some object or class of objects is a sequence point at which the value of the
object(s) in the real implementation must agree with the value prescribed by the
abstract semantics.

For example, compilers that hold variables in registers can sometimes drastically
reduce execution times. In a loop like

sum = 0;

for (i = 0; i < N; ++i)
sum += a[i];

both sum and i might be profitably kept in registers during the execution of the
loop. Thus, the actual memory objects designated by sum and i would not change
state during the loop.

Such behavior is, of course, too loose for hardware-oriented applications such as
device drivers and memory-mapped I/O. The following loop looks almost identical
to the previous example, but the specification of volatile ensures that each assign­
ment to *ttyport takes place in the same sequence, and with the same values, as
the (hypothetical) abstract machine would have done.

volatile short *ttyport;
1* ... *1
for (i = 0; i < N; ++i)

*ttyport = a[i];

Another common optimization IS to pre-compute common subexpressions. In
this loop:

volatile short *ttyport;
short rnask1, rnask2;

1* ... *1
for (i = 0; i < N; ++i)

*ttyport = a[i] & rnask1 & rnask2;

2.2. Environmental considerations 13

evaluation of the subexpression mask1 &: mask2 could be performed prior to the
loop in the rea,! implementation, assuming that neither mask1 nor mask2 appear as
an operand of the address-of (&:) operator anywhere in the function. In the abstract
machine, of course, this subexpress::on is re-evaluated at each loop iteration, but
the real implementation is not requ ired to mimic this repetitiveness, because the
variables mask1 and mask2 are not volatile and the same results are obtained
either way.

The previous example shows that a subexpression can be pre-computed in the
real implementation. A question sometimes asked regarding optimization is, "Is
the rearrangement still conforming if the pre-computed expression might raise a
signal (such as division by zero)?" Fortunately for optimizers, the answer is "Yes,"
because any evaluation that raises a computational signal has fallen into an undefined
behavior (§3.3), for which any action is allowable.

Behavior is described in terms of an abstract machine to underscore, once again,
that the Standard mandates result;; as if certain mechanisms are used, without
requiring those actual mechanisms in the implementation. The Standard specifies
agreement points at which the value of an object or class of objects in an implemen­
tation must agree with the value ascribed by the abstract semantics.

Appendix B to the Standard lists the sequence points specified in the body of
the Standard.

The class of interactive devices iii intended to include at least asynchronous ter­
minals, or paired display screens and keyboards. An implementation may extend the
definition to include other input and output devices, or even network inter-program
connections, provided they obey the Standard's characterization of interactivity.

2.2 Environmental considerations

2.2.1 Character sets

The Committee ultimately came to remarkable unanimity on the subject of character
set requirements. There was strong sentiment that C should not be tied to ASCII,
despite its heritage and despite the precedent of Ada being defined in terms of ASCII.
Rather, an implementation is required to provide a unique character code for each
of the printable graphics used by C, and for each of the control codes representable
by an escape :3equence. (No particular graphic representation for any character is
prescribed - thus the common Japanese practice of using the glyph ¥ for the C
character I \ I is perfectly legitimate ..) Translation and execution environments may
have different character sets, but each must meet this requirement in its own way.
The goal is to ensure that a conforming implementation C3,n translate a C translator
written in C.

For this reason, and economy 0[' description, source code is described as if it
undergoes the same translation as text that is input by the standard library I/O rou­
tines: each line is terminated by sone new-line character., regardless of its external
representation.

RATIONALE

14 Section 2. ENVIRONMENT

2.2.1.1 Trigraph sequences

Trigraph sequences have been introduced as alternate spellings of some characters
to allow the implementation of C in character sets which do not provide a sufficient
number of non-alphabetic graphics.

Implementations are required to support these alternate spellings, even if the
character set in use is ASCII, in order to allow transportation of code from systems
which must use the trigraphs.

The Committee faced a serious problem in trying to define a character set for C.
Not all of the character sets in general use have the right numbel' of cli araders, nor do
they support the graphical symbols that C users expect to see. For instance, many
character sets for languages other than English resemble ASCll except that codes
used for graphic characters in ASCII are instead used for extra alphabetic characters
or diacritical marks. C relies upon a richer set of graphic characters than most other
programming languages, so the representation of programs in character sets other
than ASCII is a greater problem than for most other programming languages.

The International Standards Organization (ISO) uses three technical terms to
describe character sets: repertoire, collating sequence, and codeset. The repertoire is
the set of distinct printable characters. The term abstracts the notion of printable
character from any particular representation; the glyphs R, 'R, R, R, R, R, and ~ all
represent the same element of the repertoire, upper-case- R, which is distinct from
lower-case-r. Having decided on the repertoire to be used (C needs a repertoire of
96 characters), one can then pick a collating sequence which corresponds to the in­
ternal representation in a computer. The repertoire and collating sequence together
form the codeset.

\Vhat is needed for C is to determine the necessary repertoire, ignore the collating
sequence altogether (it is of no importance to the language), and then find ways of
expressing the repertoire in a way that should give no problems with currently
popular codesets.

C derived its repertoire from the ASCII codeset. Unfortunately the ASCII reper­
toire is not a subset of all other commonly used character sets, and widespread
practice in Europe is not to implement all of ASCII either, but use some parts of
its collating sequence for special national characters.

The solution is an internationally agreed-upon repertoire, in terms of which
an international representation of C can be defined. The ISO has defined such a
standard: ISO 646 describes an invariant subset of ASCII.

The characters in the ASCII repertoire used by C and absent from the ISO 646
repertoire are:

Given this repertoire, the Committee faced the problem of defining representations
for the absent characters. The obvious idea of defining two-character escape se­
quences fails because C uses all the characters which 07'e in the ISO 646 repertoire:

2.2. Environmental considerations 15

no single escape character is available. The best that can be done is to use a trigraph

- an escape digraph followed by a distinguishing character.
?? was selected as the escape digraph because it ii, not used anywhere else

in C (except as noted below); it suggests that something unusual is going on. The
third character was chosen with an eye to graphical similarity to the character being
represented.

The sequence ?? cannot currently occur anywhere in a legal C program except
in strings, cha,racter constants, comments, or header names. The character escape
sequence '\? 1 (see §3.1.3.4) was imroduced to allow two adjacent question-marks
in such contexts to be represented as ?\?, a form distinct from the escape digraph.

The Committee makes no claims that a program written using trigraphs looks
attractive. As a matter of style, it may be wise to surround trigraphs with white
space, so that they stand out better in program text. Some users may wish to define
preprocessing macros for some or all of the trigraph sequences.

QUIET CHANGE

Programs with character sequences such as ??! in string constants,
character constants, or header names will now produce different results.

2.2.1.2 Multibyte characters

The "byte = character" orientation of C works well for text in \Vestern alphabets,
where the size of the character set is under 256. The fit is rather uncomfortable for
languages such as Japanese and Chinese, where the repertoire of ideograms numbers
in the thousands or tens of thousands.

Internally, such character sets can be represented as numeric codes, and it is
merely necessary to choose the appropriate integral type to hold any such character.

Externally, whether in the files manipulated by a program, or in the text of the
source files themselves, a conversion between these large codes and the various byte
media is neceE:sary.

The support in C of large character sets is based on these principles:

• MultibY1;e encodings of large character sets are necessary in I/O operations,
in source text comments, and in source text string and character literals.

• No existing multibyte encoding is mandated in prderence to any other; no
widespread existing encoding should be precluded.

• The null character (I \0 ') may not be used as part of a multibyte encoding,
except :[,Jr the one-byte null character itself. This allows existing functions
which manipulate strings transparently to work with multibyte sequences.

• Shift encodings (which interpret byte sequences in part on the basis of some
state information) must start out in a known (default) shift state under certain
circumstances, such as the start of string literals.

RATIONALE

16 Section 2. ENVIRONMENT

• The minimum number of absolutely necessary library functions is introduced.
(See §4.10.7.)

2.2.2 Character display semantics

The Standard defines a number of internal character codes for specifying "format
effecting actions on display devices," and provides printable escape sequences for
each of them. These character codes are clearly modelled after ASCII control codes,
and the mnemonic letters used to specify their escape sequences reflect this her­
itage. Nevertheless, they are inteinal codes for specifying the format of a display
in an environment-independent manner; they must be written to a text file to effect
formatting on a display device. The Standard states quite clearly that the exter­
nal representation of a text ftIe (or data stream) may well differ from the internal
form, both in character codes and number of characters needed to represent a single
internal code.

The distinction between internal and external codes most needs emphasis with
respect to new-line. ANSI X3L2 (Codes and Character Sets) uses the term to re­
fer to an external code used for information interchange whose display semantics
specify a move to the next line. Both ANSI X3L2 and ISO 646 deprecate the com­
bination of the motion to the next line with a motion to the initial position on the
line. The C Standard, on the other hand, uses new-line to designate the end-of-line
internal code represented by the escape sequence '\n I. While this ambiguity is
perhaps unfortunate, use of the term in the latter sense is nearly universal within
the C community. But the knowledge that this internal code has numerous ex­
ternal representations, depending upon operating system and medium, is equally
widespread.

The alert sequence (' \a') has been added by popular demand, to replace, for
instance, the ASCII BEL code explicitly coded as I \007 I.

Proposals to add' \e' for ASCTT ESC (I \033') w(~re not adopted because other
popular character sets such as EBCDIC have no obvious equivalent. (See §3.1.3.4.)

The vertical tab sequence (, \ v I) was added since many existing implementations
support it, and since it is convenient to have a designation within the language for
all the defined white space characters.

The semantics of the motion control escape sequences carefully avoid the \Vestern
language assumptions that printing advances left··to-right and top-to-bottom.

To avoid the issue of whether an implementation conforms jf it cannot properly
effect vertical tabs (for instance), the Standard emphasizes that the semantics merely
describe intent.

2.2.3 Signals and interrupts

Signals are difficult to specify in a system-independent way. The Committee con­
cluded that about the only thing a strictly conforming program can do in a signal
handler is to assign a value to a volatile static variable which can be written

2.2. Environmental considerations 17

uninterruptedly and promptly return. (The header <signal. h> specifies a type
sig_atomict which can be so written.) It is further guaranteed that a signal han­
dler will not corrupt the automatic storage of an instantiation of any executing
function, even if that function is called within the signal handler.

No such guarantees can be extended to library functions, with the explicit ex­
ceptions of longjmp (§4.6.2.1) and signal (§4.7.1.1), since the library functions
may be arbitrarily interrelated and since some of them have profound effect on the
environment.

Calls to longjmp are problematic, despite the assurances of §4.6.2.1. The signal
could have occurred during the execution of some library function which was in the
process of updating external state and/or static variables.

A second signal for the same handler could occur before the first is processed,
and the Standard makes no guarantees as to what happens to the second signal.

2.2.4 Environmental limits

The Committee agreed that the Standard must say something about certain capa­
cities and limitations, but just how to enforce these treaty points was the topic of
considerable debate.

2.2.4.1 Translation limits

The Standard requires that an implementation be able to translate and compile
some program that meets each of the stated limits. This criterion was felt to give
a useful latitude to the implementor in meeting these limits. While a deficient
implementation could probably contrive a program that meets this requirement, yet
still succeed in being useless, the Committee felt that such ingenuity would probably
require more work than making something useful. The sense of the Committee is
that implementors should not construe the translation limits as the values of hard­
wired parameters, but rather as a set of criteria by which an implementation will
be judged.

Some of the limits chosen represent interesting compromises. The goal was to
allow reasonably large portable programs to be written, without placing excessive
burdens on re;:Lsonably small implementations.

The minimum maximum limit of 257 cases in a switch statement allows coding
of lexical routines which can branch on any character (one of at least 256 values) or
on the value EOF.

2.2.4.2 Numerical limits

In addition to the discussion below, see §4.1.4.

2.2.4.2.1 Si~es of integral types <limits.h> Such a large body ofC code has
been developed for 8-bit byte machines that the integer sizes in such environments

R4TIONALE

18 Section 2. ENVIRONMENT

must be considered normative. The prescribed limits are minima: an implementa­
tion on a machine with 9-bit bytes can be conforming, as can an implementation
that defines int to be the same width as long. The negative limits have been cho­
sen to accommodate ones-complement or sign-magnitude implementations, as well
as the more usual twos-complement. The limits for the maxima and minima of un­
signed types are specified as unsigned constants (e.g., 65535u) to avoid surprising
widenings of expressions involving these extrema.

The macro CHAR_BIT makes available the number of bits in a char object. The
Committee saw little utility in adding such macros for other data types.

The names associated with the short int types (SHRLMIN, etc., rather than
SHORLMIN, etc.) reflect prior art rather than obsessive ahhreviation on the Com­
mittee's part.

2.2.4.2.2 Characteristics of floating types <float. h> The characterization
of floating point follows, with minor changes, that of the FORTRAN standardiza­
tion committee (X3J3).1 The Committee chose to follow the FORTRAN model in
some part out of a concern for FORTRAN-to-C translation, and in large part out
of deference to the FORTRAN committee's greater experience with fine points of
floating point usage. Note that the floating point model adopted permits all com­
mon representations, including sign-magnitude and twos-complement, but precludes
a logarithmic implementation.

Single precision (32-bit) floating point is considered adequate to support a con­
forming C implementation. Thus the minimum maxima constraining floating types
are extremely permissive.

The Committee has also endeavored to accommodate the IEEE 754 floating
point standard by not adopting any constraints on floating point which are contrary
to this standard.

The term FLLMANLDIG stands for "float mantissa digits." The Standard now
uses the more precise term significand rather than mantissa.

lSee X3J3 working document S8-112.

Seetioll 3

LAN(}UAGE

While more formal methods of language deflllition were explored, the Committee
decided early on to employ the style of the Base Document: Backus-Naur Form for
the syntax and prose for the constrCiints and semantics. Anything more ambitious
was considered. to be likely to delay the Standard, and to make it less accessible to
its audience.

3.1 Lexical Elements

The Standard I~ndeavors to bring preprocessing more closely into line with the token
orientation of the language proper. To do so requires that at least some information
about white space be retained through the early phases of translation (see §2.1.1.2).
It also requires that an inverse mapping be defined from tokens back to source
characters (see §3.8.3).

3.1.1 Keywords

Several keywords have been added: const, enum, signed, void, and volatile.

As much as possible, however, new features have been added by overloading ex­
isting keywords, as, for example, long double instead of extended. It is recognized
that each added keyword will requiF' some existing code that used it as an identi­
fier to be rewritten. No meaningful programs arc known to be quietly changed by
adding the new keywords.

The keywords entry, fortran, and asm have not been included since they were
either never used, or are not portable. Uses of fortran and asm as keywords are
noted as common extensions.

3.1.2 Identifiers

While an implementation is not obliged to remember more than the first 31 charac­
ters of an identifier for the purpose of name matching, the programmer is effectively
prohibited from intentionally creating two different identifiers that are the same in

19

20 Section 3. LANGUAGE

the first 31 characters. Implementations may therefore store the full identifier; they
are not obliged to truncate to 31.

The decision to extend significance to 31 characters for internal names was made
with little opposition, but the decision to retain the old six-character case-insensitive
restriction on significance of external names was most painful. While strong senti­
ment was expressed for making C "right" by requiring longer names everywhere, the
Committee recognized that the language must, for years to come, coexist with other
languages and with older assemblers and linkers. Rather than undermine support
for the Standard, the severe restrictions have been retained.

The Committee has decided to label as obsolescent the practice of providing
different identifier significance for internal and external identifers, thereby signalling
its intent that some future version of the C Standard require 31-character case­
sensitive external name significance, and thereby encouraging new implementations
to support such significance.

Three solutions to the external iclentifler length/case problem were explored,
each with its own set of problems:

1. Label any C implementation without at least 31-character, case-sensitive sig­
nzficance in external identifiers as non-standard. This is unacceptable since
the whole reason for a standard is portability, and many systems today simply
do not provide such a name space.

2. Require a C implementation which cannot provide Sl-character, case-sensitive
significance to map long identifiers into the identifier name space that it can
provide. This option quickly becomes very complex for large, multi-source
programs, since a program-wide database has to be maintained for all modules
to avoid giving two different identifiers the same actual external name. It also
reduces the usefulness of source code debuggers and cross reference programs,
which generally work with the short mapped names, since the source-code
name used by the programmer would likely bear little resemblance to the
name actually generated.

3. Require a C implemfCntation which cannot provide 31-character, case-sensitive
significance to rewrite the linker, assembler, debugger, any other language
translators which use the linker, etc. This is not always practical, since
the C implementor might not be providing the linker, etc. Indeed, on some
systems only the manufacturer's linker can be used, either b€~cause the format
of the resulting program file is not documented, or because the abili ty to create
program files is restricted to secure programs.

Because of the decision to restrict significance of external identifiers to six case­
insensitive characters, C programmers are faced with these choices when writing
portable programs:

1. rVIake sure that external identifiers are unique within the first six characters,

3.1. Lexical Elements 21

and use only one case within the name. A unique six-character prefix could be
used, followed by an underscore, followed by a longer, more descriptive name:

extern int a_xvz.xeal_long_name;
extern int a_rwt_real_long_name2;

2. Use the prefix method described above, and then use #define statements to
provide a longer, more descriptive name for the unique name, such as:

#define real_long_name a_xvz_real •. long_name
#define reaLlong,_name2 a_rwt_real_.long_name2

Nate that overuse of this technique might result in exceeding the limit on the
number of allowed #define macros, or some other implementation limit.

3. Use longer and/or multi-case external names, and limit the portability of the
programs to systems that support the longer names.

4. Declare all exported items (or pointers thereto) in a single data structure
and export that structure. The technique can reduce the number of external
identifiers to one per translation unit; member nam,,:lS within the structure are
internal identifiers, hence can have full significance. The principal drawback
of this technique is that functions can only be exported by reference, not by
name; on many systems this entails a run-time overhead on each function call.

QUIET CHANGE

A program that depends upon internal identifiers matching only in the
first (say) eight characters may change to one witb distinct objects for
each variant spelling of the identifier.

3.1.2.1 Scopes of identifiers

The Standard has separated from the overloaded keywords for storage classes the
various concepts of scope, linkage, name space, and storage duration. (See §3.1.2.2,
§3.1.2.3, §3.1.2.4.) This has traditionally been a major area of confusion.

One source of dispute was whether identifiers with external linkage should have
file scope even when introduced within a block. The Base Document is vague on
this point, and has been interpreted differently by different implementations. For
example, the following fragment wou ld be valid in the file scope scheme, while invalid
in the block scope scheme:

typedef struct data d_struct

fire:t(){
extern d_struct func();

1* ... */
}

RATIONALE

22 Section 3. LANGUAGE

second(){
d_struct n = func();

}

While it was generally agreed that it is poor practice to take advantage of an external
declaration once it had gone out of scope, some argued that a translator had to
remember the declaration for checking anyway, so why not acknowledge this? The
compromise adopted was to decree essentially that block scope rules apply, but that
a conforming implementation need not diagnose a failure to redeclare an external
identifier that had gone out of scope (undefined behavior).

QUIET CHANGE

A program relying on file scope rules may be valid under block scope
rules but behave differently -- for instance, if d_struct were defined as
type float rather than struct data in the example above.

Although the scope of an identifier in a function prototype begins at its declaration
and ends at the end of that function's declarator, this scope is of course ignored by
the preprocessor. Thus an identifier in a prototype having the same name as that
of an existing macro is treated as an invocation of that macro. For example:

#define status 23
void exit(int status);

generates an error, since the prototype after preprocessing becomes

void exit(int 23);

Perhaps more surprising is what happens if status is defined

#define status 0

Then the resulting prototype is

void exit(int [J);

which is syntactically correct but semantically quite different from the intent.

To protect an implementation's header prototypes from such misinterpretation,
the implementor must write them to avoid these surprises. Possible solutions include
not using identifiers in prototypes, or using names (such as __status or _Status) in
the reserved name space.

3.1. Lexical Elements 23

3.1.2.2 Linkages of identifiers

The Standard requires that the first declaration, implicit or explicit, of an identifier
specify (by the presence or absence of the keyword stat ic) whether the identifier
has internal or external linkage. This requirement allows for one-pass compilation
in an implementation which must t,eat internal linkage items differently than ex­
ternallinkage items. An example of such an implementation is one which produces
intermediate Cl,ssembler code, and which therefore must construct names for internal
linkage items to circumvent identifi(~r length and/or case restrictions in the target
assembler.

Existing practice in this area is in.:onsistent. Some imp1.ementations have avoided
the renaming problem simply by rest ricting internal linkage names by the same rules
as for external linkage. Others have disallowed a static declaration followed later by
a defining instance, even though such constructs are necessary to declare mutually
recursive static functions. The requirements adopted in the Standard may call for
changes in some existing programs, but allow for maximum flexibility.

The definition model to be used for objects with external linkage was a major
standardization issue. The basic problem was to decide which declarations of an
object define storage for the object, and which merely reference an existing object.
A related problem was whether muhiple definitions of storage are allowed, or only
one is acceptable. Existing implen~entations of C exhibit at least four different
models, listed here in order of increasing restrictiveness:

Common Every object declaration with external linkage (whether or not the key­
word extern appears in the declaration) creates a dE~finition of storage. When
all of the modules are combined together, each definition with the same name
is located at the same address j n memory. (The name is derived from common
storage in FORTRAN.) This model was the intent of the original designer of
C, Denni.s Ritchie.

Relaxed Ref/Def The appearance of the keyword extern (whether it is used out­
side of the scope of a function or not) in a declaration indicates a pure reference
(ref), which does not define storage. Somewhere in all of the translation units,
at least one definition (def) of the object must exist. An external definition
is indicated by an object declaration in file scope containing no storage class
indication. A reference withou t a corresponding definition is an error. Some
implementations also will not generate a reference for items which are declared
with the extern keyword, but 2.re never used within the code. The UNIX oper­
ating system C compiler and linker implement this model, which is recognized
as a common extension to the C language (F.4.11). UNIX C programs which
take advantage of this model are standard conforming in their environment,
but are Lot maximally portabk.

Strict Ref/Def This is the same ai' the relaxed ref/def model, save that only one
definition is allowed. Again, some implementations may decide not to put out

RATIONALE

24 Section 3. LANGUAGE

references to items that are not used. This is the model specified in K&R and
in the Base Document.

Initialization This model requires an explicit initialization to define storage. All
other declarations are references.

Figure 3.1 demonstrates the differences between the models.
The model adopted in the Standard is a combination of features of the strict

ref/ def model and the initialization model. As in the strict ref/ def model, only a
single translation unit contains the definition of a given object -~- many environ­
ments cannot effectively or efficiently support the "distributed definition" inherent
in the common or relaxed ref/def approaches. However, either an initialization, or
an appropriate declaration without storage class specifter (see §3.7), serves as the
external definition. This composite approach was chosen to accommodate as wide
a range of environments and existing implementations as possible.

3.1.2.3 Name spaces of identifiers

Implementations have varied considerably in the number of separate name spaces
maintained. The position adopted in the Standard is to permit as many separate
name spaces as can be distinguished by context, except that all tags (struct, union.
and enum) comprise a single name space.

3.1.2.4 Storage durations of objects

It was necessary to clarify the effect on automatic storage of jumping into a block
that declares local storage. (See §3.6.2.) While many implementations allocate
the maximum depth of automatic storage upon entry to a function, some explicitly
allocate and deallocate on block entry and exit. The latter are required to assure that
local storage is allocated regardless of the path into the block (although initializers
in automatic declarations are not executed unless the block is entered from the top).

To effect true reentrancy for functions in the presence of signals raised asyn­
chronously (see §2.2.3), an implementation must assure that the storage for func­
tion return values has automatic duration. This means that the caller must allocate
automatic storage for the return value and communicate its location to the called
function. (The typical case of return registers for small types conforms to this re­
quirement: the calling convention of the implementation implicitly communicates
the return location to the called function.)

3.1.2.5 Types

Several new types have been added:

void
void *
signed char

3.1. Lexical Elements 25

Figure 3.1: Comparison of identifier linkage models

[£lle 1
:

common

extern int i' extern int i', ,
m;:dn() { secondO {

i = l' third(i);,
secondO; }

}

Relaxed Ref/Def

int i; int i',
m;:Lin() { secondO {

I i = l' third(i);
Ii ,

I secondO; }
}

Strict Ref/Def
I

int i' exte:rn int i', ,
mainO { secondO {

i = l' third(i);,
secondO; }

}

Initializer

int i = O· int i;,
mcLinO { secondO {

i = l' third(i);,
secondO; }

}
I

[Model

RATIONALE

26

unsigned char
unsigned short
unsigned long
long double

New designations for existing types have been added:

signed short for short
signed int for int
signed long for long

Section 3. LA .f'<T(;UAGE

void is used primarily as the typernark for a function which returns no result. It
may also be used, in any context where the value of an expression is to be discardecL
to indicate explicitly that a value is ignored by writing the cast (void). Finally, a
function prototype list that has no arguments is written as f (void), because f ()

retains its old meaning that nothing is said about the arguments.
A "pointer to void," void *, is a generic pointer, capable of pointing to any

(data) object without truncation. A pointer to void must have the same represen­
tation and alignment as a pointer to character; the intent of this rule is to allow
existing programs which call library functions (such as memcpy and free) to con­
tinue to work. A pointer to void may not be dereferenced, although such a pointer
may be converted to a normal pointer type which may be dereferenced. Pointers to
other types coerce silently to and from void * in assignments, fu fiction prototypes,
comparisons, and conditional expressions, whereas other pointer type clashes are
invalid. It is undefined what will happen if a pointer of some type is converted to
void *, and then the void * pointer is mnverted to a type with a stricter alignment
requirement.

Three types of char are specified: signed, plain, and unsigned. A plain char
may be represented as either signed or unsigned, depending upon the implementa­
tion, as in prior practice. The type signed char was introduced to make available
a one-byte signed integer type on those systems which implement plain char as
unsigned. For reasons of symmetry, the keyword signed is allowed as part of the
type name of other integral types.

Two varieties of the integral types are specified: signed and unsigned. If neither
specifier is used, signed is assumed. In the Base Document the only unsigned type
is unsigned into

The keyword unsigned is something of a misnomer, suggesting as it does arith­
metic that is non-negative but capable of overflow. The semantics of the C type
unsigned is that of modulus, or wrap-around, arithmetic, for which overflow has
no meaning. The result of an unsigned arithmetic operation is thus alwaYi3 defined,
whereas the result of a signed operation may (in principle) be undefined. In prac­
tice, on twos-complement mac:hines, both types often give the same result for all
operators except division, modulus, right shift, and comparisons. lIenee there has
been a lack of sensitivity in the C community to the differences bct\vecll signed and
unsigned arithmetic (see §3.2.1.1).

3.1. Lexical Elements 27

The Committee has explicitly restricted the C language to binary architectures,
on the grounds that this stricture was implicit in any case:

• Bit-fields are specified by a number of bits, with no mention of "invalid integer"
representation. The only reasonable encoding for such bit-fields is binary.

• The integer formats for printf mggest no provision for "illegal integer" values,
implying that any result of bit wise manipulation produces an integer result
which can be printed by print:!'.

• All methods of specifying integer constants - decimal, hex, and octal ­
specify an integer value. No method independent of integers is defined for
specifying "bit-string constants." Only a binary encoding provides a complete
one-to-one mapping between bit strings and integer values.

The restriction to "binary numeration systems" rules out such curiosities as Gray
code, and makes possible arithmetic definitions of the bitwise operators on unsigned
types (see §3.3.3.3, §3.3.7, §3.3.10, §3.3.11, §3.3.12).

A new floating type long double has been added to C. The long double type
must offer at least as much precision as the type double. Several architectures
support more than two floating types and thus can map a distinct machine type
onto this additional C type. Several architectures which only support two float­
ing point types can also take advantage of the three C types by mapping the less
precise type onto float and double" and designating the more precise type long
double. Architectures in which this mapping might be desirable include those in
which single-precision floats offer at least as much precision as most other ma­
chines's double-precision, or those on which single-precision is considerably more
efficient than double-precision. Thus the common C floating types would map onto
an efficient implementation type, but the more precise type would still be available
to those programmers who require it:, use.

To avoid confusion, long float as a synonym for double has been retired.

Enumerations permit the declaration of named constants in a more convenient and
structured fashion than #define's. Both enumeration constants and variables be­
have like integer types for the sake of type checking, however.

The Committee considered several alternatives for enumeration types in C:

1. leave them out;

2. include them as definitions of integer constants;

3. include them in the weakly typ,,~d form of the UNIX C compiler;

4. include them with strong typing, as, for example, in Pascal.

The Committee adopted the second alternative on the grounds that this approach
most clearly re[ects common practicl~. Doing away with enumerations altogether
would invalidate a fair amount of existing code; stronger typing than integer creates
problems, for instance, with arrays in dexed by enumerations.

RATIONALE

28 Section 3. LANGUAGE

3.1.2.6 Compatible type and composite type

The notions of compatible types and composite type have been introduced to discuss
those situations in which type declarations need not be identical. These terms are
especially useful in explaining the relationship between an incomplete type and a
complete type.

Structure, union, or enumeration type declarations in two different translation
units do not formally declare the same type, even if the text of these declarations
come from the same include file, since the translation units are themselves disjoint.
The Standard thus specifies additional compatibility rules for such types, so that if
two such declarations are sufficiently similar they are compatible.

3.1.3 Constants

In folding and converting constants, an implementation must use at least as much
precision as is provided by the target environment. However, it is not required to use
exactly the same precision as the target, since this would require a cross compiler
to simulate target arithmetic at translation time.

The Committee considered the introduction of structure constants. Although it
agreed that structure literals would occasionally be useful, its policy has been not to
invent new features unless a strong need exists. Since the language already allows
for initialized canst structure objects, the need for inline anonymous structured
constants seems less than pressing.

Several implementation difficulties beset structure constants. All other forms of
constants are "self typing" ->- the type of the constant is evident from its lexical
structure. Structure constants would require either an explicit type mark, or typing
by context; either approach is considered to require increased complexity in the
design of the translator, and either approach would also require as much, if not
more, care on the part of the programmer as using an initialized structure object.

3.1.3.1 Floating constants

Consistent with existing practice, a floating point constant has been defined to have
type double. Since the Standard now allows expressions that contain only float
operands to be performed in float arithmetic (see §3.2.1.5) rather than double, a
method of expressing explicit float constants is desirable. The new long double
type raises similar issues.

Thus the F and L suffixes have been added to convey type information with
floating constants, much like the L suffix for long integers. The default type of
floating constants remains double, for compatibility with prior practice. Lower
case f and 1 are also allowed as suffixes.

Note that the run-time selection of the decimal point character by setlocale
(§4.4.1) has no effect on the synta..x of C source text: the decimal point character is

always period.

3.1. Lexical Elements 29

3.1.3.2 Integer constants

The rule that the default type of a decimal integer constant is either int, long, or
unsigned lon.g, depending on which type is large enough to hold the value without
overflow, simplifies the use of constants.

The suffixes U and u have been a,dded to specify unsigned numbers.
Unlike decimal constants, octal and hexadecimal constants too large to be ints

are typed as unsigned int (if within range of that type), since it is more likely that
they represent bit patterns or masks, which are generally best treated as unsigned,
rather than "real" numbers.

Little support was expressed for the old practice of permitting the digits 8 and 9
in an octal constant, so it has been dropped.

A proposal to add binary constants was rejected due to lack of precedent and
insufficient utility.

Despite a concern that a lower-case L could be taken for the numeral one at the
end of an integral (or floating) literal, the Committee rejected proposals to remove
this usage, primarily on the grounds of sanctioning existing practice.

The rules given for typing integer constants were carefully worked out in accor­
dance with the Committee's deliberations on integral promotion rules (see §3.2.1.1).

QUIET CHANGE

Unsuffixed integer constants may have different types. In K&R, unsuf­
fixed decimal constants greater than INLMAX, and unsuffixed octal or
hexadecimal constants greater than UINLMAX are of type long.

3.1.3.3 Enumeration constants

Whereas an enumeration variable may have any integer type that correctly repre­
sents all its values when widened to int, an enumeration constant is only usable as
the value of an expression. Hence its type is simply into (See §3.1.2.5.)

3.1.3.4 Character constants

The digits 8 and 9 are no longer pl~rmitted in octal escape sequences. (Cf. octal
constants, §3.1.3.2.)

The alert escape sequence has bl~en added (see §2.2.2).
Hexadecimal escape sequences, beginning with \x, have been adopted, with

precedent in several existing implementations. (Little sentiment was garnered for
providing \X as well.) The escape s(~quence extends to the first non-hex-digit char­
acter, thus providing the capability of expressing any character constant no matter
how large the type char is. String concatenation can be used to specify a hex-digit
character following a hexadecimal e~ cape sequence:

char a[] = "\xff" "f" ;
char bO = {'\xff', 'f', '\O'};

RATIONALE

30 Section 3. LANGUAGE

These two initializations give a and b the same string value.
The Committee has chosen to reserve all lower case let ters not currently used

for future escape sequences (undefined behavior). All other characters with no cur­
rent meaning are left to the implementor for extensions (implementation-defined
behavior). No portable meaning is assigned to multi-character constants or ones
containing other than the mandated source character set (implementation-defined
behavior).

The Committee considered proposals to add the character constant I \e I to
represent the ASCII ESC (' \033 ') character. This proposal was based upon the use
of ESC as the initial character of most control sequences in common terminal driving
disciplines, such as ANSI X3.64. However, this usage has no obvious counterpart
in other popular character codes, such as EBCDIC. A programmer merely wishing
to avoid having to type \033 to represent the ESC character in an ASCIIjX3.64
environment, may, instead of writing

printf("\033[10;10h'l.d\n", somevalue);

write:

#define ESC "\033"

printf(ESC "[10;10h'l.d\n", somevalue);

Notwithstanding the general rule that literal constants are non-negative l , a char­
acter constant containing one character is effectively preceded with a (char) cast
and hence may yield a negative value if plain char is represented the same as signed
char. This simply reflects widespread past practice and was deemed too dangerous
to change.

QUIET CHANGE

A constant of the form I \078 I is valid, but now has different meaning.
It now denotes a character constant whose value is the (implementation­
defined) combination of the values of the two characters I \07 I and '8 ' .
In some implementations the old meaning is the character whose code is

078 == 0100 == 64.

QUIET CHANGE

A constant of the form I \a I or I \x I now may have different meaning.
The old meaning, if any, was implementation dependent.

An L prefix distinguishes wide character constants. (See §2.2.1.2.)

1-3 is an expression: unary minus with operand 3.

3.1. Lexical Elements 31

3.1.4 String literals

String literals are specified to be unmodifiable. This specification allows imple­
mentations to share copies of strings with identical text, to place string literals in
read-only memory, and perform certain optimizations. However, string literals do
not have the type array of const char, in order to avoid the problems of pointer
type checking, particularly with library functions, since assigning a pointer to const
char to a plain pointer to char is not valid. Those members of the Committee who
insisted that string literals should be modifiable were content to have this practice
designated a common extension (see F.5.5).

Existing code which modifies string literals can be made strictly conforming by
replacing the string literal with an initialized static character array. For instance,

char *p, *make_temp (cha:r *str) i

/* ... */
p = make_temp(l tempXXX");

/* make_temp ov,arwrites the literal */
/ * with a uniqu l3 name */

can be changed to:

char *p, *make_temp(cha:r *str);

/* ... */
{

static char tempI at 13 [] = ltempXXX";
p = make_tempe template);

}

A long string can be continued across multiple lines by using the backslash­
newline line continuation, but this practice requires that the continuation of the
string start in the first position of the next line. To permit more flexible layout,
and to solve some preprocessing problems (see §3.8.3), the Committee introduced
string literal concatenation. Two string literals in a row are pasted together (with
no null character in the middle) to make one combined string literal. This addition
to the C language allows a programmer to extend a string literal beyond the end of
a physical line without having to use the backslash-newline mechanism and thereby
destroying the indentation scheme of the program. An explicit concatenation oper­
ator was not introduced because the concatenation is a lexical construct rather than
a run-time operation.

without concatenation:

/* say the column is this wide */
alpha = " abcdefghijklm\

nopqrstuvwxyz"

with concatenation:

RATIONALE

32 Section 3. LANGUAGE

1* say the column is this wide *1
alpha = "abcdefghijklm"

"nopqrstuvwxyz";

QUIET CHANGE

A string of the form "\078" is valid, but now has different meaning. (See
§3.1.3.)

QUIET CHANGE

A string of the form "\a" or "\x" now has different meaning. (See
§3.1.3.)

QUIET CHANGE

It is neither required nor forbidden that identical string literals be rep­
resented by a single copy of the string in memory; a program depending
upon either scheme may behave differently.

An L prefix distinguishes wide string literals. A prefix (as opposed to suffix)
notation was adopted so that a translator can know at the start of the processing
of a long string literal whether it is dealing with ordinary or wide characters. (See
§2.2.1.2.)

3.1.5 Operators

Assignment operators of the form =+, described as old fashioned even in K&R, have
been dropped.

The form += is now defined to be a single token, not two, so no white space is
permitted within it; no compelling case could be made for permitting such white
space.

QUIET CHANGE

Expressions of the form x=-3 change meaning with the loss of the old­
style assignment operators.

The operator # has been added in preprocessing statements: within a #define it
causes the macro argument following to bE! converted to a string literal.

The operator ## has also been added in preprocessing statements: within a
#define it causes the tokens on either side to be pasted to make a single new token.
See §3.8.3 for further discussion of these preprocessing operators.

3.1. Lexical Elements

3.1.6 Punctuators

33

The punctuator .. , (ellipsis) has been added to denote a variable number oftrailing
a.rguments in a function prototype. (See §3.5.4.3.)

The constraint that certain punctuators must occur in pedrs (and the similar con­
straint on certain operators in §3.1.5) only applies after preprocessing. Syntactic
constraints are checked during syntactic analysis, and this follows preprocessing.

3.1. 7 Header names

Header names in #include directives obey distinct tokenization rules; hence they
are identified as distinct tokens. Attempting to treat quote-enclosed header names
as string literals creates a contorted description of preprocessing, and the problems
of treating ang;le- bracket-enclosed header names as a sequence of C tokens is even
more severe.

3.1.8 Preprocessing numbers

The notion of preprocessing numbers has been introduced to simplify the description
of preprocessing. It provides a means of talking about the tokenization of strings
that look like numbers, or initial substrings of numbers, prior to their semantic
interpretation. In the interests of keeping the description simple, occasional spurious
forms are scanned as preprocessing numbers - Ox123E+l is a single token under the
rules. The Committee felt that it was better to tolerate such anomalies than burden
the preprocessor with a more exact, and exacting, lexical specification. It felt that
this anomaly was no worse than the principle under which the characters a+++++b

are tokenized as a ++ ++ + b (an invalid expression), even though the tokenization
a ++ + ++ b would yield a syntactically correct expression. In both cases, exercise
of reasonable precaution in coding style avoids surprises.

3.1.9 COlnnients

The Committee considered proposals to allow comments to nest. The main argu­
ment for nesting comments is that it would allow programmers to "comment out"
code. The Committee rejected this proposal on the grounds that comments should
be used for adding documentation to a program, and that preferable mechanisms
already exist for source code exclusion. For example,

#if 0

1* this code is bracketed out because .. ' *1
code_to_be_excluded();
#end:.f

Preprocessing directives such as this prevent the enclosed code from being scanned
by later translation phases. Bracketed material can include comments and other,
nested, regions of bracketed code.

RATIONALE

34 Section 3. LANGUAGE

Another way of accomplishing these goals is with an if statement:

if (0) {

/* this code is bracketed out because ... */
code_to_be_excluded();

}

Many modern compilers will generate no code for this if statement.

3.2 Conversions

3.2.1 Arithmetic operands

3.2.1.1 Characters and integers

Since the publication of K&R, a serious divergence has occurred among implemen­
tations of C in the evolution of integral promotion rules. Implementations fall into
two major camps, which may be characterized as unsigned preserving and value
preserving. The difference between these approaches centers on the treatment of
unsigned char and unsigned short, when widened by the integral promotions,
but the decision has an impact on the typing of constants as well (see §3.1.3.2).

The unsigned preserving approach calls for promoting the two smaller unsigned
types to unsigned into This is a simple rule, and yields a type which is independent
of execution environment.

The value preserving approach calls for promoting those types to signed int,
if that type can properly represent all the values of the original type, and otherwise
for promoting those types to unsigned into Thus, if the execution environment
represents short as something smaller than int, unsigned short becomes int;
otherwise it becomes unsigned into

Both schemes give the same answer in the vast majority of cases, and both
give the same effective result in even more cases in implementations with twos­
complement arithmetic and quiet wraparound on signed overflow - that is, in most
current implementations. In such implementations, differences between the two only
appear when these two conditions are both true:

1. An expression involving an unsigned char or unsigned short produces an
int-wide result in which the sign bit is set: i.e., either a unary operation on
such a type, or a binary operation in which the other operand is an int or
"narrower" type.

2. The result of the preceding expression is used in a context in which its signed­
ness is significant:

• sizeof (int) < sizeof (long) and it is in a context where it must be
widened to a long type, or

3.2. Conversions 35

• it is the left operand of the right-shift operator (in an implementation
wh·ere this shift is defined as arithmetic), or

• it is either operand of /, 'I., <, <=, >, or >=.

In such circumstances a genuine ambiguity of interpretation arises. The result
must be dubbed questionably signed, since a case can be made for either the signed or
unsigned interpretation. Exactly the same ambiguity arises whenever an unsigned
int confronts a signed int across an operator, and the signed int has a negative
value. (Neither scheme does any better, or any worse, in resolving the ambiguity
of this confrontation.) Suddenly, the negative signed int becomes a very large
unsigned int, which may be surprising - or it may be exactly what is desired by
a knowledgable programmer. Of course, all of these ambiguities can be avoided by
a judicious use of casts.

One of the important outcomes of exploring this problem is the understanding
that high-quality compilers might do well to look for such questionable code and
offer (optional) diagnostics, and that conscientious instructors might do well to warn
programmers of the problems of implicit type conversions.

The unsigned preserving rules greatly increase the number of situations where
unsigned int confronts signed int to yield a questionably signed result, whereas
the value preEerving rules minimize such confrontations. Thus, the value preserving
rules were considered to be safer for the novice, or unwary, programmer. After much
discussion, th·e Committee decided in favor of value preserving rules, despite the fact
that the UNIX C compilers had evolved in the direction of unsigned preserving.

QUIET CHANGE

A program that depends upon unsigned preserving arithmetic conver­
sions will behave differently, probably without complaint. This is con­
sidered the most serious sem2,ntic change made by the Committee to a
widespread current practice.

The Standard clarifies that the integral promotion rules also apply to bit-fields.

3.2.1.2 Signed and unsigned integers

Precise rules are now provided for converting to and from unsigned integers. On a
twos-complement machine, the operation is still virtual (no change of representation
is required), but the rules are now stated independent of representation.

3.2.1.3 Floating and integral

There was strong agreement that floating values should truncate toward zero when
converted to an integral type, the specification adopted in the Standard. Although
the Base Document permitted negative floating values to truncate away from zero,
no Committee member knew of current hardware that functions in such a manner. 2

2We have since been informed of one such implementation.

RATIONALE

36 Section 3'. LANGUAGE

3.2.1.4 Floating types

The Standard, unlike the Base Document, does not require rounding in the double
to float conversion. Some widely used IEEE floating point processor chips control
floating to integral conversion with the same mode bits as for double-precision to
single-precision conversion; since truncation-toward-zero is the appropriate setting
for C in the former case, it would be expensive to require such implementations to
round to float.

3.2.1.5 Usual arithmetic conversions

The rules in the Standard for these conversions are slight modifications of those
in the Base Document: the modifications accommodate the added types and the
value preserving rules (see §3.2.1.1). Explicit license has been added to perform
calculations in a "wider" type than absolutely necessary, since this can sometimes
produce smaller and faster code (not to mention the correct answer more often).
Calculations can also be performed in a "na,rrower" type, by the as if rule, so long
as the same end result is obtained. EJplicit casting can always be used to obtain

exactly the intermediate types required.

The Committee relaxed the requirement that float operands be converted to
double. An implementation may still choose to convert.

QUIET CHANGE

Expressions with float operands may now be computed at lower preci­
sian. The Base Document specifled that all floating point operations be
done in double.

3.2.2 Other operands

3.2.2.1 Lvalues and function designators

A difference of opinion within the C community has centered around the meaning
of lvalue, one group considering an lvalue to be any kind of object locator, another
group holding that an lvalue is meaningful on the left side of an assigning operator.
The Committee has adopted the definition of lvalue as an object locator. The term
modifiable lvalue is used for the second of the above concepts.

The role of array objects has been a classic source of confusion in C, in large
part because of the numerous contexts in which an array reference is converted to
a pointer to its first element. 'Vhile this conversion neatly handles the semantics
of subscri pting, the fact that a [i] is itself a modifiable Ivalue while a is not has
puzzled many students of the language. A more precise description has therefore
been incorporated in the Standard, in the hopes of combatting this confusion.

3.2. Conversions

3.2.2.2 void

37

The description of operators and expressions is simplified by saying that void yields
a value, with the understanding that the value has no representation, hence requires
no storage.

3.2.2.3 Pointers

C has now been implemented on a wide range of architectures. While some of
these architectures feature uniform pointers which are the size of some integer type,
maximally portable code may not assume any necessary correspondence between
different pointer types and the integral types.

The use of void * ("pointer to void") as a generic object pointer type is an
invention of the Committee. Adoption of this type was stimulated by the desire
to specify function prototype arguments that either quietly convert arbitrary point­
ers (as in fread) or complain if the argument type does not exactly match (as in
strcmp). Nothing is said about pointers to functions, which may be incommensurate
with object pointers and/or integers.

Since pointE)rs and integers are now considered incomm€msurate, the only integer
that can be safely converted to a pointer is the constant O. The result of converting
any other integer to a pointer is machine dependent.

Consequences of the treatment of pointer types in the Standard include:

• A pointer to void may be converted to a pointer to an object of any type.

• A pointer to any object of any type may be converted to a pointer to void.

• If a pointer to an object is converted to a pointer to void and back again to
the original pointer type, the result compares equal to original pointer.

• It is invalid to convert a pointer to an object of any type to a pointer to an
object of a different type without an explicit cast.

• Even with an explicit cast, it is invalid to convert a function pointer to an
object pointer or a pointer to void, or vice-versa.

• It is invalid to convert a pointer to a function of one type to a pointer to a
function of a different type without a cast.

• Pointers to functions that have different parameter-type information (includ­
ing the "old-style" absence of parameter-type information) are different types.

Implicit in the Standard is the notion of invalid pointers. In discussing pointers, the
Standard typically refers to "a pointer to an object" or "a pointer to a function" or
"a null pointer." A special case in address arithmetic allows for a pointer to just
past the end of an array. Any other pointer is invalid.

RATIONALE

38 Section 3. LANGUAGE

An invalid pointer might be created in several ways. An arbitrary value can be
assigned (via a cast) to a pointer variable. (This could even create a valid pointer,
depending on the value.) A pointer to an object becomes invalid if the memory
containing the object is deallocated. Pointer arithmetic can produce pointers outside
the range of an array.

Regardless how an invalid pointer is created, any use of it yields undefined be­
havior. Even assignment, comparison with a null pointer constant, or comparison
with itself, might on some systems result in an exception.

Consider a hypothetical segmented architecture, on which pointers comprise a
segment descriptor and an offset. Suppose that segments are relatively small, so
that large arrays are allocated in multiple segments. While the segments are valid
(allocated, mapped to real memory), the hardware, operating system, or C imple­
mentation can make these multiple segments behave like a single object: pointer
arithmetic and relational operators use the defined mapping to impose the proper
order on the elements of the array. Once the memory is deallocated, the mapping
is no longer guaranteed to exist; use of the segment descriptor might now cause an
exception, or the hardware addressing logic might return meaningless data.

3.3 Expressions

Several closely-related topics are involved in the precise specification of expression
evaluation: precedence, associativity, grouping, sequence points, agreement points,
order of evaluation, and interleaving. The latter three terms are discussed in §2.1.2.3.

The rules of precedence are encoded into the syntactic rules for each operator.
For example, the syntax for additive-expression includes the rule

additive-expression + multiplicative-expression

which implies that a+b*c parses as a+ (b*c). The rules of associativity are similarly
encoded into the syntactic rules. For example, the syntax for assignment-expression
includes the rule

unary-expression assignment-opemtor assignment-expression

which implies that a=b=c parses as a= (b=c) .

With rules of precedence and associativity thus embodied in the syntax rules, the
Standard specifies, in general, the grouping (association of operands with operators)
in an expression.

The Base Document describes C as a language in which the operands of succes­
sive identical commutative associative operators can be regrouped. The Committee
has decided to remove this license from the Standard, thus bringing C into accord
with most other major high-level languages.

This change was motivated primarily by the desire to make C more suitable
for floating point programming. Floating point arithmetic does not obey many of
the mathematical rules that real arithmetic does. For instance, the two expressions

3.3. Expressions 39

(a+b)+c and a+(b+c) may well yield different results: suppose that b is greater
than 0, a equals -b, and c is positive but substantially smaller than b. (That is,
suppose c/b is less than DBLEPSILON.) Then (a+b)+c is o+c, or c, while a+(b+c)

equals a+b, or O. That is to say, floating point addition (and multiplication) is not
associative.

The Base Document's rule imposes a high cost on translation of numerical code
to C. Much numerical code is written in FORTRAN, which does provide a no­
regrouping guarantee; indeed, this is the normal semantic interpretation in most
high-level languages other than C. The Base Document's advice, "rewrite using
explicit temporaries," is burdensome to those with tens or hundreds of thousands
of lines of code to convert, a conversion which in most other respects could be done
automatically.

Elimination of the regrouping rule does not in fact prohibit much regrouping
of integer expressions. The bitwise logical operators can be arbitrarily regrouped,
since any regrouping gives the same result as if the expression had not been re­
grouped. This is also true of integer addition and multiplication in implementations
with twos-complement arithmetic and silent wraparound on overflow. Indeed, in
any implementation, regroupings which do not introduce overflows behave as if no
regrouping had occurred. (Results may also differ in such an implementation if the
expression as written results in overflows: in such a case the behavior is undefined,
so any regrollping couldn't be any worse.)

The types of lvalues that may be used to access an object have been restricted so
that an optimizer is not required to make worst-case aliasing assumptions.

In practice, aliasing arises with the use of pointers. A contrived example to
illustrate the issues is

int a;

void feint * b)
{

a = 1;

*b = 2;
g(a);

}

It is tempting to generate the call to g as if the source expression were g (1), but b
might point to a, so this optimization is not safe. On the other hand, consider

int a;

void f(double * b)
{

a = 1;

*b = 2.0;
g(a);

}

RATIONALE

40 Section 3. LANGUAGE

Again the optimization is incorrect only if b points to a. However, this would
only have come about if the address of a were somewhere cast to (double*). The
Committee has decided that such dubious possibilities need not be allowed for.

In principle, then, aliasing only need be allowed for when the lvalues all have the
same type. In practice, the Committee has recognized certain prevalent exceptions:

• The lvalue types may differ in signedness. In the common range, a signed
integral type and its unsigned variant have the same representation; it was
felt that an appreciable body of existing code is not "strictly typed" in this
area.

• Character pointer types are often used in the bytewise manipulation of objects;
a byte stored through such a character pointer may well end up in an object
of any type.

• A qualified version of the object's type, though formally a different type, pro­
vides the same interpretation of the value of the object.

Structure and union types also have problematic aliasing properties:

struct fi{ float f; int i;};

void f(struct fi * fip, int * ip)
{

static struct fi a = {2.0, 1};
*ip = 2;
*fip = a;
g(*ip) ;

*fip = a;
*ip = 2;
g(fip->i);

}

It is not safe to optimize the first call to g as g(2), or the second as gO), since the
call to f could quite legitimately have been

struct fi x;
f(&x, &x.i);

These observations explain the other exception to the same-type principle.

3.3.1 Primary expressions

A primary expression may be void (parenthesized call to a function returning void),
a function designator (identifier or parenthesized function designator), an lvalue
(identifier or parenthesized lvalue), or simply a value expression. Constraints ensure

3.3. Expressions 41

that a void primary expression is no part of a further expression, except that a void
expression may be cast to void, may be the second or third operand of a conditional
operator, or may be an operand of a comma operator.

3.3.2 Postfix operators

3.3.2.1 Array subscripting

The Committee found no reason to disallow the symmetry that permits a[i] to be
written as i [a] .

The syntax and semantics of multidimensional arrays follow logically from the
definition of arrays and the subscripting operation. The material in the Standard
on multidimensional arrays introduces no new language features, but clarifies the C
treatment of this important abstract data type.

3.3.2.2 Function calls

Pointers to functions may be used either as (*pf) 0 or as pf O. The latter con­
struct, not sanctioned in the Base Document, appears in some present versions of
C, is unambiguous, invalidates no old code, and can be an important shorthand.
The shorthand is useful for packages that present only one external name, which
designates a structure full of pointers to objects and functions: member functions
can be called as graphics .open(fi.le) instead of (*graphics .open) (file).

The treatment of function designators can lead to some curious, but valid, syn­
tactic forms. Given the declarations:

int f(). (*pf)();

then all of the following expressions are valid function calls:

(&f)(); f(); (*f)(); (**f)(); (***f)();
pfO; (*pf)O; (**pno; (***pf)O;

The first expression on each line was discussed in the previous paragraph. The
second is conventional usage. All subsequent expressions take advantage of the
implicit conversion of a function designator to a pointer value, in nearly all expression
contexts. The Committee saw no real harm in allowing these forms; outlawing forms
like (*f) 0, while still permitting *a (for int a[]), simply seemed more trouble
than it was worth.

The rule for implicit declaration of functions has been retained, but various past
ambiguities have been resolved by describing this usage in terms of a corresponding
explicit decla:ration.

For compatibility with past practice, all argument promotions occur as described
in the Base Document in the absence of a prototype declaration, including the (not
always desirable) promotion of floa.t to double. A prototype gives the implementor
explicit licem:e to pass a float as a float rather than a double, or a char as a

RATIONALE

42 Section 3. LANGUAGE

char rather than an int, or an argument in a special register, etc. If the definition
of a function in the presence of a prototype \vould cause the function to expect other
than the default promotion types, then clearly the calls to this function must be
made in the presence of a compatible prototype.

To clarify this and other relationships between function calls and function defi­
nitions, the Standard describes an equivalence between a function call or definition
which does occur in the presence of a prototype and one that does not.

Thus a prototyped function with no "narrow" types and no variable argument
list must be callable in the absence of a prototype, since the types actually passed in
a call are equivalent to the explicit function definition prototype. This constraint is
necessary to retain compatibility with past usage of library functions. (See §4.1.3.)

This provision constrains the latitude of an implementor because the parame­
ter passing conventions of prototype and non-prototype function calls must be the
same for functions accepting a fixed number of arguments. Implementations in en­
vironments where efficient function calling mechanisms are available must, in effect,
use the efficient calling sequence either in all "fixed argument list" calls or in none.
Since efficient calling sequences often do not allow for variable argument functions,
the fixed part of a variable argument list may be passed in a completely different
fashion than in a fixed argument list with the same number and type of arguments.

The existing practice of omitting trailing parameters in a call if it is known that
the parameters will not be used has consistently been discouraged. Since omission
of such parameters creates an inequi valence between the call and the declaration,
the behavior in such cases is undefined, and a maximally portable program will
avoid this usage. Hence an implementation is free to implement a function calling
mechanism for ftxed argument lists which would (perhaps fatally) fail if the wrong
number or type of arguments were to be provided.

Strictly speaking then, calls to printf are obliged to be in the scope of a proto­
type (as by #include <5tdio. h», but implementations are not obliged to fail on
such a lapse. (The behavior is undefined).

3.3.2.3 Structure and union members

Since the language now permits structure parameters, structure assignment and
functions returning structures, the concept of a structure expression is now part of
the C language. A structure value can be produced by an assignment, by a function
call, by a comma operator expression or by a conditional operator expression:

51 = (52 = 53)
5f(x)
(x, 51)
x ? 51 : 52

In these cases, the result is not an lvalue; hence it cannot be assigned to nor can its
address be taken.

3.3. Expressj'ons 43

Similarly, x. y is an lvalue only if x is an lvalue. Thus none of the following valid
expressions are lvalues:

sf(3).a
(s1:=s2) .a
((i==6)?s1:s2).a
(x,s1).a

Even when x, y is an lvalue, it may not be modifiable:

const struct S s1;
s1.a = 3; /* invalid */

The Standard requires that an implementation diagnose a constraint error in the
case that the member of a structure or union designated by the identifier following
a member selection operator (. or -») does not appear in the type of the structure
or union designated by the first operand. The Base Document is unclear on this
point.

3.3.2.4 Postfix increment and decrement operators

The Committee has not endorsed the practice in some implementations of consid­
ering post-increment and post-decrement operator expressions to be lvalues.

3.3.3 Unary operators

3.3.3.1 Pr'efix increment and decrement operators

See §3.3.2.4.

3.3.3.2 Address and indirection operators

Some implementations have not allowed the Be operator to be applied to an array or
a function. (The construct was permitted in early versions of C, then later made
optional.) The Committee has endorsed the construct since it is unambiguous, and
since data abstraction is enhanced by allowing the important & operator to apply
uniformly to any addressable entity.

3.3.3.3 Unary arithmetic operators

Unary plus was adopted by the Committee from several implementations, for sym­
metry with unary minus.

The bitwise complement operator -, and the other bitwise operators, have now
been defined arithmetically for unsigned operands. Such operations are well-defined
because ofthe restriction of integral representations to "binary numeration systems."
(See §3.1.2.5.)

RATIONALE

44 Section 3. LANGUAGE

3.3.3.4 The sizeof operator

It is fundamental to the correct usage of functions such as malloc and fread that
sizeof (char) be exactly one. In practice., this means that a byte in C terms is
the smallest unit of storage, even if this unit is 36 bits wide; and all objects are
comprised of an integral number of these smallest units. (See §1.6.)

The Standard, like the Base Document, defines the result of the s izeof operator
to be a constant of an unsigned integral type. Common implementations, and
common usage, have often presumed that the resulting type is into Old code that
depends on this behavior has never been portable to implementations that define
the result to be a type other than into The Committee did not feel it was proper
to change the language to protect incorrect code.

The type of sizeof, whatever it is, is published (in the library header
<stddef .h» as size_t, since it is useful for the programmer to be able to refer
to this type. This requirement implicitly restricts size_t to be a synonym for an
existing unsigned integer type, thus quashing any notion that the largest declarable
object might be too big to span even with an unsigned long. This also restricts
the maximum number of elements that may be declared in an array, since for any
array a of N elements,

N == sizeof(a)/sizeof(a[O])

Thus size_t is also a convenient type for array sizes, and is so used in several library
functions. (See §4.9.8.1, §4.9.8.2, §4.10.3.1, etc.)

The Standard specifies that the argument to sizeof can be any value except a
bit field, a void expression, or a function designator. This generality allows for
interesting environmental enquiries; given the declarations

int *p, *q;

these expressions determine the size of the type used for ...

sizeof(F(x))
sizeof(p-q)

F's return value */
pointer difference */

(The last type is of course available as ptrdifLt in <stddef .h>.)

3.3.4 Cast operators

A (void) cast is explicitly permitted, more for documentation than for utility.

Nothing portable can be said about casting integers to pointers, or vice versa, since
the two are now incommensurate.

The definition of these conversions adopted in the Standard resembles that in
the Base Document, but with several significant differences. The Base Document
required that a pointer successfully converted to an integer must be guaranteed to

3.3. Expressions 45

be convertible back to the same pointer. This integer-to-pointer conversion is now
specified as implementation-defined. While a high-quality implementation would
preserve the same address value whenever possible, it was considered impractical to
require that the identical representation be preserved. The Committee noted that,
on some current machine implementations, identical representations are required for
efficient code generation for pointer comparisons and arithmetic operations.

The conversion of the integer constant 0 to a pointer is defined similarly to the
Base Document. The resulting pointer must not address any object, must appear to
be equal to an integer value of 0, and may be assigned to or compared for equality
with any other pointer. This definition does not necessarily imply a representation
by a bit pattern of all zeros: an implementation could, for instance, use some address
which causes a hardware trap when dereferenced.

The type char must have the least strict alignment of any type, so char * has often
been used as a portable type for representing arbitrary object pointers. This usage
creates an unfortunate confusion bet\veen the ideas of arbitl'ary pointer and character
or string pointer. The new type void *, which has the same representation as char
*, is therefore preferable for arbitrary pointers.

It is possible to cast a pointer of wme qualified type (§3.5.3) to an unqualified
version of that type. Since the qualifier defines some special access or aliasing
property, however, any dereference of the cast pointer results in undefined behavior.

The Standard (§3.2.1.4) requires that a cast of one floating point type to another
(e.g., double to float) results in an actual conversion.

3.3.5 Multiplicative operators

There was considerable sentiment for giving more portable semantics to division
(and hence remainder) by specifying some way of giving; less machine dependent
results for negative operands. Few Committee members wanted to require this by
default, lest existing fast code be gravely slowed. One suggestion was to make
signed int a type distinct from plain int, and require better-defined semantics for
signed int di,vision and remainder. This suggestion was opposed on the grounds
that effectively adding several types would have consequences out of proportion to
the benefit to be obtained; the Committee twice rejected this approach. Instead the
Committee ha:s adopted new library functions div and Idiv which produce integral
quotient and remainder with well-defined sign semantics. (See §4.10.6.2, §4.10.6.3.)

The Committee rejected extending the 'I. operator to work on floating types;
such usage would duplicate the facility provided by fmod. (See §4.5.6.5.)

3.3.6 Additive operators

As with the s izeof operator, implementations have takEm different approaches in
defining a type for the difference between two pointers (see §3.3.3.4). It is important

RATIONALE

46 Section 3. LANGUAGE

that this type be signed, in order to obtain proper algebraic ordering when dealing
with pointers within the same array. However, the magnitude of a pointer difference
can be as large as the size ofthe largest object that can be declared. (And since that
is an unsigned type, the difference between two pointers may cause an overflow.)

The type of pointer minus pointer is defined to be int in K&R. The Stan­
dard defines the result of this operation to be a signed integer, the size of which
is implementation-defined. The type is published as ptrdifLt, in the standard
header <stddef . h>. Old code recompiled by a conforming compiler may no longer
work if the implementation defines the result of such an operation to be a type other
than int and if the program depended on the result to be oftype into This behavior
was considered by the Committee to be correctable. Overflow was considered not
to break old code since it was undefined by K&R. Mismatch of types between ac­
tual and formal argument declarations is correctable by including a properly defined
function prototype in the scope of the function invocation.

An important endorsement of widespread pra.ctice is the requirement that a
pointer can always be incremented to just past the end of an array, with no fear of
overflow or wraparound:

SOMETYPE array[SPAN];

/* ... */
for (p = &array[O]; p < &array[SPAN]; p++)

This stipulation merely requires that every object be followed by one byte whose
address is representable. That byte can be the first byte of the next object declared
for all but the last object located in a contiguous segment of memory. (In the exam­
ple, the address &array [SPAN] must address a byte following the highest element
of array.) Since the pointer expression p+l need not (and should not) be derefer­
enced, it is unnecessary to leave room for a complete object of size s izeof (*p) .

In the case of p-l, on the other hand, an entire object would have to be allocated
prior to the array of objects that p traverses, so decrement loops that run off the
bottom of an array may fail. This restriction allows segmented architectures, for
instance, to place objects at the start of a range of addressable memory.

3.3.7 Bitwise shift operators

See §3.3.3.3 for a discussion of the arithmetic definition of these operators.

The description of shift operators in K&R suggests that shifting by a long count
should force the left operand to be widened to long before being shifted. A more
intuitive practice, endorsed by the Committee, is that the type of the shift count
has no bearing on the type of the result.

QUIET CHANGE

Shifting by a long count no longer coerces the shifted operand to long.

3.3. Expressions 47

The Committee has affirmed the freedom in implementation granted by the Base
Document in not requiring the signed right shift operation to sign extend, since such
a requirement might slow down fast code and since the usefulness of sign extended
shifts is marg;inal. (Shifting a negative twos-complement integer arithmetically right
one place is not the same as dividing by two!)

3.3.8 Relational operators

For an explanation of why the pointer comparison of the object pointer P with the
pointer expression P+l is always saJe, see Rationale §3.3.6.

3.3.9 Equality operators

The Committee considered, on more than one occasion, permitting comparison of
structures for equality. Such proposals foundered on the problem of holes in struc­
tures. A byte-wise comparison of two structures would require that the holes as­
suredly be set to zero so that all holes would compare equal, a difficult task for
automatic or dynamically allocated variables. (The possibility of union-type ele­
ments in a structure raises insuperable problems with this approach.) Otherwise
the implementation would have to be prepared to break a structure comparison into
an arbitrary number of member comparisons; a seemingly simple expression could
thus expand into a substantial stretch of code, which is contrary to the spirit of C.

In pointer comparisons, one of the operands may be of type void *. In partic­
ular, this allows NULL, which can be defined as (void *)0, to be compared to any
object pointer.

3.3.10 Bitwise AND operator

See §3.3.3.3 Jor a discussion of the arithmetic definition of the bitwise operators.

3.3.11 Bitwise exclusive OR operator

See §3.3.3.3.

3.3.12 Bitwise inclusive OR operator

See §3.3.3.3.

3.3.13 Logical AND operator

3.3.14 Logical OR operator

3.3.15 Conditional operator

The syntactic restrictions on the middle operand of the conditional operator have
been relaxed to include more than just logical-DR-expression: several extant imple­
mentations have adopted this practice.

RATIONALE

48 Section 3. LANGUAGE

The type of a conditional operator cxpression can be void, a structure, or a
union; most other operators do not deal with such types. The rules for balancing
type between pointer and integer have, however, been tightened, since now only the
constant 0 can portably be coerced to pointer.

The Standard allows one of the second or third operands to be of type void *,
if the other is a pointer type. Since the result of such a conditional expression is
void *, an appropriate cast must be used.

3.3.16 Assignment operators

Certain syntactic forms of assignment operators have becn discontinued, and others
tightened up (see §3.1.5).

The storage assignment need not take place until the next sequence point. (A
restriction in earlier drafts that the storage take place before the value of the ex­
pression is used has been removed.) As a consequence, a straightforward syntactic
test for ambiguous expressions can be stated. Some definitions: A side effect is a
storage to any data object, or a read of a volatile object. An ambiguous expression is
one whose value depends upon the order in which side effects are evaluated. A pure
function is one with no side effects; an impure function is any other. A sequenced

expression is one whose major operator defines a sequence point: comma, &:&:, II,
or conditional operator; an unsequenced expression is any other. vVe can then say
that an unsequenced expression is ambiguous if more than one operand invokes any
impure function, or if more than one operand contains an Ivalue referencing the
same object and one or more operands specify a side-effect to that object. Further,
any expression containing an ambiguous expression is ambiguous.

The optimization rules for factoring out assignments can also be stated. Let
X(i ,S) be an expression which contains no impure functions or sequenced operators,
and suppose that X contains a storage SCi) to i. The storage expressions, and
related expressions, are

SCi): Sval(i) : Snew(i):
++i i+l i+l
i++ i i+l
--i i-l i-l
i-- i i-l
i = Y Y Y
i op= y i op y i op y

Then X(i ,S) can be replaced by either

(T = i, i = Snew(i), X(T,Sval»

or

(T = X(i,Sval), i = Snew(i), T)

provided that neither i nor y have side effects themselves.

3.4. Constan t Expressions 49

3.3.16.1 Simple assignment

Structure assignment has been added: its use was foresha.dowed even in K&R, and
many existing implementations already support it.

The rules for type compatibility in assignment also apply to argument compati­
bility between actual argument expressions and their corresponding argument types
in a function prototype.

An implementation need not correctly perform an assignment between over­
lapping operands. Overlapping operands occur most naturally in a union, where
assigning one field to another is often desirable to effect a. type conversion in place;
the assignment may well work properly in all simple cases, but it is not maximally
portable. Maximally portable code should use a temporary variable as an interme­
diate in suchan assignment.

3.3.16.2 Compound assignment

The importance of requiring that the left operand lvalue be evaluated only once is
not a question of efficiency, although that is one compelling reason for using the
compound assignment operators. Rather, it is to assure that any side effects of
evaluating the left operand are predictable.

3.3.17 Comma operator

The left operand of a comma operator may be void, SInce only the right-hand
operator is relevant to the type of the expression.

The example in the Standard clarifies that commas separating arguments "bind"
tighter than the comma operator in expressions.

3.4 Constant Expressions

To clarify existing practice, several varieties of constant expression have been iden­
tified:

The expression following #if (§3.8.1) must expand to integer constants, charac­
ter constants,. the special operator def ined, and operators with no side effects.
No environmental inquiries can be made, since all arithmetic is done as translate­
time (signed or unsigned) long integers, and casts are disallowed. The restriction to
translate-time arithmetic frees an implementation from having to perform execution­
environment arithmetic in the host environment. It does not preclude an imple­
mentation from doing so - the implementation may simply define "translate-time
arithmetic" to be that of the target.

Unsigned arithmetic is performed in these expressions (according to the default
widening rules) when unsigned operands are involved; this rule allows for unsur­
prising arithmetic involving very large constants (i.e, those whose type is unsigned

RATIONALE

50 Section 3. LANGUAGE

long) since they cannot be represented as long or constants explicitly marked as
nnsigned.

Character constants, when evaluated in #if expressions, may be interpreted in
the source character set, the execution char<Lcter set, or some other implementation­
defined character set. This latitude reflects the di versity of existing practice, espe­
cially in cross-compilers.

An integral constant expression must involve only numbers knowable at translate
time, and operators with no side effects. Casts and the sizeof operator may be
used to interrogate the execution environment.

Static initializers include integral constant expressions, along with floating constants
and simple addressing expressions. An implementation must accept arbitrary ex­
pressions involving floating and integral numbers and side-effect-free operators in
arithmetic initializers, but it is at liberty to turn such initializers into executable
code which is invoked prior to program startup (see §2.1.2.2); this scheme might
impose some requirements on linkers or runtime library code in some implementa­
tions.

The translation environment must not produce a less accurate value for a
floating-point initializer than the execution environment, but it is at liberty to
do better. Thus a static initializer may well be slightly different than the same
expression computed at execution time. However, while implementations are cer­
tainly pel1nitted to produce exactly the same result in translation and execution
environments, requiring this was deemed to be an intolerable burden on many cross­
compilers.

QU lET CHANGE

A program that uses #if expressions to determine properties of the ex­
ecution environment may now get different answers.

3.5 Declarations

The Committee decided that empty declarations are invalid (except for a special case
with tags, see §3.5.2.3, and the case of enumerations such as enum {zero,one};,
see §3.5.2.2). While many seemingly silly constructs are tolerated in other parts
of the language in the interest of facilitating the machine generation of C, empty
declarations were considered sufficiently easy to avoid.

The practice of placing the storage class specifier other than first in a declaration
has been branded as obsolescent (See §3.9.3.) The Committee feels it desirable to
rule out such constructs as

enum { aaa, aab,
1* etc */

zzy, zzz } typedef a2z;

in some future standard.

3.5. Declarations 51

3.5.1 Storage-class specifiers

Because the address of a register variable cannot be taken, objects of storage class
register effectively exist in a space distinct from other ohjects. (Functions occupy
yet a third address space). This makes them candidates for optimal placement, the
usual reason for declaring registers, but it also makes them candidates for more
aggressive optimization.

The practice of representing register variables as wider types (as when register
char is quietly changed to register int) is no longer acceptable.

3.5.2 Type specifiers

Several new type specifiers have been added: signed, enum, and void. long float
has been retired and long double has been added, along with a plethora of integer
types. The Committee's reasons for each of these additions, and the one deletion,
are given in section §3.1.2.5 of this document.

3.5.2.1 Structure and union specifiers

Three types of bit fields are now defined: "plain" int calls for implementation­
defined signedness (as in the Base Document), signed int: calls for assuredly signed
fields, and unsigned int calls for unsigned fields. The old constraints on bit fields
crossing word boundaries have been relaxed, since so many properties of bit fields
are implementation dependent anyway.

The layout of structures is determined only to a limited extent:

• no hole may occur at the beginnin!~;

• memben, occupy increasing storage addresses; and

• if necessary, a hole is placed on the end to make th'e structure big enough to
pack tightly into arrays and maintain proper alignment.

Since some existing implementations, in the interest of enhanced access time, leave
internal holes larger than absolutely necessary, it is not clear that a portable deter­
ministic method can be given for traversing a structure field by field.

To clarify what is meant by the notion that "all the fidds of a union occupy the
same storage," the Standard specifies that a pointer to a union, when suitably cast,
points to each member (or, in the case of a bi t- field member, to the storage unit
containing the bit field).

3.5.2.2 Enumeration specifiers

3.5.2.3 Tags

As with all block structured languages that also permit forward references, C has a
problem with t:tructure and union tags. If one wants to declare, within a block, two
mutually referencing structures, one must write something like:

RATIONALE

.52

struct x { struct y *p; /* */ };
struct y { struct x *q; /* */ };

Section 3. LANGUAGE

But if struct y is already defined in a containing block, the first field of struct x
will refer to the older declaration.

Thus special semantics has been given to the form:

struct y;

It now hides the outer declaration of y, and "opens" a new instance in the current
block.

QUIET CHANGE

The empty declaration struct x; is no longer innocuous.

3.5.3 Type qualifiers

The Committee has added to C two type qualifiers: canst and volatile. Indi­
vidually and in combination they specify the assumptions a compiler can and must
make when accessing an object through an lvalue.

The syntax and semantics of canst were adapted from C++; the concept itself
has appeared in other languages. volatile is an invention of the Committee; it
follows the syntactic model of canst.

Type qualifiers were introduced in part to provide greater control over opti­
mization. Several important optimization techniques are based on the principle of
"cacheing": under certain circumstances th(~ compiler can remember the last value
accessed (read or written) from a location, and use this retained value the next time
that location is read. (The memory, or "cache", is typically a hardware register.) If
this memory is a machine register, for instance, the code can be smaller and faster
using the register rather than accessing external memory.

The basic qualifiers can be characterized by the restrictions they impose on
access and cacheing:

canst No writes through this lvalue. In the absence of this qualifier, writes may
occur through this lvalue.

volatile No cacheing through this lvalue: each operation in the abstract semantics
must be performed. (That is, no cacheing assumptions may be made, since
the location is not guaranteed to contain any previous value.) In the absence
of this qualifier, the contents of the designated location may be assumed to be
1Jn r:hanged (except for possible aliasing.)

A translator design with no cacheing optimizations can effectively ignore the
type qualifiers, except insofar as they affect assignment compatibility.

It would have been possible, of course, to specify a nonconst keyword instead
of canst, or nonvolatile instead of volatile. The senses of these concepts in

3.5. Declarations 53

the Standard were chosen to assure that the default, unqualified, case was the most
common, and that it corresponded most clearly to traditional practice in the use of
lvalue expressions.

Four combinations of the two qualifiers is possible; each defines a useful set of Ivalue
properties. The next several paragraphs describe typical uses of these qualifiers.

The translator may assume, for an unqualified Ivalue, that it may read or write
the referenced object, that the value of this object cannot be changed except by
explicitly programmed actions in the current thread of control, but that other lvalue
expressions could reference the same object.

const is specified in such a way that an implementation is at liberty to put
const objects in read-only storage, and is encouraged to diagnose obvious attempts
to modify them, but is not required to track down all the subtle ways that such
checking can be subverted. If a function parameter is declared const, then the
referenced object is not changed (through that Ivalue) in the body of the function
-- the parameter is read-only.

A static volatile object is an appropriate model for a memory-mapped I/O
register. Implementors of C translators should take into account relevant hardware
details on the target systems when implementing accesses to volatile objects. For
instance, the hardware logic of a system may require that a two-byte memory­
mapped register not be accessed with byte operations; a compiler for such a system
would have to assure that no such instructions were generated, even if the source
code only accesses one byte of the register. Whether read-modify-write instructions
can be used on such device registers must also be considen~d. Whatever decisions are
adopted on such issues must be documented, as volatile access is implementation­
defined. A volatile object is an appropriate model for a variable shared among
multiple prooesses.

A static const volatile object appropriately modeb a memory-mapped input
port, such as a real- time clock. Similarly, a const volati:.e object models a variable
which can be altered by another process but not by this one.

Although the type qualifiers are formally treated as defining new types they actually
serve as modifiers of declarators. Thus the declarations

const struct s {int a,b;} x;
str'lct s y;

declare x as a const object, but not y. The const property can be associated with
the aggregate type by means of a type definition:

typedef canst struct s {int a,b;} stype;
stype x;
stype y;

In these declarations the canst property is associa.ted with the declarator stype, so
x and yare both canst objects.

RATIONALE

54 Section 3. LANGUAGE

The Committee considered making canst and volatile storage classes, but this
would have ruled out any number of desirable constructs, such as const members
of structures and variable pointers to const types.

A cast of a value to a qualified type has no effect; the qualification (volatile,
say) can have no effect on the access since it has occurred prior to the cast. If it is
necessary to access a non-volatile object using volatile semantics, the technique is
to cast the address of the object to the appropriate pointer-to-qualified type, then
dereference that pointer.

3.5.4 Declarators

The function prototype synta.x was adapted from C++. (See §3.3.2.2 and §3.5.4.3)
Some current implementations have a limit of six type modifiers (Junction re­

turning, army of, pointer to), the limit used in Ritchie's original compiler. This
limit has been raised to twelve since the original limit has proven insufficient in
some cases; in particular, it did not allow for FORTRAN-to-C trandation, since
FORTRAN allows for seven subscripts. (Some users have reported using nine or ten
levels, particularly in machine-generated C code.)

3.5.4.1 Pointer declarators

A pointer declarator may have its own type qualifiers, to specify the attributes of the
pointer itself, as opposed to those of the reference type. The construct is adapted
from C++.

canst int * means (variable) pointer to constant int, and int * const means
constant pointer to (variable) int, just as in C++, from which these constructs
were adopted. (And mutatis mutandis for the other type qualifiers.) As with other
aspects of C type declarators, judicious use of typedef statements can clarify the
code.

3.5.4.2 Array declarators

The concept of composite types (§3.1.2.6) was introduced to provide for the accretion
of information from incomplete declarations, such as array declarations with miss­
ing size, and function declarations with missing prototype (argument declarations).
Type declarators are therefore said to specify compatible types if they agree except
for the fact that one provides less information of this sort than the other.

The declaration of O-lcngth arrays is invalid, under the general principle of not
providing for O-length objects. The only common use of this construct has been in
the dcclaration of dynamically allocated variable-size arrays, such as

struct segment {
short int count;
char c[N];

};

3.5. Declarations

struct segment * new_segment(const int ll3ngth)
{

struct segment * result;
result = malloc(sizeof segment + (length-N));
result->count = length;
return result;

}

55

In such usage, N would be 0 and (length-'N) would be written as length. But this
paradigm works just as well, as written, if Nis 1. (Note, by the by, an alternate way
of specifying the size of result:

result = malloe(offsetof (struct segm,ant, c) + length);

This illustrates one of the uses of the offsetof macro.)

3.5.4.3 Function declarators (including prototypes)

The function prototype mechanism is one of the most useful additions to the C lan­
guage. The feature, of course, has precedent in many of the Algol-derived languages
of the past 25 years. The particular form adopted in the Standard is based in large
part upon C++.

Function prototypes provide a powerful translation-time error detection capa­
bility. In traditional C practice without prototypes, it is extremely difficult for the
translator to detect errors (wrong number or type of arguments) in calls to func­
tions declared in another source file. Detection of such errors has either occurred at
runtime, or through the use of auxiliary software tools.

In function calls not in the scope of a function prototype, integral arguments
have the integral widening conversions applied and float arguments are widened
to double. It is thus impossible in such a call to pass an unconverted char or
float argument. Function prototypes give the programmer explicit control over
the function argument type conversions, so that the often inappropriate and some­
times inefficient default widening rules for arguments can be suppressed 'by the
implementation. Modifications of function interfaces are easier in cases where the
actual arguments are still assignment compatible with the new formal parameter
type - only the function definition and its prototype need to be rewritten in this
case; no function calls need be rewritten.

Allowing an optional identifier to appear in a function prototype serves two
purposes:

• the programmer can associate a meaningful name with each argument position
for documentation purposes, and

• a function declarator and a function prototype can ute the same synta.x:. The
consistent syntax makes it easier for new users of C to learn the language. Au­
tomatic generation of function prototype decIarators from function definitions
is also facilitated.

RATIONALE

56 Section a. LANGUAGE

Optimizers can also take advantage of function prototype information. Consider
this example:

extern int compare(const char * string1,
canst char * string2)

void func2(int x)
{

char * str1, * str2 ;

/* ... */
x = compare (str1, str2)

/* ... */
}

The optimizer knows that the pointers passed to compare are not used to assign new
values to any objects that the pointers reference. Hence the optimizer can make less
conservative assumptions about the side effects of compare than would otherwise be
necessary.

The Standard requires that calls to functions taking a variable number of argu­
ments must occur in the presence of a prototype (using the trailing ellipsis notation
, ...). An implementation may thus assume that all other functions are called with
a fixed argument list, and may therefore use possibly more efficient calling sequences.
Programs using old-style headers in which the number of arguments in the calls and
the definition differ may not work in implementations which take advantage of such
optimizations. This is not a Quiet Change, strictly speaking, since the program
does not conform to the Standard. A word of warning is in order, however, since
the style is not uncommon in extant code, and since a conforming translator is not
required to diagnose such mismatches when they occur in separate translation units.
Such trouble spots can be made manifest (assuming an implementation provides rea­
sonable diagnostics) by providing new-style function declarations in the translation
units with the non-matching calls. Programmers who currently rely on being able
to omit trailing arguments are advised to recode using the <stdarg. h> paradigm.

Function prototypes may be used to define function types as well:

typedef double (*d_binop) (double A, double B);

struct d_funct {
d_binop
int

};

f1;
(*f2) (double, double);

The structure d_funct has two fields, both of which hold pointers to functions taking
two double arguments; the function types differ in their return type.

3.5. Declarations

3.5.5 Type names

57

Empty parentheses within a type name are always taken as meaning function with
unspecified arguments and never as (unnecessary) parentheses around the elided
identifier. This specification avoids an ambiguity by fiat.

3.5.6 Type definitions

A typedef may only be redeclared in an inner block with a declaration that explicitly
contains a type name. This rule avoids the ambiguity about whether to take the
typedef as the type name or the candidate for redeclaration.

Some implementations of C have allowed type specifiers to be added to a type
defined using typedef. Thus

typedef short int small
uns igned small x ;

would give x the type unsigned short into The Committee decided that since
this interpretation may be difficult to provide in many implementations, and since
it defeats much of the utility of typedef as a data abstraction mechanism, such type
modifications are invalid. This decision is incorporated in the rules of §3.5.2.

A proposed typeof operator was rejected on the grounds of insufficient utility.

3.5.7 Initialization

An implementation might conceivably have codes for floating zero and/or null
pointer other than all bits zero. In such a case, the implementation must fill out an
incomplete initializer with the various appropriate representations of zero; it may
not just fill the area with zero bytes.

The Committee considered proposals for permitting automatic aggregate initial­
izers to consist of a brace-enclosed series of arbitrary (execute-time) expressions,
instead of just those usable for a translate-time static initializer. However, cases
like this were troubling:

int :x: [2J = { f (x [lJ), g(x [OJ) };

Rather than determine a set of rules which would avoid pathological cases and yet
not seem too arbitrary, the Committee elected to permit only static initializers. Con­
sequently, an implementation may choose to build a hidden static aggregate, using
the same machinery as for other aggregate initializers, then copy that aggregate to
the automatic variable upon block entry.

A structure expression, such as a call to a function returning the appropriate
structure type" is permitted as an automatic structure initializer, since the usage
seems unproblematic.

For programmer convenience, even though it is a minor irregularity in initializer
semantics, the trailing null character in a string literal need not initialize an array
element, as in:

RATIONALE

58 Section 3. LliNGUA.GE

char mesg[5] = "help!" ;

(Some widely used implementations provide precedenL)
The Base Document allows a trailing comma in an initializer at the end of an

initializer-list. The Standard has retained this syntax, since it provides flexibility in
adding or deleting mem bers from an ini tializer list. and simplifies machine generation
of such lists.

Various implementations have parsed aggregate initializers with partially elided
braces differently. The Standard has reaffirmed the (top-down) parse descri bed in
the Base Document. Although the construct is allowed, and its parse well defined,
the Committee urges programmers to avoid partially elided initializers: such initial­
izations can be quite confusing to read.

QUIET CHANGE

Code which relies on a bottom-up parse of aggregate initializers with
partially elided braces will not yield the expected initialized object.

The Committee has adopted the rule (already used successfully in some implemen­
tations) that the first member of the union is the candidate for initialization. Other
notations for union initialization were considered, but none seemed of sufficient merit
to out weigh the lack of prior art.

This rule has a parallel with the initialization of structures. Members of struc­
tures are initialized in the sequence in which they are declared. The same can now
be said of unions, with the significant difference that only one union member (the
first) can be initialized.

3.6 Statements

3.6.1 Labeled statements

Since label definition and label reference are syntactically distinctive contexts, labels
are established as a separate name space.

3.6.2 Compound statement, or block

The Committee considered proposals for forbidding a goto into a block from outside,
since such a restriction would make possible much easier flow optimization and would
avoid the whole issue of initializing auto storage (see §3.1.2.4). The Committee
rejected such a ban out of fear of invalidating working code (however undisciplined)
and out of concern for those producing machine-generated C.

3.6.3 Expression and null statements

The void cast is not needed in an expression statement, since any value is aJways
discarded. Some checking compilers prefer this reassurance, however, for functions
that return objects of types other than void.

3.6. Statements

3.6.4 Selection statements

3.6.4.1 The if statement

See §3.6.2.

3.6.4.2 The switch statement

59

The controlling expression of a switch statement may now have any integral type,
even unsigned long. Floating types were rejected for switch statements since exact
equality in floating point is not portable.

case labels are first converted to the type of the controlling expression of the
switch, then checked for equality with other labels; no two may match after conver­
SIOn.

Case ranges (of the form 10 .. hi) were seriously considered, but ultimately
not adopted in the Standard on the grounds that it added no new capability, just
a problematic coding convenience. The construct seems to promise more than it
could be mandated to deliver:

• A great deal of code (or jump table space) might be generated for an innocent­
looking case range such as 0 .. 65535 .

• The range I A I •• I Z I would specify all the integers between the character code
for A and that for Z. In some common character sets this range would include
non-alphabetic characters, and in others it might not include all the alphabetic
characters (especially in non-English character sets).

No serious consideration was given to making the switch more structured, as in
Pascal, out of fear of invalidating working code.

QUIET CHANGE

long expressions and constants in switch statements are no longer trun­
cated to into

3.6.5 Iteration statements

3.6.5.1 The while statement

3.6.5.2 The do statement

3.6.5.3 The for statement

3.6.6 Jump statements

3.6.6.1 The gata statement

See §3.6.2.

RATIONALE

60 Section 3. LANGUAGE

3.6.6.2 The continue statement

The Committee rejected proposed enhancements to continue and break which
would allow specification of an iteration sta.tement other than the immediately en­
closing one, on grounds of insufficient prior art.

3.6.6.3 The break statement

See §3.6.6.2.

3.6.6.4 The return statement

3.7 External definitions

3.7.1 Function definitions

A function definition may have its old form (and say nothing about arguments on
calls), or it may be introduced by a prototype (which affects a.rgument checking and
coercion on subsequent calls). (See also §3.1.2.2.)

To avoid a nasty ambiguity, the Standard bans the use of typedef names as formal
parameters. For instance, in translating the text

int fCsize_t, a_t, b_t, c_t, d_t, e_t, f_t, g_t,
h_t, i_t, j_t, k_t, l_t, ID_t, n_t, o_t,
p_t, q_t, r_t, s_t)

the translator determines that the construct can only be a prototype declaration as
soon as it scans the first size_t and following comma. In the absence of this rule,
it might be necessary to see the token following the right parenthesis that closes the
parameter list, which would require a sizeable look-ahead, before deciding whether
the text under scrutiny is a prototype declaration or an old-style function header
defini tion.

An argument list must be explicitly present in the declarator; it cannot be inherited
from a typedef (see §3.5.4.3). That is to say, given the definition

typedef int pCint q, int r);

the following fragment is invalid:

p funk /* weird */
{ return q + r ; }

Some current implementations rewrite the type of a (for instance) char parameter
as if it were declared int, since the argument is known to be passed as an int
(in the absence of prototypes). The Standard requires, however, that the received
argument be converted as if by assignment upon function entry. Type rewriting is
thus no longer permissible.

3.8. Preprocessing directives

QUIET CHANGE

Functions that depend on char or short parameter types being widened
to int, or float to double, may behave differently.

61

Notes for implementors: the assignment conversion for argument passing often
requires no executable code. In most twos-complement machines, a short or char
is a contiguous subset of the bytes comprising the int actually passed (for even
the most unusual byte orderings), so that assignment conversion can be effected by
adjusting the address of the argument (if necessary) .

For an argument declared float, however, an explicit conversion must usually
be performed from the double actually passed to the float desired. Not many
implementations can subset the bytes of a double to get a float. (Even those that
apparently permit simple truncation often get the wrong answer on certain negative
numbers.)

Some current implementations permit an argument to be masked by a declaration
of the same identifier in the outermost block of a function. This usage is almost
always an erroneous attempt by a novice C programmer to declare the argument;
it is rarely the result of a deliberate attempt to render the argument unreachable.
The Committee decided, therefore, that arguments are effectively declared in the
outermost block, and hence cannot be quietly redeclared in that block.

The Committee considered it important that a function taking a variable number
of arguments, such as printf, be expressible portably in C. Hence, the Committee
devoted much time to exploring methods of traversing variable argument lists. One
proposal was to require arguments to be passed as a "brick" (i.e., a contiguous area
of memory), the layout of which would be sufficiently weB specified that a portable
method of traversing the brick could be determined.

Several diverse implementations, however, can implement argument passing
more efficiently if the arguments are not required to be contiguous. Thus, the
Committee decided to hide the implementation details of determining the location
of successive elements of an argument list behind a standard set of macros (see §4.8).

3.7.2 External object definitions

See §3.1.2.2.

3.8 Preprocessing directives

For an overview of the philosophy behind the preprocessor, see §2.1.1.2.
Different implementations have had different notions about whether white space

is permissible before and/or after the # signalling a preprocessor line. The Com­
mittee decided to allow any white space before the #, and horizontal white space

RATIONALE

62 Section 3. LANGUAGE

(spaces or tabs) between the # and the directive, since the white space introduces
no ambiguity, causes no particular processing problems, and allows maximum flex­
ibility in coding style. Note that similar considerations apply for comments, which
are reduced to white space early in the phases of translation (§2.1.1.2):

/* here a comment */ #if BLAH
#/* there a comment */ if BLAH
if /* every-

where a comment */ BLAH

The lines all illustrate legitimate placement of comments.

3.8.1 Conditional inclusion

For a discussion of evaluation of expressions following #ii, see §3.4.
The operator defined has been added to make possible writing boolean com­

binations of defined flags with one another and with other inclusion conditions. If
the identifier defined were to be defined as a macro, defined(X) would mean the
macro expansion in C text proper and the operator expression in a preprocessing
directive (or else that the operator would no longer be available). To avoid this
problem, such a definition is not permitted (§3.8.8).

#elif has been added to minimize the stacking of #endii directives in multi-way
conditionals.

Processing of skipped material is defined such that an implementation need only
examine a logical line for the # and then for a directive name. Thus, assuming that
xxx is undefined, in this example:

ifndef xxx
define xxx "abc"
elif xxx > 0

/* ... */
endif

an implementation is not required to diagnose an error for the elif statement, even
though if it were processed, a syntactic error would be detected.

Various proposals were considered for permitting text other than comments at
the end of directives, particularly #endif and #else, presumably to label them for
easier matchup with their corresponding #ii directives. The Committee rejected
all such proposals because of the difficulty of specifying exactly what would be
permitted, and how the translator would have to process it.

Various proposals were considered for permitting additional unary expressions
to be used for the purpose of testing for the system type, testing for the presence of
a file before #include, and other extensions to the preprocessing language. These
proposals were all rejected on the grounds of insufficient prior art and/or insufficient
utility.

3.8. Preprocessing directives

3.8.2 Source file inclusion

63

Specification of the #include directive raises distinctive grammatical problems be­
cause the file name is conventionally parsed quite differently than an "ordinary"
token sequence:

• The angle brackets are not operators, but delimiters.

• The double quotes do not delimit a string literal with all its defined escape
sequences. (In some systems, backslash is a legitimate character in a filename.)
The construct just looks like a string literal.

• White space or characters not in the C repertoire may be permissible and
significant within either or both forms.

These points in the description of phases of translation are of particular relevance
to the parse of the #include directive:

• Any character otherwise unrecognized during tokenization is an instance of
an "invalid token." As with valid tokens, the spelling is retained so that
later phases can, if necessary, map a token sequence (back) into a sequence of
characters.

• Preprocessing phases must maintain the spelling of preprocessing tokens; the
filename is based on the original spelling of the tokens, not on any interpreta­
tion of escape sequences.

• The filename on the #include (and #line) directive, if it does not begin with
II or <, is macro expanded prior to execution of the directiye. Allowing macros
in the include directive facilitates the parameterization of include file names,
an important issue in transportability.

The file search rules used for the filename in the #include directive were left as
implementation-defined. The Standard intends that the rules which are eventually
provided by th€~ implementor correspond as closely as possible to the original K&R
rules. The primary reason that explicit rules were not included in the Standard
is the infeasibiIity of describing a portable file system structure. It was consid­
ered unacceptable to include UNIX-like directory rules due to significant differences
between this structure and other popular commercial file system structures.

Nested include files raise an issue of interpreting the file search rules. In UNIX
C an include statement found within an include file entails a search for the named
file relative to the file system directory that holds the outer #include. Other imple­
mentations, including the earlier UNIX C described in K&R, always search relative
to the same current directory. The Committee decided, in principle, in favor of the
K&R approach., but was unable to provide explicit search rules as explained above.

RATIONALE

64 Section 3. LANGUAGE

The Standard specifies a set of include file names which must map onto distinct host
file names. In the absence of such a requirement, it would be impossible to write
portable programs using include files.

Section §2.2.4.1 on translation limits contains the required number of nesting levels
for include files. The limits chosen were intended to reflect reasonable needs for
users constrained by reasonable system resources available to implementors.

By defining a failure to read an include file as a syntax error, the Standard requires
that the failure be diagnosed. More than one proposal was presented for some form
of conditional include, or a directive such as #ifincludable, but none were accepted
by the Committee due to lack of prior art.

3.8.3 Macro replacement

The specification of macro definition and replacement in the Standard was based on
these principles:

• Interfere with existing code as little as possible.

• Keep the preprocessing model simple and uniform.

• Allow macros to be used wherever functions can be.

• Define macro expansion such that it produces the same token sequence whether
the macro calls appear in open text, in macro arguments, or in macro defini­
tions.

Preprocessing is specified in such a way that it can be implemented as a separate
(text-to-text) pre-pass or as a (token-oriented) portion of the compiler itself. Thus,
the preprocessing grammar is specified in terms of tokens.

However, the new-line character must be a token during preprocessing, because
the preprocessing grammar is line-oriented. The presence or absence of white space is
also important in several contexts, such as between the macro name and a following
parenthesis in a #define directive. To avoid overly constraining the implementation,
the Standard allows the preservation of each white space character (which is easy for
a text-to-text prc-pass) or the mapping of white space into a single "white space"
token (which is easier for token-oriented translators).

The Committee desired to disallow "pernicious redefinitions" such as
(in header1.h)

#define NBUFS 10

(in header2.h)

#define NBUFS 12

which are clearly invitations to serious bugs in a program. There remained,
however, the question of "benign redefinitions," such as

3.8. Preprocessing directives

(in headerl.h)

#define NULL_DEV 0

(in header2.h)

#define NULL_DEV 0

65

The Committee concluded that safe programming practice is better served by
allowing benign redefinition where the definitions are the same. This allows inde­
pendent headers to specify their understanding of the proper value for a symbol of
interest to each, with diagnostics generated only if the definitions differ.

The definitions are considered "the same" if the identifier-lists, token sequences,
and occurrences of white-space (ignoring the spelling of white-space) in the two
defini tions are identical.

Existing implementations have differed on whether keywords can be redefined by
macro definitions. The Committee has decided to allow this usage; it sees such
redefinition as useful during the transition from existing; to Standard-conforming
translators.

These definitions illustrate possible uses:

define char signed char
define sizeof (int) sizeof
define const

The first case might be useful in moving extant code from a signed-char implementa­
tion to one in which char is unsigned. The second case might be useful in adapting
code which as:mmes that sizeof results in an int value. The redefinition of const
could be useful in retrofitting more modern C code to an older implementation.

As with any other powerful language feature, keyword redefinition is subject to
abuse. Users cannot expect any meaningful behavior to come about from source
files starting with

#define int double
#include <stdio.h>

or similar subversions of common sense.

3.8.3.1 Arg;ument substitution

3.8.3.2 The # operator

Some implementations have decided to replace identifiers found within a string lit­
eral if they match a macro argument name. The replacement text is a "stringized"
form of the actual argument token sequence. This practice appears to be contrary
to the definition, in K&R, of preprocessing in terms of token sequences. The Com­
mittee declined to elaborate the syntax of string literals to the point where this

RATIONALE

66 Section 3. LANGUAGE

practice could be condoned. However, since the facility provided by this mechanism
seems to be widely used, the Committee introduced a more tractable mechanism of
comparable power.

The # operator has been introduced for stringizing. It may only be used in a
#define expansion. It causes the formal parameter name following to be replaced
by a string literal formed by stringizing the actual argument token sequence. In
conjunction with string literal concatenation (see §3.1.4), use of this operator permits
the construction of strings as effectively as by identifier replacement within a string.
An example in the Standard illustrates this feature.

One problem with defining the effect of stringizing is the treatment of white
space occurring in macro definitions. \Vhere this could be discarded in the past, now
upwards of one logical line worth (over 500 characters) may have to be retained. As a
compromise between token- based and character-based preprocessing disciplines, the
Committee decided to permit white space to be retained as one bit of information:
none or one. Arbitrary white space is replaced in the string by one space character.

The remaining problem with stringizing was to associate a "spelling" with each
token. (The problem arises in token-based preprocessors, which might, for instance,
convert a numeric literal to a canonical or internal representation, losing information
about base, leading D's, etc.) In the interest of simplicity, the Committee decided
that each token should expand to just those characters used to specify it in the
original source text.

QUIET CHANGE

A macro that relies on formal parameter substitution within a string
literal will produce different results.

3.8.3.3 The ## operator

Another facility relied on in much current practice but not specified in the Base Doc­
ument is "token pasting," or building a new token by macro argument substitution.
One existing implementation is to replace a comment within a macro expansion
by zero characters, instead of the single space called for in K&R. The Committee
considered this practice unacceptable.

As with "stringizing," the facility was considered desirable, but not the extant
implementation of this facility, so the Committee invented another preprocessing
operator. The ## operator within a macro expansion causes concatenation of the
tokens on either side of it into a new composite token. The specification of this
pasting operator is based on these principles:

• Paste operations are explicit in the source.

• The ## operator is associative.

• A formal parameter as an operand for ## is not expanded before pasting. (The
actual is substituted for the formal, but the actual is not expanded:

3.8. Preprocessing directives

#define a(n) aaa ## n
#define b 2

Given these definitions, the expansion of a(b) is aaab, not aaa2 or aaan.)

• A normal operand for ## is not expanded before pasting.

• Pasting does not cross macro replacement boundaries.

67

• The token resulting from a paste operation is subject to further macro expan­
SIOn.

These principles codify the essential features of prior art, and are consistent with
the specification of the stringizing operator.

3.8.3.4 Rescanning and further replacement

A problem faced by most current preprocessors is how to use a macro name in its
expansion without suffering "recursive death." The Committee agreed simply to
turn off the definition of a macro for the duration of the expansion of that macro.
An example of this feature is included in the Standard.

The rescanning rules incorporate an ambiguity. Given the definitions

#deHne
#deHne

fCa)

g

it is clear (or at least unambiguous) that the expansion of f (2) (9) is 2*f (9) - the
f in the result clearly was introduced during the expansion of the original f, so is
not further expanded.

However, given the definitions

#define f(a) a*g
#define g(a) f(a)

the expansion rules allow the result to be either 2*f(9) or 2*9*g - it is unclear
whether the f(9) token string (resulting from the initial expansion of f and the
examination of the rest of the source file) should be considered as nested within
the expansion of f or not. The Committee intentionally left this behavior ambigu­
ous: it saw no useful purpose in specifying all the quirks of preprocessing for such
questionably useful constructs.

3.8.3.5 Scope of macro definitions

Some pre-Stalldard implementations maintain a stack of #define instances for each
identifier; #undef simply pops the stack. The Committee agreed that more than
one level of #define was more prone to error than utility.

It is explicitly permitted to #undef a macro that has no current definition. This
capability is exploited in conjunction with the standard library (see §4.1.3).

RATIONALE

68 Section 3, LANGUAGE

3.8.4 Line control

Aside from giving values to __LINE_ and _-FILL_ (see §3.8.8), the effect of #line
is unspecified. A good implementation will presumably provide line and file infor­
mation in conjunction with most diagnostics.

3.8.5 Error directive

The directive terror has been introduced to provide an explicit mechanism for
forcing translation to fail under certain conditions. (Formally the Standard only
requires, can only require, that a diagnostic be issued when the terror directive is
effected. It is the intent of the Committee, however, that translation cease imme­
diately upon encountering this directive, if this is feasible in the implementation;
further diagnostics on text beyond the directive are apt to be of little value.) Tra­
ditionally such failure has had to be forced by inserting text so ill-formed that the
translator gagged on it.

3.8.6 Pragma directive

The #pragma directive has been added as the universal method for extending the
space of directives.

3.8.7 Null directive

The existing practice of using empty # lines for spacing is supported in the Standard.

3.8.8 Predefined macro names

The rule that these macros may not be redefined or undefined reduces the complex­
ity of the name space that the programmer and implementor must understand; it
recognizes that these macros have special built-in properties.

The macros __DATE_ and __TIML_ have been added to make available the time of
translation. A particular format for the expansion of these macros has been specified
to aid in parsing strings initialized by them.

The macros __LINL_ and __FILL_ have been added to give programmers access
to the source line number and file name.

The macro __STDC-_ allows for conditional translation on whether the translator
claims to be standard-conforming or not. It is defined as having value 1; future ver­
sions of the Standard could define it as 2, 3, ... , to allow for conditional compilation
on which version of the Standard a translator conforms to. This macro should be
of use in the transition toward conformance to the Standard.

3.9. Future language directions

3.9 Future language directions

69

This section includes specific mention of the future direction in which the Com­
mittee intends to extend and/or restrict the language. The contents of this section
should be considered as quite likely to become a part of the next version of the Stan­
dard. Implementors are advised that failure to take heed of the points mentioned
herein is considered undesirable for a conforming hosted or freestanding implemen­
tation. Users are advised that failure to take heed of the points mentioned herein is
considered undesirable for a conforming program.

3.9.1 External names

3.9.2 Character escape sequences

3.9.3 Storage-class specifiers

See §3.5.1.

3.9.4 Function declarators

The characterization as obsolescent of the use of the "old style" function declarations
and definitions - that is, the traditional style not using prototypes - signals the
Committee's intent that the new prototype style should eventually replace the old
style.

The case for the prototype style is presented in §3.3.2.2 and §3.5.4.3. The gist
of this case is that the new syntax addresses some of the most glaring weaknesses
of the language defined in the Base Document, that the n()w style is superior to the
old style on every count.

It was obviously out of the question to remove syntax used in the overwhelming
majority of extant C code, so the Standard specifies two ways of writing function
declarations and function definitions. Characterizing the old style as obsolescent is
meant to discourage its use, and to serve as a strong endorsement by the Committee
of the new style. It confidently expects that approval and adoption of the prototype
style will make it feasible for some future C Standard to remove the old style syntax.

3.9.5 Function definitions

See §3.9.4.

3.9.6 Array parameters

As vector and parallel hardware, and numeric applications in C, become more com­
mon, the aliasing semantics of C have been a source of frustration for irnplementors
wanting to make optimum use of such hardware. If arrays are known not to overlap,
certain optimizations become possible, but C currently provides no way to specify
to a translator that argument arrays indeed do not overlap. The Committee, in

RATIONALE

70 Section 3. LANGUAGE

adopting this future direction, hopes to provide common ground for implementors
and users concerned with this problem, so that some future C Standard can adopt
this non-overlapping rule on the basis of widespread experience.

Section 4

LIBRLARY

4.1 Introduction

The Base Document for this section of the Standard was the 1984 jusrjgroup Stan­
dard. The jusrjgroup document contains definitions of some facilities which were
specific to the UNIX Operating System and not relevant to other operating envi­
ronments, such as pipes, ioctls, file access permissions and process control facilities.
Those definitions were dropped from the Standard. Some other functions were ex­
cluded from the Standard because they were non-portable or were ill-defined.

Other facilities not in the library Base Document but present in many UNIX
implementations, such as the curses (terminal-independent screen handling) library
were considered to be more complex and less essential than the facilities of the Base
Document; these functions were not added to the Standard.

4.1.1 Definitions of terms

The decimal-point character is the character used in the input or output of floating
point numbers, and may be changed by setlocale. This is a library construct; the
decimal point in numeric literals in C source text is always a period.

4.1.2 Standard headers

Whereas in prior practice only certain library functions have been associated with
header files, the Standard now mandates that all library functions have a header.
Several headers have therefore been added, and the contents of a few old ones have
been changed.

In many implementations the names of headers are 1;he names of files in special
directories. This implementation technique is not required, however: the Standard
makes no assumptions about the form that a file namf~ may take on any system.
Headers may thus have a special status if an implementation so chooses. Standard
headers may even be built into a translator, provided that their contents do not
become "known" until after they are explicitly included. One purpose of permitting

71

72 Section 4. LIBRARY

these header "files" to be "built in" to the translator is to allow an implementation
of the C language as an interpreter in an un-hosted environment, where the only
"file" support may be a network interface.

The Committee decided to make library headers "idempotent" -- they should
be includable any number of times, and includable in any order. This requirement,
which reflects widespread existing practice, may necessitate some protective wrap­
pers within the headers, to avoid, for instance, redefinitions of typedefs. To ensure
that such protective wrapping can be made to work, and to ensure proper scoping
of typedefs, headers may only be included outside of any declaration.

Note to implementors: a common way of providing this "protective wrapping"
IS:

#ifndef
#define
1* body
1* ...
#endif

__ERRNO_H
__ERRNO_H
of <errno.h> *1

*1

where __ERRNO_H is an otherwise unused macro name.

Implementors often desire to provide implementations of C in addition to that pre­
scribed by the Standard. For instance, an implementation may want to provide
system-specific I/O facilities in <stdio .h>. A technique that allows the same header
to be used in both the Standard-conforming and alternate implementations is to add
the extra, non-Standard, declarations to the header as in this illustration:

#ifdef __EXTENSIONS __
typedef int file_no;
extern int read(file_no _N, void * _Buffer, int _Nbytes);
1* . .. *1
endif

The header is usable in an implementation of the Standard in the absence of a
definition of __EXTENSIONS_, and the non-Standard implementation can provide
the appropriate definitions to enable the extra declarations.

4.1.2.1 Reserved identifiers

To give implementors maximum latitude in packing library functions into files, all
external identifiers defined by the library are reserved (in a hosted environment).
This means, in effect, that no user supplied external names may match library
names, not even if the user function has the same specification. Thus, for instance,
strtod may be defined in the same object module as printf, with no fear that
link- time conflicts will occur. Equally, strtod may call printf, or printf may call
strtod, for whatever reason, with no fear that the wrong function will be called.

4.1. Introduction 73

Also reserved for the implementor are all external identifiers beginning with
an underscore, and all other identifiers beginning with an underscore followed by a
capital letter or an underscore. This gives a space of names for writing the numerous
behind-the-scenes non-external macros and functions a library needs to do its job
properly.

With these exceptions, the Standard assures the programmer that all other iden­
tifiers are available, with no fear of unexpected collisions when moving programs
from one implementation to another.1 Note, in particular, that part of the name
space of internal identifiers beginning with underscore is available to the user ­
translator implementors have not been the only ones to find use for "hidden" names.
C is such a portable language in many respects that this issue of "name space pollu­
tion" is currently one of the principal barriers to writing completely portable code.
Therefore the Standard assures that macro and typedef names are reserved only if
the associated header is explicitly included.

4.1.3 Errors
<err-no.h>

<errno .h> is a header invented to encapsulate the error handling mechanism used
by many of the library routines in math.h and strlib .h.2

The error reporting machinery centered about the setting of errno is generally
regarded with tolerance at best. It requires a "pathological coupling" between li­
brary functions and makes use of a static writable memory cell, which interferes
with the construction of shareable libraries. Nevertheless, the Committee preferred
to standardizl~ this existing, however deficient, machinery rather than invent some­
thing more ambitious.

The definition of errno as an lvalue macro grants implementors the license to
expand it to something like *__errno_addrO, where the function returns a pointer
to the (current) modifiable copy of errno .

4.1.4 Limits
<float. h> and <limit s . h>

Both <float .h> and <limits .h> are inventions. Included in these headers are
various parameters of the execution environment which are potentially useful at
compile time, and which are difficult or impossible to determine by other means.

The availability of this information in headers provides a portable way of tun­
ing a program to different environments. Another possible method of determining

lSee §3.1.2.1 for a discussion of some of the precautions an implementor should take to keep
this promise. Note also that any implementation-defined member names in structures defined in
<time. h> and <locals. h> must begin with an underscore, rather than following the pattern of
other names in those structures.

2 In earlier dr afts of the Standard, errno and related macros were defined in <stddef. h>. When
the Committee decided that the other definitions in this header were of such general utility that
they should be required even in freestanding environments, it created <ermo .h>.

RATIONALE

74 Section 4. LIBRARY

some of this information is to evaluate arithmetic expressions in the preprocessing
statements. Requiring that preprocessing always yield the same results as run-time
arithmetic, however, would cause problems for portable compilers (themselves writ­
ten in C) or for cross compilers, which would then be required to implement the
(possibly wildly different) arithmetic of the target machine on the host machine.
(See §3.4.)

<float. h> makes available to programmers a set of useful quantities for numerical
analysis. (See §2.2.4.2.) This set of quantities has seen widespread use for such anal­
ysis, in C and in other languages, and was recommended by the numerical analysts
on the Committee. The set was chosen so as not to prejudice an implementation's
selection of floating-point representation.

Most of the limits in <float .h> are specified to be general double expressions
rather than restricted constant expressions

• to allow use of values which cannot readily (or, in some cases, cannot possibly)
he constructed as manifest constants, and

• to allow for run-time selection of floating-point properties, as is possible, for
instance, in IEEE-854 implementations.

4.1.5 Common definitions
<stddef.h>

<stddef . h> is a header invented to provide definitions of several types and macros
used widely in conjunction with the library: ptrdifLt (see §3.3.6), size_t (see
§3.3.3.4), wchar-t (see §3.1.3.4), and NULL. Including any header that references one
of these macros will also define it, an exception to the usual library rule that each
macro or function belongs to exactly one header.

NULL can be defined as any null pointer constant. Thus existing code can retain
definitions of NULL as 0 or OL, but an implementation may choose to define it as
(void *) 0; this latter form of definition is convenient on architectures where the
pointer size(s) do(es) not equal the size of any integer type. It has never been wise
to use NULL in place of an arbitrary pointer as a function argument, however, since
pointers to different types need not be the same size. The library avoids this problem
by providing special macros for the arguments to signal, the one library function
that might see a null function pointer.

The offsetof macro has been added to provide a portable means of determining
the offset, in bytes, of a member within its structure. This capability is useful in
programs, such as are typical in data- base implementations, which declare a large
number of different data structures: it is desirable to provide "generic" routines that
work from descriptions of the structures, rather than from the structure declarations
themselves. 3

3Consider, for instance, a set of nodes (structures) which are to be dynamically allocated and

4.1. Introduction

In many implementations, offsetof could be defined as one of

or

75

or, where X iE some predeclared address (or 0) and A(Z) is defined as «char*) &Z) ,

It was not fea$ible, however, to mandate any single one of these forms as a construct
guaranteed to be portable.

Other implementations may choose to expand this macro as a call to a built-in
function that interrogates the translator's symbol table.

4.1.6 Use of library functions

To make usage more uniform for both implementor and programmer, the Standard
requires that every library function (unless specifically noted otherwise) must be
represented as an actual function, in case a program wishes to pass its address as
a parameter to another function. On the other hand, every library function is now
a candidate for redefinition, in its associated header, as a macro, provided that
the macro performs a "safe" evaluation of its arguments, Le., it evaluates each of
the arguments exactly once and parenthesizes them thoroughly, and provided that
its top-level operator is such that the execution of the macro is not interleaved
with other expressions. Two exceptions are the macros getc and putc, which may
evaluate their arguments in an unsafe manner. (See §4.9.7.5.)

If a program requires that a library facility be implemented as an actual function,
not as a macro, then the macro name, if any, may be erased by using the #undef
preprocessing directive (see §3.8.3).

All library prototypes are specified in terms of the "widened" types: an argu­
ment formerly declared as char is now written as into This ensures that most
library functions can be called with or without a prototype in scope (see §3.3.2.2),
thus maintaining backwards compatibility with existing, pre-Standard, code. Note,
however, that since functions like printf and scanf use variable-length argument
lists, they must be called in the scope of a prototype.

The Standard contains an example showing how certain library functions may
be "built in" in an implementation that remains conforming.

garbage-collected, and which can contain pointers to other such nodes. A possible implementation
is to have the first field in each node point to a descriptor for that node. The descriptor includes a
table of the off,:ets of fields which are pointers to other nodes. A garbage-collector "mark" routine
needs no further information about the content of the node (excEpt, of course, where to put the
mark). New node types can be added to the program without requiring the mark routine to be
rewritten or even recompiled.

RATIONALE

76 Section 4. LIBRARY

4.2 Diagnostics
<assert.h>

4.2.1 Program diagnostics

4.2.1.1 The assert macro

Some implementations tolerate an arbitrary scalar expression as the argument to
assert, but the Committee decided to require correct operation only for int ex­
pressions. For the sake of implementors, no hard and fast format for the output
of a failing assertion is required; but the Standard mandates enough machinery to
replicate the form shown in the footnote.

It can be difficult or impossible to make assert a true function, so it is restricted
to macro form only.

To minimize the number of different methods for program termination, assert
is now defined in terms of the abort function.

Note that defining the macro NDEBUG to disable assertions may change the be­
havior of a program with no failing assertion if any argument expression to assert
has side-effects, because the expression is no longer evaluated.

It is possible to turn assertions off and on in different functions within a transla­
tion unit by defining (or un defining) NDEBUG and including <assert. h> again. The
implementation of this behavior in <assert. h> is simple: un define any previous
definition of assert before providing the new one. Thus the header might look like

#undef assert
#ifdef NDEBUG

#define assert(ignore) ((void) 0)
#else
extern void __gripe(char *_Expr, char *_File, int _Line);
#define assert(expr) \

((expr)? (void)O : __gripe(#expr, __FILE __ , __LINE __))
#endif

Note that assert must expand to a void expression, so the more obvious if state­
ment does not suffice as a definition of assert. Note also the avoidance of names
in a header which would conflict with the. user's name space (see §3.1.2.1).

4.3 Character Handling
<ctype.h>

Pains were taken to eliminate any ASCII dependencies from the definition of the
character handling functions. One notable result of this policy was the elimination
of the function isascii, both because of the name and because its function was hard
to generalize. Nevertheless, the cha,racter functions are often most clearly explained
in concrete terms, so ASCII is used frequently to express examples.

4.3. Character Handling <ctype .h> 77

Since these functions are often used primarily as macros, their domain is re­
stricted to the small positive integers representable in an unsigned char, plus the
value of EOF. £oOF is traditionally -1, but may be any negative integer, and hence
distinguishable from any valid character code. These macros may thus be efficiently
implemented by using the argument as an index into a small array of attributes.

The Standaxd (§4.13.1) warns that names beginning with is and to, when these
are followed by lower-case letters, are subject to future use in adding items to
<ctype .h>.

4.3.1 Character testing functions

The definitions of printing character and control character have been generalized
from ASCII.

Note that none of these functions returns a nonzero value (true) for the argument
value EOF.

4.3.1.1 The isalnum function

4.3.1.2 The isalpha function

The Standard specifies that the set of letters, in the default locale, comprises the 26
upper-case and 26 lower-case letters of the Latin (English) alphabet. This set may
vary in a locale-specific fashion (that is, under control of the setlocale function,
§4.4) so long as

• isupper(c) implies isalpha(c)

• islower(c) implies isalpha(c)

• isspace(c), ispunct(c) , iscntrl(c), or isdigit(c) implies !isalphaCc)

4.3.1.3 The: iscntrl function

4.3.1.4 The: isdigit function

4.3.1.5 The: isgraph function

4.3.1.6 The: islower function

4.3.1. 7 The: isprint function

4.3.1.8 The: ispunct function

4.3.1.9 The: isspace function

isspace is widely used within the library as the working definition of white space.

RATIONALE

78 Section 4. LIBRARY

4.3.1.10 The isupper function

4.3.1.11 The isxdigit function

4.3.2 Character case mapping functions

Earlier libraries had (almost equivalent) macros, _tolower and _toupper, for these
functions. The Standard now permits any library function to be additionally im­
plemented as a macro; the underlying function must still be present. _toupper and
_tolower are thus unnecessary and were dropped as part of the general standard­
ization of library macros.

4.3.2.1 The tolower function

4.3.2.2 The toupper function

4.4 Localization
<locale.h>

C has become an international language. ('sers of the language outside the United
States have been forced to deal with the various Americanisms built into the stan­
dard library routines.

Areas affected by international considerations include:

Alphabet. The English language uses 26 letters derived from the Latin alphabet.
This set of letters suffices for English, Swahili, and Hawaiian; all other living
languages use either the Latin alphabet plus other characters, or other, non­
Latin alphabets or syllabaries.

In English, each letter has an upper-case and lower-case form. The German
"sharp S", fi, occurs only in lower-case. European French usually omits dia­
criticals on upper-case letters. Some languages do not have the concept of two
cases.

Collation. In both EBCDIC and ASCII the code for 'z' is greater than the code
for 'a', and so on for other letters in the alphabet, so a "machine sort" gives
not unreasonable results for ordering strings. In contrast, most European
languages use a codeset resembling ASCII in which some of thp codes used
in ASCII for punctuation characters are used for alphabetic characters. (See
§2.2.1.) The ordering of these codes is not alphabetic. In some languages
letters with diacritics sort as separate letters; in others they should be collated
just as the unmarked form. In Spanish, "11" sorts as a single letter following
"1"; in German, "f.)" sorts like "ss".

Formatting of numbers and currency amounts. In the United States the pe­
riod is invariably used for the decimal point; this usage was built into the
definitions of such functions as printf and scanf. Prevalent practice in sev­
eral major European countries is to use a comma; a raised dot is employed

1776-07-04
4.7.76

4.4. Localization <locale .h>

in some locales. Similarly, in the United States a comma is used to separatfl
groups of three digits to the left of the decimal point; a period is common
in Europe, and in some countries digits are not grouped by threes. In print··
ing currency amounts, the currency symbol (which may be more than one
character) may precede, follow, or be embedded in the digits.

Date and time. The standard function asctime returns a string which includes
abbreviations for month and weekday names, and returns the various elements
in a format which might be considered unusual even in its country of origin.

Various common date formats include

ISO Format
customary central European and
British usage

7/4/76 customary U.S. usage
4.VII.i'6 Italian usage
76186 Julian date (YYDDD)
04JUL76 airline usage
Thursday, July 4, 1776 full U.S. format
Donnerstag,4. Juli 1776 full German format

Time formats are also quite diverse:

3:30 PM
1530
15h.30
15.30
15:30

customary U.S. and British format
U.S. military format
Italian usage
German usage
common European usage

The Committee has introduced mechanisms into the C library to allow these and
other issues to be treated in the appropriate locale-specific manner.

The localization features of the Standard are based on these principles:

English for C source. The C language proper is based on English. Keywords
are based on English words. A program which uses "national characters" in
identifiers is not strictly conforming. (Use of national characters in comments
is strictly conforming, though what happens when such a program is printed
in a different locale is unspecified.) The decimal point must be a period in C
source, and no thousands delimiter may be used.

Runtime selectability. The locale must be selectable at runtime, from an
implementation-defined set of possibilities. Translate-time selection does not
offer sufficient flexibility. Software vendors do not want to supply different

RATIONALE

80 Section 4. LIBRARY

object forms of their programs in different locales. Users do not want to use
different versions of a program just because they deal with several different
locales.

Function interface. Locale is changed by calling a function, thus allowing the im­
plementation to recognize the change, rather than by, say, changing a memory
location that contains the decimal point character.

Immediate effect. \Vhen a new locale is selected, affected functions reflect the
change immediately. (This is not meant to imply if a signal-handling function
were to change the selected locale and return to a library function, that the
return value from that library function must be completely correct with respect
to the new locale.)

4.4.1 Locale control

4.4.1.1 The setlocale function

set locale provides the mechanism for controlling locale-specific features of the li­
brary. The category argument allows parts of the library to be localized as neces­
sary without changing the entire locale-specific environment. Specifying the locale
argument as a string gives an implementation maximum flexibility in providing a
set of locales. For instance, an implementation could map the argument string into
the name of a file containing appropriate localization parameters - these files could
then be added and modified without requiring any recompilation of a localizable
program.

4.4.2 Numeric formatting convention inquiry

4.4.2.1 The localeconv function

The localeconv function gives a programmer access to information about how
to format numeric quantities (monetary or otherwise). This sort of interface was
considered preferable to defining conversion functions directly: even with a specified
locale, the set of distinct formats that can be constructed from these elements is
large, and the ones desired very application-dependent.

4.5 Mathematics
<math.h>

For historical reasons, the math library is only defined for the floating type double.
All the names formed by appending f or 1 to a name in <math. h> are reserved to
allow for the definition of float and long double libraries.

The functions ecvt, fcvt, and gcvt have been (lropped since their capability is
available through sprintf.

4.5. Mathematics <math. h> 81

Traditionally, HUGE-VAL has been defined as a manifest constant that approxi­
mates the largest representable double value. As an approximation to infinity it is
problematic. As a function return value indicating overflow, it can cause trouble if
first assigned to a float before testing, since a float may not necessarily hold all
values representable in a double.

After considering several alternatives, the Committee decided to generalize
HUGE-VAL to a positive double expression, so that it could be expressed as an external
identifier naming a location initialized precisely with the proper bit pattern. It can
even be a special encoding for machine infinity, on implementations that support
such codes. It need not be representable as a float, however.

Similarly, domain errors in the past were typically indicated by a zero return,
which is not necessarily distinguishable from a valid result. The Committee agreed
to make the return value for domain errors implementatIOn-defined, so that special
machine codes can be used to advantage. This makes possible an implementation
of the math library in accordance with the IEEE P854 proposal on floating point
representation and arithmetic.

4.5.1 Treatrnent of error conditions

Whether underflow should be considered a range error, and cause errno to be set,
is specified aE: implementation-defined since detection of underflow is inefficient on
some systems.

The Standard has been crafted to neither require nor preclude any popular
implementation of floating point. This principle affectf; the definition of domain
error: an implementation may define extra domain errors to deal with floating-point
arguments such as infinity or "not-a-number".

The Committee considered the adoption of the mathe,rr capability from UNIX
System V. In this feature of that system's math library, any error (such as overflow
or underflow) results in a call from the library function to a user-defined exception
handler named matherr. The Committee rejected this approach for several reasons:

• This style is incompatible with popular floating point implementations, such
as IEEE 754 (with its special return codes), or that; of VAX/VMS.

• It conflicts with the error-handling style of FORTRAN, thus making it more
difficult to translate useful bodies of mathematical code from that language
to C.

• It requires the math library to be reentrant (since math routines could be
called from matherr), which may complicate some implementations.

• It introduces a new style of library interface: a user-defined library function
with a library-defined name. Note, by way of comparison, the signal and
exit handling mechanisms, which provide a way of "registering" user--defined
functions.

RATIONALE

82 Section 4. LIBRARY

4.5.2 Trigonometric functions

Implementation note: trignometric argument reduction should be performed by a
method that causes no catastrophic discontinuities in the error of the computed
result. In particular, methods based solely on naive application of a calculation like

x - (2*pi) * (int)(x/(2*pi))

are ill-advised.

4.5.2.1 The acos function

4.5.2.2 The asin function

4.5.2.3 The atan function

4.5.2.4 The atan2 function

The atan2 function is modelled after FORTRAN's. It is described in terms of
arctan ~ for simplicity; the Committee did not wish to complicate the descriptions
by specifying in detail how the determine the appropriate quadrant, since that should
be obvious from normal mathematical convention. atan2 (y ,x) is well-defined and
finite, even when x is 0; the one ambiguity occurs when both arguments are 0, be­
cause at that point any value in the range of the function could logically be selected.
Since valid reasons can be advanced for all the different choices that have been in
this situation by various implements, the Standard preserves the implementor's free­
dom to return an arbitrary well-defined value such as 0, to report a domain error,
or to return an IEEE NaN code.

4.5.2.5 The cos function

4.5.2.6 The sin function

4.5.2.7 The tan function

The tangent function has singularities at odd multiples of ~, approaching +00 from
one side and -00 from the other. Implementations commonly perform argument
reduction using the best machine representation of 11"; for arguments to tan suffi­
ciently close to a singularity, such reduction may yield a value on the wrong side of
the singularity. In view of such problems, the Committee has recognized that tan
is an exception to the range error rule (§4 ..5.1) that an overflowing result produces
HUGE-VAL properly signed.)

4.5. Mathematics <math. h>

4.5.3 Hyperbolic functions

4.5.3.1 The cosh function

4.5.3.2 The sinh function

4.5.3.3 The tanh function

4.5.4 Exponential and logarithmic functions

4.5.4.1 The exp function

4.5.4.2 The frexp function

83

The functions frexp, Idexp, and modf are primitives used by the remainder of the
library. There was some sentiment for dropping them for the same reasons that
ecvt, fcvt, and gcvt were dropped, but their adherents rescued them for general
use. Their use is problematic: on nonbinary architectures Idexp may lose precision,
and frexp may be inefficient.

4.5.4.3 The Idexp function

See §4.5.4.2.

4.5.4.4 The log function

·Whether log(O.) is a domain error or a range error is arguable. The choice
in the Standard, range error, is for compatibility with IEEE P854. Some such
implementations would represent the result as -00, in which case no error is raised.

4.5.4.5 The logiO function

See §4.5.4.4.

4.5.4.6 The modf function

See §4.5.4.2.

4.5.5 Power functions

4.5.5.1 The POy function

4.5.5.2 The sqrt function

IEEE P854, unlike the Standard, requires sqrt (-0.) to return a negatively signed
magnitude-zero result. This is an issue on implementations that support a neg­
ative floating zero. The Standard specifies that taking the square root of a neg­
ative number (in the mathematical sense: less than 0) is a domain error which
requires the function to return an implementation-defined value. This rule permits

RATIONALE

84 Section 4. LIBRARY

implementations to support either the IEEE P854 or vendor-specific floating point

representations.

4.5.6 Nearest integer, absolute value, and remainder functions

4.5.6.1 The ceil function

1m plementation note: The ceil function returns the smallest integral value in dou­
ble format not less than x, even though that integer might not be representable in
a C integral type. ceil (x) equals x for all x sufficiently large in magnitude. An
implementation that calculates ceil(x) as

(double)(int) x

is ill-advised.

4.5.6.2 The fabs function

Adding an absolute value operator was rejected by the Committee. An implemen­
tation can provide a built-in function for efficiency.

4.5.6.3 The floor function

4.5.6.4 The fmod function

fmod is defined even if the quotient x/y is not representable -- this function is
properly implemented by scaled subtraction rather than by division. The Standard
defines the result in terms of the formula x - i * y, where i is some integer. This
integer need not be representable, and need not even be explicitly computed. Thus
implementations are advised not to compute the result using a formula like

x - y * (int)(x/y)

Instead, the result can be computed in principle by subtracting ldexp(y,n) from
x, for appropriately chosen decreasing n, until the remainder is between 0 and x -~

efficiency considerations may dictate a different actual implementation.
The result offmod(x,O.O) is either a domain error or 0.0; the result always lies

between 0.0 and y, so specifying the non-erroneous result as 0.0 simply recognizes
the limi t case.

The Committee considered and rejected a proposal to use the remainder oper­
ator 'I. for this function; the operators in general correspond to hardware facilities,
and fmod is not supported in hardware on most machines.

4.6 N onlocal jumps
<setjrnp.h>

jmp_buf must be an array type for compatibility with existing practice: programs

typically omit the address operator before a jmp_buf argument, even though a

4.6. NonlocaJ jumps <setjrnp .h> 85

pointer to the argument is desired, not the value of the argument itself. Thus, a
scalar or struct type is unsuitable. Note that a one-element array of the appropriate
type is a valid definition.

setjrnp is constrained to be a macro only: in some implementations the infor­
mation necessary to restore context is only available while executing the function
making the call to setjrnp.

4.6.1 Save calling environment

4.6.1.1 The setjrnp macro

One proposed requirement on setjrnp is that it be usable like any other function
- that it be callable in any expression context, and that the expression evaluate
correctly whether the return from setjrnp is direct or via a call to longjrnp. Un­
fortunately, any implementation of setjrnp as a conventional called function cannot
know enough about the calling environment to save any temporary registers or dy­
namic stack locations used part way through an expression evaluation. (A setjrnp
macro seems to help only if it expands to inline assembly code or a call to a special
built-in function.) The temporaries may be correct on the initial call to setjrnp,
but are not likely to be on any return initiated by a corf€~sponding call to longjrnp.
These considerations dictated the constraint that setjmp be called only from within
fairly simple expressions, ones not likely to need ternporClxy storage.

An alternative proposal considered by the Committee is to require that imple­
mentations recognize that calling setjrnp is a special ca,se,4 and hence that they
take whatever precautions are necessary to restore the setjrnp environment prop­
erly upon a longjmp call. This proposal was rejected on grounds of consistency:
implementations are currently allowed to implement librcny functions specially, but
no other situations require special treatment.

4.6.2 Restore calling environment

4.6.2.1 The longjrnp function

The Committee also considered requiring that a call to longjrnp restore the (setjrnp)
calling environment fully - that upon execution of a lQngjrnp, all local variables
in the environment of setjrnp have the values they did at the time of the longjrnp
call. Register variables create problems with this idea. Unfortunately, the best that
many implementations attempt with register variables is to save them (in jrnp_buf)
at the time of the initial setjrnp call, then restore them to that state on each return
initiated by a longjrnp call. Since compilers are certainly a,t liberty to change register
variables to automatic, it is not obvious that a register declaration will indeed be
rolled back. And since compilers are at liberty to change automatic variables to

4This proposal was considered prior to the adoption of the stricture that setjmp be a macro. It
can be considered as equivalent to proposing that the setjmp macro expand to a call to a special
built-in compiler function.

RATIONALE

86 Section 4. LIBRARY

register (if their addresses are never taken), it is not obvious that an automatic
declaration will not be rolled back. Hence the vague wording. In fact, the only
reliable way to ensure that a local variable retain the value it had at the time of the
call to longjrnp is to define it with the volatile attribute.

Some implementations leave a process in a special state while a signal is being
handled. An explicit reassurance must be given to the environment when the signal
handler is done. To keep this job manageable, the Committee agreed to restrict
longjrnp to only one level of signal handling.

The longjrnp function should not be called in an exit handler (i.e., a function
registered with the atexi t function (see §4.10.4.2)), since it might jump to some
code which is no longer in scope.

4.7 Signal Handling
<signal.h>

This facility has been retained from the Base Document since the Committee felt
it important to provide some standard mechanism for dealing with exceptional pro­
gram conditions. Thus a subset of the signals defined in UNIX were retained in the
Standard, along with the basic mechanisms of declaring signal handlers and (with
adaptations, see §1.7.2.1) raising signals. For a discussion of the problems created
by including signals, see §2.2.3.

The signal machinery contains many misnomers: SIGFPE, SIGILL, and SIGSEGV

have their roots in PDP-ll hardware terminology, but the names are too entrenched
to change. (The occurrence of SIGFPE, for instance, does not necessarily indicate
a floating-point error.) A conforming implementation is not required to field any

hardware interrupts.
The Committee has reserved the space of names beginning with SIG to permit

implementations to add local names to <signal. h>. This implies that such names
should not be otherwise used in a C source file which includes <signal.h>.

4.7.1 Specify signal handling

4.7.1.1 The signal function

When a signal occurs the normal flow of control of a program is interrupted. If a sig­
nal occurs that is being trapped by a signal handler, that handler is invoked. When
it is finished, execution continues at the point at which the signal occurred. This
arrangement could cause problems if the signal handler invokes a library function
that was being executed at the time of the signal. Since library functions are not
guaranteed to be re-entrant, they should not be called from a signal handler that
returns. (See §2.2.3.) A specific exception to this rule has been granted for calls
to signal from within the signal handler; otherwise, the handler could not reliably
reset the signal.

4.8. Variable Arguments <stdarg .h> 87

The specification that some signals may be effectively set to SIG_IGN instead of
SIG_DFL at program startup allows programs under UNIX systems to inherit this
effective setting from parent processes.

For performance reasons, UNIX does not reset SIGHL to default handling when
the handler is called (usually to emulate missing instructions). This treatment is
sanctioned by specifying that whether reset occurs for SIGILL is implementation­
defined.

4.7.2 Send signal

4.7.2.1 The raise function

The function ra.ise replaces the Base Document's kill function. The latter has an
extra argument which refers to the "process ID" affected by the signal. Since the
execution model ofthe Standard does not deal with multi-processing, the Committee
deemed it pref,~rable to introduce a function which requires no (dummy) process
argument. The Committee anticipates that IEEE 1003 will wish to standardize the
kill function in the POSIX specification.

4.8 Variable Arguments
<stdarg.h>

For a discussion of argument passing issues, see §3.7.1.
These macros, modeled after the UNIX <varargs .h> macros, have been added

to enable the portable implementation in C of library functions such as printf and
scanf (see §4.9.6). Such implementation could otherwise be difficult, considering
newer machines that may pass arguments in machine registers rather than using the
Illore traditional stack-oriented methods.

The definitions of these macros in the Standard differ from their forebears: they
have been extended to support argument lists that have a fixed set of arguments
preceding the variable list.

va_start a:lld va_arg must exist as macros, since va_start uses an argument
that is passed by name and va~arg uses an argument which is the name of a data
type. Using #undef on these names leads to undefined behavior.

The va_list type is not necessarily assignable. However, a function can pass a
pointer to its initialized argument list object, as noted below.

4.8.1 Variable argument list access macros

4.8.1.1 The va_start macro

va_start IllUSt be called within the body of the function whose argument list is to
be traversed. That function can then pass a pointer to its va_list object ap to
other functions to do the actual traversal. (It can, of course, traverse the list itself.)

RATIONALE

88 Section 4. LIBRARY

The parmN argument to va_start is an aid to writing conforming ANSI C code
for existing C implementations. Many implementations can use the second param­
eter within the structure of existing C language constructs to derive the address of
the first variable argument. (Declaring parmN to be of storage class register would
interfere with use of these constructs; hence the effect of such a declaration is un­
defined behavior. Other restrictions on the type of parmN are imposed for the same
reason.) New implementations may choose to use hidden machinery that ignores
the second argument to va_start, possibly even hiding a function call inside the
macro.

Multiple va_list variables can be in use simulaneously in the same function;
each requires its own calls to va_start and va_end.

4.8.1.2 The va_arg macro

Changing an arbitrary type name into a type name which is a pointer to that type
could require sophisticated rewriting. To allow the implementation of va_arg as a
macro, va_arg need only correctly handle those type names that can be transformed
into the appropriate pointer type by appending a *, which handles most simple cases.
(Typedefs can be defined to reduce more complicated types to a tractable form.)
When using these macros it is important to remember that the type of an argument
in a variable argument list will never be an integer type smaller than int, nor will
it ever be float. (See §3.5.4.3.)

va_arg can only be used to access the value of an argument, not to obtain its
address.

4.8.1.3 The va_end macro

va_end must also be called from within the body of the function having the variable
argument list. In many implementations, this is a do-nothing operation; but those
implementations that need it probably need it badly.

4.9 Input/Output
<stdio.h>

Many implementations of the C runtime environment (most notably the UNIX oper­
ating system) provide, aside from the standard I/O library (fopen, fclose, fread,
fwrite, fseek), a set of unbuffered I/O services (open, close, read, write, lseek).
The Committee has decided not to standardize the latter set of functions.

A suggested semantics for these functions in the UNIX world may be found in
the emerging IEEE PI003 standard. The standard I/O library functions use a file
pointer for referring to the desired I/O stream. The unbuffered I/O services use a
file descriptor (a small integer) to refer to the desired I/O stream.

Due to weak implementations of the standard I/O library, many implementors
have assumed that the standard I/O library was used for small records and that the

4.9. Input/Output <stdio .h> 89

unbuffered I/O library was used for large records. However, a good implementation
of the standard I/O library can match the performance of the unbuffered services
on large records. The user also has the capability of tuning the performance of the
standard I/O library (with setvbuf) to suit the application.

Some subtIe differences between the two sets of services can make the implemen­
tation of the unbuffered I/O services difficult:

• The model of a file used in the unbuffered I/O services is an array of characters.
Many C environments do not support this file model.

• Difficulties arise when handling the new-line character. Many hosts use con­
ventions other than an in-stream new-line character to mark the end of a line.
The unbuffered I/O services assume that no translation occurs between the
program's data and the file data when performing I/O, so either the new-line
character translation would be lost (which breaks programs) or the implemen­
tor must be aware of the new-line translation (which results in non-portable
programs).

• On UNIX systems, file descriptors 0, 1, and 2 correspond to the standard
input, output, and error streams. This convention may be problematic for
other systems in that (1) file descriptors 0, 1, and 2 may not be available
or may he reserved for another purpose, (2) the operating system may use a
different set of services for terminal I/O than file I/O.

In summary, the Committee chose not to standardize the unbuffered I/O services
because:

• They duplicate the facilities provided by the standard I/O services.

• The performance of the standard I/O services can be the same or better than
the unbuffered I/O services.

• The unbuffered I/0 file model may not be appropriate for many C language
environments.

4.9.1 Introduction

The macros _IOFBF, _IOLBF, _IONBF are enumerations of the third argument to
setvbuf, a function adopted from UNIX System V.

SEEK-CUR, SEEK-END, and SEEK_SET have been moved to <stdio. h> from a header
specified in the Base Document and not retained in the Standard.

FOPEN_MAX and TMP....MAX are added environmental limits of some interest to pro­
grams that manipulate multiple temporary files.

FILENAME-I1AX is provided so that buffers to hold file names can be conveniently
declared. If the target system supports arbitrarily long filenames, the implemen­
tor should provide some reasonable value (80?, 255?, 509?) rather than something
unusable like USHRLMAX.

RATIONALE

90 Section 4. LIBRARY

4.9.2 Streams

C inherited its notion of text streams from the UNIX environment in which it was
horn. Having each line delimited by a single new-line character, regardless of the
characteristics of the actual terminal, supported a simple model of text as a sort of
arbitrary length scroll or "galley." Having ,L channel that is "transparent" (no file
structure or reserved data encodings) elimina.ted the need for a distinction between
text and binary streams.

Many other environments have different properties, however. If a, program writ­
ten in C is to produce a text file digestible by other programs, by text editors in
particular, it must conform to the text formatting conventions of that environment.

The I/O facilities defined by the Standard are both more complex and more
restrictive than the ancestral I/O facilities of UNIX. This is justified on pragmatic
grounds: most of the differences, restrictions and omissions exist to permit C I/O
implementations in environments which differ from the UNIX I/O model.

Troublesome aspects of the stream concept include:

The definition of lines. In the UNIX model, division of a file into lines is effected
by new-line characters. Different techniques are used by other systems­
lines may be separated by CR-LF (carriage return, line feed) or by unrecorded
areas on the recording medium, or each line may be prefixed by its length.
The Standard addresses this diversity by specifying that new-line be used as
a line separator at the program level, but then permitting an implementation
to transform the data read or written to conform to the conventions of the
environment.

Some environments represent text lines as blank-filled fixed-length records.
Thus the Standard specifies that it is implementation-defined whether trailing
blanks are removed from a line on input. (This specification also addresses
the problems of environments which represent text as variable-length records,
but do not allow a record length of 0: an empty line may be written as a
one-character record containing a blank, and the blank is stripped on input.)

Transparency. Some programs require access to external data without modifica­
tion. For instance, transformation of CR-LF to new-line character is usually
not desirable when object code is processed. The Standard defines two stream
types, text and binary, to allow a program to define, when a file is opened,
whether the preservation of its exact contents or of its line structure is more
important in an environment which cannot accnrately reflect hoth.

Random. access. The UNIX I/O model features random access to data in a file,
indexed by character number. On systems where a new-line character pro­
cessed by the program represents an unknown Hum ber of physicaJJy recorded
characters, this simple mechanism cannot be consistently supported for text
streams. The Standard ahstracts the significant properties of random access
for text streams: the ability to determine the current file position and then

4.9. Input/Output <stdio .h> 91

later reposition the file to the same location. ftell returns a file position
indicat01" which has no necessary interpretation except that an fseek opera­
tion with that indicator value will position the file to the same place. Thus
an implementation may encode whatever file positioning information is most
appropriate for a text file, subject only to the constraint that the encoding
be representable as a long. Use of fgetpos and fBetpos removes even this
constraint.

Buffering. UNIX allows the program to control the extent and type of buffering
for various purposes. For example, a program can provide its own large I/O
buffer to improve efficiency, or can request unbuffered terminal I/O to process
each input character as it is entered. Other systems do not necessarily support
this generality. Some systems provide only line-at-a-time access to terminal
input; some systems support program-allocated bufrers only by copying data
to and from system-allocated buffers for processing. Buffering is addressed
in the Standard by specifying UNIX-like setbuf and setvbuf functions, but
permitting great latitude in their implementation. A conforming library need
neither attempt the impossible nor respond to a program attempt to improve
efficiency by introducing additional overhead.

Thus, the Standard imposes a clear distinction between text streams, which must
be mapped to suit local custom, and binary streams, for which no mapping takes
place. Local custom on UNIX (and related) systems is of course to treat the two
sorts of streams identically, and nothing in the Standard requires any changes to
this practice.

Even the specification of binary streams requires some changes to accommodate
a wide range of systems. Because many systems do not keep track of the length of a
file to the nearest byte, an arbitrary number of characters may appear on the end of
a binary stream directed to a file. The Standard cannot forbid this implementation,
but does requ:lre that this padding consist only of null characters. The alternative
would be to restrict C to producing binary files digestible only by other C programs;
this alternative runs counter to the spirit of C.

The set of characters required to be preserved in text stream I/O are those needed
for writing C programs; the intent is the Standard should permit a C translator to
be written in a maximally portable fashion. Control characters such as backspace
are not required for this purpose, so their handling in text streams is not mandated.

It was agreed that some minimum maximum line length must be mandated; 254
was chosen.

4.9.3 Files

The as if principle is once again invoked to define the nature of input and output
in terms of just two functions, fgetc and fputc. The actual primitives in a given
system may be quite different.

RATIONALE

92 Section 4. LIBRARY

Buffering, and unbuffering, is defined in a way suggesting the desired interactive
behavior; but an implementation may still be conforming even if delays (in a network
or terminal controller) prevent output from appearing in time. It is the intent that
matters here.

No constraints are imposed upon file names, except that they must be repre­
sentable as strings (with no embedded null characters).

4.9.4 Operations on files

4.9.4.1 The remove function

The Base Document provides the unlink system call to remove files. The UNIX­
specific definition of this function prompted the Committee to replace it with a
portable function.

4.9.4.2 The rename function

This function has been added to provide a system-independent atomic operation
to change the name of an existing file; the Base Document only provided the link
system call, which gives the file a new name without removing the old one, and
which is extremely system-dependent.

The Committee considered a proposal that rename should quietly copy a file
if simple renaming couldn't be performed in some context, but rejected this as
potentially too expensive at execution time.

rename is meant to give access to an underlying facility of the execution envi­
ronment's operating system. When the new name is the name of an existing file,
some systems allow the renaming (and delete the old file or make it inaccessible
by that name), while others prohibit the operation. The effect of rename is thus
implementation-defined.

4.9.4.3 The tropfile function

The tropfile function is intended to allow users to create binary "scratch" files.
The as if principle implies that the information in such a file need never actually
be stored on a file-structured device.

The temporary file is created in binary update mode, because it will presumably
be first written and then read as transparently as possible. Trailing null-character
padding may cause problems for some existing programs.

4.9.4.4 The tmpnam function

This function allows for more control than tmpfile: a file can be opened in binary
mode or text mode, and files are not erased at completion.

There is always some time between the call to tmpnam and the use (in fopen) of
the returned name. Hence it is conceivable that in some implementations the name,
which named no file at the call to tmpnam, has been used as a filename by the time of

4.9. Input/Output <stdio .h> 93

the call to fopen. Implementations should devise name-generation strategies which
minimize this possibility, but users should allow for this possibility.

4.9.5 File access functions

4.9.5.1 The fclose function

On some operating systems it is difficult, or impossible, to create a file unless some­
thing is written to the file. A maximally portable program which relies on a file
being created must write something to the associated stream before closing it.

4.9.5.2 The fflush function

The fflush function ensures that output has been forced out of internal I/O buffers
for a specified stream. Occasionally, however, it is necessary to ensure that all output
is forced out, and the programmer may not conveniently be able to specify all
the currently-open streams (perhaps because some streams are manipulated within
library packages).5 To provide an implementation-independent method of flushing
all output buJfers, the Standard specifies that this is the result of calling fflush
with a NULL argument.

4.9.5.3 The fopen function

The b type modifier has been added to deal with the text/binary dichotomy (see
§4.9.2). Because of the limited ability to seek within text files (see §4.9.9.1), an
implementation is at liberty to treat the old update + modes as if b were also
specified. Table 4.1 tabulates the capabilities and actions associated with the various
specified mode string arguments to fopen.

Table 4.1: File and stream properties of fopen modes

file must exist before open V V
old :file contents discarded on open V V
stream can be read V V V V
stream can be written V \1 V V V
stream can be written only at end \/ V

Other specifications for files, such as record length and block size, are not speci­
fied in the Standard, due to their widely varying characteristics in different operating

5 For instance, on a system (such as UNIX) which supports process forks, it is usually necessary
to flush all output buffers just prior to the fork.

RATIONALE

94 Section 4. LIBRARY

environments. Changes to file access modes and buffer sizes may be specified us­
ing the setvbuf function. (See §4.9.5.6.) An implementation may choose to allow
additional file specifications as part of the mode string argument. For instance,

file1 = fopen(file1name," wb,reclen=80");

might be a reasonable way, on a system which provides record-oriented binary files,
for an implementation to allow a programmer to specify record length.

A change of input/output direction on an update file is only allowed following a
fsetpos, fseek, rewind, or fflush operation, since these are precisely the functions
which assure that the I/O buffer has been flushed.

The Standard (§4.9.2) imposes the requirement that binary files not be trun­
cated when they are updated. This rule does not preclude an implementation from
supporting additional file types that do truncate when written to, even when they
are opened with the same sort of fopen call. Magnetic tape files are an example of
a file type that must be handled this way. (On most tape hardware it is impossible
to write to a tape without destroying immediately following data.) Hence tape files
are not "binary files" within the meaning of the Standard. A conforming hosted
implementation must provide (and document) at least one file type (on disk, most
likely) that behaves exactly as specified in the Standard.

4.9.5.4 The freopen function

4.9.5.5 The setbuf function

setbuf is subsumed by setvbuf, but has been retained for compatibility with old
code.

4.9.5.6 The setvbuf function

setvbuf has been adopted from UNIX System V, both to control the nature of
stream buffering and to specify the size of I/O buffers. An implementation is not
required to make actual use of a buffer provided for a stream, so a program must
never expect the buffer's contents to reflect I/O operations. Further, the Standard
does not require that the requested buffering be implemented; it merely mandates a
standard mechanism for requesting whatever buffering services might be provided.

Although three types of buffering are defined, an implementation may choose
to make one or more of them equivalent. For example, a library may choose to
implement line-buffering for binary files as equivalent to unbuffered I/O or may
choose to always implement full-buffering as equivalent to line-buffering.

The general principle is to provide portable code with a means of requesting the
most appropriate popular buffering style, but not to require an implementation to
support these styles.

4.9. Input/Output <stdio .h> 95

4.9.6 Formatted input/output functions

4.9.6.1 The fprintf function

Use of the L modifier with floating conversions has been added to deal with formatted
output of the new type long double.

Note that the YeX and Yex formats expect a corresponding int argument; YelX or
Yelx must be supplied with a long int argument.

The conversion specification Yep has been added for pointer conversion, since
the size of a pointer is not necessarily the same as the size of an into Because
an implementation may support more than one size of pointer, the corresponding
argument is expected to be a (void *) pointer.

The Yen format has been added to permit ascertaining the number of characters
converted up to that point in the current invocation of the formatter.

Some pre-Standard implementations switch formats for Yeg at an exponent of -3
instead of (the Standard's) -4: existing code which requires the format switch at -3
will have to be changed.

Some existing implementations provide Yeo and 1.0 as synonyms or replacements
for Yeld and %10. The Committee considered the latter notation preferable.

The Committee has reserved lower case conversion specifiers for future standard­
ization.

The use of leading zero in field widths to specify zero padding has been super­
seded by a precision field. The older mechanism has been retained.

Some implementations have provided the format Yer as a means of indirectly
passing a variable-length argument list. The functions vfprintf, etc., are considered
to be a more controlled method of effecting this indirection, so 1.r was not adopted
in the Standard. (See §4.9.6.7.)

The printing formats for numbers is not entirely specified. The requirements
of the Standard are loose enough to allow implementations to handle such cases as
signed zero, not-a-number, and infinity in an appropriate fashion.

4.9.6.2 The :fscanf function

The specification of fscanf is based in part on these principles:

• As soon as one specified conversion fails, the whole function invocation fails.

• One-character pushback is sufficient for the implementation of fscanf. Given
the invalid field "- .x", the characters "-." are not pushed back.

• If a "flawed field" is detected, no value is stored for the corresponding argu­
ment.

• The conversions performed by fscanf are compatible with those performed
by strtod and strtol.

RATIONALE

96 Section 4. LIBRARY

Input pointer conversion with 'lop has been added, although it is obviously risky,
for symmetry with fprintf. The 'loi format has been added to permit the scanner
to determine the radix of the number in the input stream; the 'lon format has been
added to make available the number of characters scanned thus far in the current
invocation of the scanner.

White space is now defined by the isspace function. (See §4.3.1.9.)
An implementation must not use the ungetc function to perform the necessary

one-character pushback. In particular, since the unmatched text is left "unread,"
the file position indicator as reported by the ftell function must be the position
of the character remaining to be read. Furthermore, if the unread characters were
themselves pushed back via ungetc calls, the pushback in fscanf must not affect
the push-back stack in ungetc. A scanf call that matches N characters from a
stream must leave the stream in the same state as if N consecutive gete calls had
been issued.

4.9.6.3 The printf function

See comments of section §4.9.6.1 above.

4.9.6.4 The scanf function

See comments in section §4.9.6.2 above.

4.9.6.5 The sprintf function

See §4.9.6.1 for comments on output formatting.
In the interests of minimizing redundancy, sprintf has subsumed the older,

rather uncommon, ecvt, fcvt, and gcvt.

4.9.6.6 The sscanf function

The behavior of sscanf on encountering end of string has been clarified. See also
comments in section §4.9.6.2 above.

4.9.6.7 The vfprintf function

The functions vfprintf, vprintf, and vsprintf have been adopted from UNIX
System V to facilitate writing special purpose formatted output functions.

4.9.6.8 The vprintf function

See §4.9.6.7.

4.9.6.9 The vsprintf function

See §4.9.6.7.

4.9. Input/Output <stdio .h> 97

4.9.7 Character input/output functions

4.9.7.1 The fgete function

Because much existing code assumes that fgete and fpute are the actual functions
equivalent to the macros gete and pute, the Standard requires that they not be
implemented as macros.

4.9.7.2 The fgets function

This function subsumes gets, which has no limit to prevent storage overwrite on
arbitrary input (see §4.9.7.7).

4.9.7.3 The fpute function

See §4.9.7.1.

4.9.7.4 The fputs function

4.9.7.5 The gete function

gete and putc: have often been implemented as unsafe macros, since it is difficult in
such a macro to touch the stream argument only once. Since this danger is common
in prior art, t:h.ese two functions are explicitly permitted to evaluate stream more
than once.

4.9.7.6 The getchar function

4.9.7.7 ThE! gets function

See §4.9.7.2.

4.9.7.8 The putc function

See §4.9.7.5.

4.9.7.9 The putchar function

4.9.7.10 The puts function

puts(s) is not exactly equivalent to fputs(stdout,s); puts also writes a new line
after the argument string. This incompatibility reflects existing practice.

4.9.7.11 The ungete function

The Base Document requires that at least one character be read before ungetc is
called, in certain implementation-specific cases. The Committee has removed this
requirement, thus obliging a FILE structure to have room to store one character of

RATIONALE

98 Section 4. LIBRARY

pushback regardless of the state of the buffer; it felt that this degree of generality
makes clearer the ways in which the function may be used.

It is permissible to push back a different character than that which was read;
this accords with common existing practice. The last-in, first-out nature of ungete
has been clarified.

ungate is typically used to handle algorithms, such as tokenization, which involve
one-character lookahead in text files. fseek and ftell are used for random access,
typically in binary files. So that these disparate file-handling disciplines are not
unnecessarily linked, the value of a text file's file position indicator immediately
after ungate has been specified as indeterminate.

Existing practice relies on two different models of the effect of ungate. One
model can be characterized as writing the pushed-back character "on top of" the
previous character. This model implies an implementation in which the pushed­
back characters are stored within the file buffer and bookkeeping is performed by
setting the file position indicator to the previous character position. (Care must be
taken in this model to recover the overwritten character values when the pushed­
back characters are discarded as a result of other operations on the stream.) The
other model can be characterized as pushing the character "between" the current
character and the previous character. This implies an implementation in which the
pushed- back characters are specially buffered (within the FILE structure, say) and
accounted for by a flag or count. In this model it is natural not to move the file
position indicator. The indeterminacy of the file position indicator while pushed­
back characters exist accommodates both models.

Mandating either model (by specifying the effect of ungete on a text file's file
position indicator) creates problems with implementations that have assumed the
other model. Requiring the file position indicator not to change after ungete would
necessitate changes in programs which combine random access and tokenization on
text files, and rely on the file position indicator marking the end of a token even
after pushback. Requiring the file position indicator to back up would create severe
implementation problems in certain environments, since in some file organizations
it can be impossible to find the previous input character position without having
read the file sequentially to the point in question.6

4.9.8 Direct input/output functions

4.9.8.1 The fread function

size_t is the appropriate type both for an object size and for an array bound (see

6 Consider, for instance, a sequential file of variable-length records in which a lin e is represented
as a count field followed by the characters in the line. The file position indicator must encode a
character position as the position of the count field plus an offset into the line; from the position of
the count field and the length of the line, the next count field can be found. Insufficient information
is available for finding the previous count field, so backing up from the first character of a line
necessitates, in the general case, a sequential read from the start of the file.

4.9. Input/Olltput <stdio. h>

§3.3.3.4), so this is the type of size and nelem.

4.9.8.2 The fwrite function

See §4.9.8.1.

99

4.9.9 File positioning functions

4.9.9.1 The fgetpos function

fgetpos andfsetpos have been added to allow random access operations on files
which are too large to handle with fseek and ftell.

4.9.9.2 The fseek function

Whereas a binary file can be treated as an ordered sequence of bytes, counting from
zero, a text file need not map one-to-one to its internal representation (see §4.9.2).
Thus, only seeks to an earlier reported position are permitted for text files. The
need to encode both record position and position within a record in a long value
may constrain the size of text files upon which fseek-ftell can be used to be
considerably smaller than the size of binary files.

Given these restrictions, the Committee still felt that this function has enough
utility, and is used in sufficient existing code, to warrant its retention in the Stan­
dard. fgetpos and fsetpos have been added to deal with files which are too large
to handle with fseek and ftell.

The fsee}~ function will reset the end-of-file flag for the stream; the error flag is
not changed unless an error occurs, when it will be set.

4.9.9.3 The fsetpos function

4.9.9.4 The ftell function

ftell can faE for at least two reasons:

• the stream is associated with a terminal, or some other file type for which file
position indicator is meaningless; or

• the me may be positioned at a location not representable in a long into

Thus a method for ftell to report failure has been specified.
See also §4.9.9.1.

4.9.9.5 The rewind function

Resetting the end-of-file and error indicators was added to the specification of
rewind to ma,ke the specification more logically consistent.

RATIONALE

100 Section 4. LIBRARY

4.9.10 Error-handling functions

4.9.10.1 The clearerr function

4.9.10.2 The feof function

4.9.10.3 The ferror function

4.9.10.4 The perror function

At various times, the Committee considered providing a form of perror that delivers
up an error string version of errno without performing any output. It ultimately de­
cided to provide this capability in a separate function, strerror. (See §4.11.6.1).

4.10 General Utilities
<stdlib.h>

The header <stdlib .h> was invented by the Committee to hold an assortment of
functions that were otherwise homeless.

4.10.1 String conversion functions

4.10.1.1 The atof function

atof, atoi, and atol are subsumed by strtod and strtol, but have been retained
because they are used extensively in existing code. They are less reliable, but may
be faster if the argument is known to be in a valid range.

4.10.1.2 The atoi function

See §4.l0.1.1.

4.10.1.3 The atol function

See §4.l0.1.1.

4.10.1.4 The strtod function

strtod and strtol have been adopted (from UNIX System V) because they offer
more control over the conversion process, and because they are required not to
produce unexpected results on overflow during conversion.

4.10.1.5 The strtol function

See §4.10.1.4.

4.10. General Utilities <stdlib.h>

4.10.1.6 The strtoul function

101

strtoul was introduced by the Committee to provide a facility like strtol for
unsigned long values. Simply using strtol in such cases could result in overflow
upon conversion.

4.10.2 Pseudo-random sequence generation functions

4.10.2.1 The rand function

The Committee decided that an implementation should be allowed to provide a rand
function which generates the best random sequence possible in that implementation,
and therefore mandated no standard algorithm. It recognized the value, however,
of being able to generate the same pseudo-random sequence in different implemen­
tations, and so it has published as an example in the Standard an algorithm that
generates the same pseudo-random sequence in any conforming implementation,
given the same seed.

4.10.2.2 The srand function

4.10.3 Memory management functions

The treatment of null pointers and O-length allocation requests in the definition of
these functions was in part guided by a desire to support this paradigm:

OBJ * p; 1* pointer to a variable list c.f OBJ's *1

1* initial allocation *1
p = (OBJ *) calloc(O, sizeof(OBJ));

1* ... *1

1* reallocations until size settles *1
while(/* list changes size to c */) {

p = (OBJ *) realloc((void *)P. c*sizeof(OBJ));
1* ... *1

}

This coding style, not necessarily endorsed by the Committee, is reported to be in
widespread use.

Some implementations have returned non-null values for allocation requests of
o bytes. Although this strategy has the theoretical advantage of distinguishing be­
tween "nothing" and "zero" (an unallocated pointer vs. a pointer to zero-length
space), it has the more compelling theoretical disadvantage of requiring the concept
of a zero-length object. Since such objects cannot be declared, the only way they
could come into existence would be through such allocation requests. The Com­
mittee has decided not to accept the idea of zero-length objects. The allocation

RATIONALE

102 Section 4. LIBRARY

functions may therefore return a null pointer for an allocation request of zero bytes.
Note that this treatment does not preclude the paradigm outlined above.

QUIET CHANGE

A program which relies on size-O allocation requests returning a non-null
pointer will behave differently.

Some implementations provide a function (often called alloca) which allocates the
requested object from automatic storage; the object is automatically freed when the
calling function exits. Such a function is not efficiently implementable in a variety
of environments, so it was not adopted in the Standard.

4.10.3.1 The calloc function

Both nelem and elsize must be of type size_t, for reasons similar to those for
fread (see §4.9.8.1).

If a scalar with all bits zero is not interpreted as a zero value by an implemen­
tation, then ealloe may have astonishing results in existing programs transported
there.

4.10.3.2 The free function

The Standard makes clear that a program may only free that which has been al­
located, that an allocation may only be freed once, and that a region may not be
accessed once it is freed. Some implementations allow more dangerous license. The
null pointer is specified as a valid argument to this function to reduce the need for
special-case coding.

4.10.3.3 The malloe function

4.10.3.4 The realloe function

A null first argument is permissible. If the first argument is not null, and the second
argument is 0, then the call frees the memory pointed to by the first argument, and
a null argument may be returned; this specification is consistent with the policy of
not allowing zero-size objects.

4.10.4 Communication with the environment

4.10.4.1 The abort function

The Committee vacillated over whether a call to abort should return if the signal
SIGABRT is caught or ignored. To minimize astonishment, the final decision was that
abort never returns.

4.10. General Utilities <stdlib .h>

4.10.4.2 The atexit function

103

atexit provides a program with a convenient way to dean up the environment
before it exits. It is adapted from the Whitesmiths C run-time library function
onexit.

A suggested alternative was to use the SIGTERM facility of the signal/raise ma­
chinery, but that would not give the last-in first-out stacking of multiple functions
so useful with atexit.

It is the responsibility of the library to maintain the chain of registered functions
so that they are invoked in the correct sequence upon program exit".

4.10.4.3 The exit function

The argument to exit is a status indication returned to the invoking environment.
In the UNIX operating system, a value of 0 is the successful return code from a
program. As usage of C has spread beyond UNIX, exit (0) has often been retained
as an idiom indicating successful termination, even on operating systems with dif­
ferent systems of return codes. This usage is thus recognized as standard. There
has never been a portable way of indicating a non-successful termination, since the
arguments to exit are then implementation-defined. The macro EXIT-FAILURE has
been added to provide such a capability. (EXIT-SUCCESS has been added as well.)

Aside from calls explicitly coded by a programmer, exit is invoked on return
from main. Thus in at least this case, the body of exit cannot assume the existence
of any objects with automatic storage duration (except those declared in exit).

4.10.4.4 The getenv function

The definition of getenv is designed to accommodate both implementations that
have all in-memory read-only environment strings and those that may have to read
an environment string into a static buffer. Hence the pointer returned by the getenv
function points to a string not modifiable by the caller. If an attempt is made to
change this string, the behavior of future calls to getenv is undefined.

A corresponding putenv function was omitted from the Standard, since its util­
ity outside a multi-process environment is questionable, and since its definition is
properly the domain of an operating system standard.

4.10.4.5 The system function

The system function allows a program to suspend its execution temporarily in order
to run another program to completion.

Information may be passed to the called program in three ways: through
command-line argument strings, through the environment, and (most portably)
through data files. Before calling the system function, the calling program should
close all such data files.

RATIONALE

104 Section 4. LIBRARY

Information may be returned from the called program in two ways: through
the implementation-defined return value (in many implementations, the termina­
tion status code which is the argument to the exit function is returned by the
implementation to the caller as the value returned by the system function), and
(most portably) through data files.

If the environment is interactive, information may also be exchanged with users
of interactive devices.

Some implementations offer built-in programs called "commands" (for example,
"date") which may provide useful information to an application program via the
system function. The Standard does not attempt to characterize such commands,
and their use is not portable.

On the other hand, the use of the system function is portable, provided the
implementation supports the capability. The Standard permits the application to
ascertain this by calling the system function with a null pointer argument. Whether
more levels of nesting are supported can also be ascertained this way; assuming more
than one such level is obviously dangerous.

4.10.5 Searching and sorting utilities

4.10.5.1 The bsearch function

4.10.5.2 The qsort function

4.10.6 Integer arithmetic functions

abs was moved from <math. h> as it was the only function in that library which did
not involve double arithmetic. Some programs have included <math. h> solely to
gain access to abs, but in some implementations this results in unused floating-point
run-time routines becoming part of the translated program.

4.10.6.1 The abs function

The Committee rejected proposals to add an absolute value operator to the language.
An implementation can provide a built-in function for efficiency.

4.10.6.2 The div function

div and ldiv provide a well-specified semantics for signed integral division and
remainder operations. The semantics were adopted to be the same as in FORTRAN.
Since these functions return both the quotient and the remainder, they also serve as
a convenient way of efficiently modelling underlying hardware that computes both
results as part of the same operation. Table 4.2 summarizes the semantics of these
functions.

Divide- by-zero is described as undefined behavior rather than as setting errno to
EDOM. The program can as easily check for a zero divisor before a division as for an
error code afterwards, and the adopted scheme reduces the burden on the function.

4.11. STRING HANDLING <string.h>

Table 4.2: Results of div and ldiv

I numer I denom ~ quot~

7 3 2 1

-7 3 -2 -1

7 -3 -2 1

-7 -3 2 -1

105

4.10.6.3 The labs function

4.10.6.4 The ldiv function

4.10.7 Multibyte character functions

See §2.2.1.2 for an overall discussion of multibyte character representations and wide
characters.

4.10.7.1 The mblen function

4.10.7.2 The mbtollc function

4.10.7.3 The llctomb function

4.10.8 Multibyte string functions

See §2.2.1.2 for an overall discussion of multibyte character representations and wide
characters.

4.10.8.1 The mbstollcS function

4.10.8.2 The llcstombs function

4.11 STRING HANDLING
<string.h>

The Committee felt that the functions in this section were all excellent candidates
for replacement by high-performance built-in operations. Hence many simple func­
tions have been retained, and several added, just to leave the door open for better
implementations of these common operations.

The Standard reserves function names beginning with str or mem for possible
future use.

4.11.1 String function conventions

memcpy, memset, memcmp, and memchr have been adopted from several existing im­
plementations. The general goal was to provide equivalent capabilities for three

RATIONALE

106

types of byte sequences:

• null-terminated strings (str-),

Section 4. LIBRARY

• null-terminated strings with a maximum length (strn-), and

• transparent data of specified length (mem-).

4.11.2 Copying functions

A block copy routine should be "right": it should work correctly even if the blocks
being copied overlap. Otherwise it is more difficult to correctly code such overlapping
copy operations, and portability suffers because the optimal C-coded algorithm on
one machine may be horribly slow on another.

A block copy routine should be "fast": it should be implementable as a few inline
instructions which take maximum advantage of any block copy provisions of the
hardware. Checking for overlapping copies produces too much code for convenient
inlining in many implementations. The programmer knows in a great many cases
that the two blocks cannot possibly overlap, so the space and time overhead are for
naught.

These arguments are contradictory but each is compelling. Therefore the Stan­
dard mandates two block copy functions: memmove is required to work correctly
even if the source and destination overlap, while memcpy can presume nonoverlap­
ping operands and be optimized accordingly.

4.11.2.1 The memcpy function

4.11.2.2 The memmove function

4.11.2.3 The strcpy function

4.11.2.4 The strncpy function

strncpy was initially introduced into the C library to deal with fixed-length name
fields in structures such as directory entries. Such fields are not used in the same
way as strings: the trailing null is unnecessary for a maximum-length field, and set­
ting trailing bytes for shorter names to null assures efficient field-wise comparisons.
strncpy is not by origin a "bounded strcpy," and the Committee has preferred to
recognize existing practice rather than alter the function to better suit it to such
use.

4.11.3 Concatenation functions

4.11.3.1 The strcat function

4.11.3.2 The strncat function

Nate that this function may add n+ 1 characters to the string.

4.11. STRING HANDLING <string .h>

4.11.4 Comparison functions

4.11.4.1 The memcmp function

See §4.11.1.

4.11.4.2 The strcmp function

4.11.4.3 The strcoll function

107

strcoll and strxfrm provide for locale-specific string sorting. strcoll is intended
for applications in which the number of comparisons is small; strxfrm is more
appropriate when items are to be compared a number of times - the cost of trans­
formation is then only paid once.

4.11.4.4 The strncmp function

4.11.4.5 The strxfrm function

See §4.11.4.3.

4.11.5 Search functions

4.11.5.1 The memchr function

See §4.11.1.

4.11.5.2 The strchr function

4.11.5.3 The strcspn function

4.11.5.4 The strpbrk function

4.11.5.5 The strrchr function

4.11.5.6 The strspn function

4.11.5.7 The strstr function

The strstr function is an invention of the Committee. It is included as a hook for
efficient substring algorithms, or for built-in substring instructions.

4.11.5.8 The strtok function

This function has been included to provide a convenient solution to many simple
problems of lexical analysis, such as scanning command line arguments.

RATIONALE

108 Section 4. LIBRARY

4.11.6 Miscellaneous functions

4.11.6.1 The memset function

See §4.11.1, and §4.10.3.1.

4.11.6.2 The strerror function

This function is a descendant of perror (see §4.9.10A). It is defined such that it
can return a pointer to an in-memory read-only string, or can copy a string into a
static buffer on each call.

4.11.6.3 The strlen function

This function is now specified as returning a value of type size_to (See §3.3.3.4.)

4.12 DATE AND TIME
<time.h>

4.12.1 Components of time

The types clock_t and time_t are arithmetic because values of these types must,
in accordance with existing practice, on occasion be compared with -1 (a "don't­
know" indication) suitably cast. No arithmetic properties of these types are defined
by the Standard, however, in order to allow implementations the maximum flexi­
bility in choosing ranges, precisions, and representations most appropriate to their
intended application. The representation need not be a count of some basic unit;
an implementation might conceivably represent different components of a temporal
value as subfields of an integral type.

Many C environments do not support the Base Document library concepts of
daylight savings or time zones. Doth notions are defined geographically and politi­
cally, and thus may require more knowledge about the real world than an implemen­
tation can support. Hence the Standard specifies the date and time functions such
that information about DST and time zones is not required. The Base Document
function tzset, which would require dealing with time zones, has been excluded
altogether. An implementation reports that information about DST is not available
by setting the tm_isdst field in a broken-down time to a negative value. An imple­
mentation may return a null pointer from a call to gmtime if information about the
displacement between Universal Time (nee GMT) and local time is not available.

4.12.2 Time manipulation functions

4.12.2.1 The clock function

The function is intended for measuring intervals of execution time, in whatever units
an implementation desires. The conflicting goals of high resolution, long interval

4.12. DATE AND TIME <time .h> 109

capacity, and low timer overhead must be balanced carefully in the light of this
intended use.

4.12.2.2 The difftime function

difftime is an invention of the Committee. It is provided so that an implementation
can store an indication of the date/time value in the most efficient format possible
and still provide a method of calculating the difference between two times.

4.12.2.3 The mktime function

mktime was i:llvented by the Committee to complete the set of time functions. With
this function it becomes possible to perform portable calculations involving clock
times and broken-down times.

The rules on the ranges of the fields within the *timeptr record are crafted to
permit useful arithmetic to be done. For instance, here is a paradigm for continuing
some loop for an hour:

#in.elude <time.h>
stI'uet tm vhen;
time_t nov;
time_t deadline;

1* ... *1
nOiir = time(O);
VhElll = *loealtime(&nov);
vhElll.tm_hour += 1; 1* result is in the range [1,24] *1
deadline = mktime(&vhen);

priLntf("Loop vill finish: Y.s\n", asetime(&vhen));
vhHe (difftime(deadline,time(O)) > 0) vhateverO;

The specification of mktime guarantees that the addition to the tIILhour field pro­
duces the correct result even when the new value of tIILhour is 24, i.e., a value
outside the range ever returned by a library function in a struet tm object.

One of the reasons for adding this function is to replace the capability to do
such arithmEltic which is lost when a programmer cannot depend on time_t being;
an integral multiple of some known time unit.

Several readers of earlier versions of this Rationale have pointed out apparent
problems in this example if nov is just before a transition into or out of daylight
savings time. However, vhen. tm_isdst indicates what sort of time was the basis of
the calculation. Implementors, take heed. If this field is set to -1 on input, one
truly ambiguous case involves the transition out of daylight savings time. As DST
is currently legislated in the USA, the hour 0100-0159 occurs twice, first as DST
and then as standard time. Hence an unlabeled 0130 on this date is problematic"

RATIONALE

110 Section 4. LIBRARY

An implementation may choose to take this as DST or standard time, marking its
decision in the tIILisdst field. It may also legitimately take this as invalid input
(and return (time_t)(-1)).

4.12.2.4 The time function

Since no measure is given for how precise an implementation's best approximation
to the current time must be, an implementation could always return the same date,
instead of a more honest -1. This is, of course, not the intent.

4.12.3 Time conversion functions

4.12.3.1 The asetime function

Although the name of this function suggests a conflict with the principle of removing
ASCII dependencies from the Standard, the name has been retained due to prior art.
For the same reason of existing practice, a proposal to remove the newline character
from the string format was not adopted. Proposals to allow for the use of languages
other than English in naming weekdays and months met with objections on grounds
of prior art, and on grounds that a truly international version of this function was
difficult to specify: three-letter abbreviation of weekday and month names is not
universally conventional, for instance. The strftime function (§4.12.3.5) provides
appropriate facilities for locale-specific date and time strings.

4.12.3.2 The etime function

4.12.3.3 The gmtime function

This function has been retained, despite objections that GMT - that is, Coor­
dinated Universal Time (UTC) - is not available in some implementations, since
UTC is a useful and widespread standard representation of time. If UTC is not
available, a null pointer may be returned.

4.12.3.4 The loealtime function

4.12.3.5 The strftime function

strftime provides a way of formatting the date and time in the appropriate locale­
specific fashion, using the 'I.e, 'I.x, and 'I.x format specifiers. More generally, it allows
the programmer to tailor whatever date and time format is appropriate for a given
application. The facility is based on the UNIX system date command. See §4.4 for
further discussion of locale specification.

For the field controlled by 'I.P, an implementation may wish to provide special
symbols to mark noon and midnight.

4.13. Future library directions

4.13 Future library directions

4.13.1 Errors <errno .h>

4.13.2 Character handling <ctype. h>

4.13.3 Localization <locale. h>

4.13.4 M[athematics <math. h>

4.13.5 Signal handling <signal. h>

4.13.6 Input/output <stdio .h>

4.13.7 General utilities <stdlib.h>

4.13.8 String handling <string. h>

111

RATIONALE

SectioJn 5

APPJ~NDICES

Most of the material in the appendices is not new. It is simply a summary of
information in the Standard, collated for the convenience of users of the Standard.

New (advisory) information is found in Appendix E (Common Warnings) and
in Appendix 1".5 (Common Extensions). The section on common extensions is pro­
vided in part to give programmers even further information which may be useful in
avoiding features of local dialects of C.

113

Index:

1984 /usr/group Standard, 5, 71

abort function, 76, 102
abs function, 104
abstract machine, 12, 13
Ada programming language, 13
agreement point, 12, 38
aliasing, 39
alignment, 5
alloca function, nonstandard, 102
ANSI X3.64 character set standard,

30
ANSI X3L2 Committee (Codes and

Character Sets), 16
argc and argv parameters to main

function, 11
argument promotion, 41
as if principle, 9, 10, 13, 36, 39, 60,

91,92
ASCII character code, 13, 14, 16, 30,

76, 78, 110
asctime function, 110
asm keyword, nonstandard, 19

assert macro, 76
<assert .h> h(~ader, 76

associativity, 3:8
atan2 function, 82
atexit function, 11, 86, 103
atof function, 100
atoi function, 100
atol function, 100

Backus-Naur Form, 19
benign redefinition, 64
binary numeration systems, 27, 43
bit, 5

115

bit fields, 51
break keyword, 60
byte, 5,44

C++ programming language, 54, 55
calloc function, 102
case ranges, 59
cfree function, 102
clock function, 108
clock_t type, 108
codeset, 14, 78
collating sequence, 14
comments, 33
common extension, 19, 23, 31, 113
common storage, 23
compatible types, 28, 54
compliance, 6
composite type, 28, 54
concatenation, 31
conforming implementation,

freestanding, 7
conforming implementation, hosted, 7
conforming program, 3

const keyword, 19
constant expressions, 49
constraint error, 43
continue keyword, 60
control character, 77
conversions, 34
cross-compilation, 9, 28, 50, 74
<ctype .h> header, 76
curses screen-handling package,

nonstandard, 71

data abstraction, 43
__DATE_ macro, 68

116

DEC PDP-11, 2
decimal-point character, 71
declarations, 50
def ined preprocessing operator, 49,

62
diagnostics, 3, 10, 35, 65, 68
difft ime function, 109
div function, 45, 104
domain error, 81

EBCDIC character set, 16, 30, 78
#elif preprocessing directive, 62
#else preprocessing directive, 62
#endif preprocessing directive, 62
entry keyword, nonstandard, 19
enum keyword, 19, 51
enumerations, 27, 29, 50
EOF macro, 77
errno macro, 73, 81, 100
<errno . h> header, 73
erroneous program, 10
#error preprocessing directive, 68
executable program, 9
exit function, 11, 103, 104
expression, ambiguous, 48
expression, sequenced, 48
expression, unsequenced, 48
expressions, 38
external identifiers, 20
external linkage, 9

fclose function, 88
fflush function, 93, 94
fgetc function, 91, 97
fgetpos function, 99
fgets function, 97
__FILE_ macro, 68

file pointer, 88
file position indicator, 91, 99
FILE type, 97
FILENAME_MAX macro, 89
<float .h> header, 18, 73, 74
fmod function, 45, 84
fopen function, 88, 93

INDEX

fortran keyword, nonstandard, 19
FORTRAN programming language,

23, 54, 104
FORTRAN-to-C translation, 18, 39,

81
fputc function, 91
fread function, 88, 98
frexp function, 83
fscanf function, 95
fseek function, 88, 91, 94, 99
fsetpos function, 94
ftell function, 91
full expression, 12
function definition, 60
function prototypes, 55
function, pure, 18
future directions, 69
fwrite function, 88

gate function, 75, 97
getenv function, 103
gmtime function, 108, 110
goto keyword, 58
Gray code, 27
Greenwich Mean Time (GMT), 110
grouping, 38

header names, 33
hosted environment, 11
HUGE_VAL macro, 81

IEEE 1003 portable operating system
interface standardization
committee, 5, 87, 88

IEEE 7.54 floating point standard, 18,
81

IEEE P854 floating point
standardization committee,
74, 81, 83, 84

#if preprocessing directive, 9, 50
implementation-defined behavior, 6,

30, 51, 81, 83, 87, 90, 92
#include preprocessing directive, 63
infinity, 95
integral constant expression. 50

INDEX

integral promotions, 34, 55
interactive devices, 13
interleaving, 38
International Standards Organization

(ISO), 14
internationalization, 110
isascii function, 76
ISO 646, 14
isspace function, 77, 96

jmp_buf type, 84

Kernighan, Brian, 5
kill function, 87

labels, 58
ldexp function, 83
ldiv function, 45, 104
lexical elements, 19
libraries, 9
<limits.h> header, 17,73
__LINE_ macro, 68
linkage, 21, 23
linked, 9
locale, 77
localeconv function, 80
<locale. h> header, 78
locale-specific behavior, 77, 79, 80,

107
log function, 83
long double type, 27, 28, 51, 95
longjmp function, 17, 85
lvalue, 6, 36, 39, 42, 43, 49
lvalue, modifiable, 36

machine generation of C, 10, 50, 54,
58

main function, 11
manifest constant, 81
mantissa, 18
matherr function, nonstandard, 81
<math.h> header, 80,104
memchr function, 105
memcmp funeHan, 105
memcpy function, 105, 106

117

memmove function, 106
memset function, 105
mktime function, 109
modf function, 83
multibyte characters, 6, 15, 105
multi-processing, 87

name space, 21
new-line, Hi
not-a-number, 95
NULL macro, 47, 74
null pointer constant, 74

object, 5, 6
obsolescent features, 20, 50, 69
offsetof macro, 55, 74
ones-complement arithmetic, 18
onexit function, 103
optimization, 51
order of evaluation, 38

Pascal programming language, 27, 59
perror function, 100, 108
phases of translation, 9, 10
pointer subtraction, 46
pointers, invalid, 37
POSIX portable operating system

interface standard, IEEE, 5,
87

#pragma preprocessing directive, 68
precedence, operator, 38
preprocessing, 9, 10, 19, 31, 32, 33,

61, 74, 75
primary expression, 40
printf function, 27, 75, 87
printing character, 77
program startup, 11, 50
prototype, function, 60, 69
ptrdifLt type, 44, 46, 74
putc function, 75, 97
puts function, 97

quality of implementation, 11
quiet change, 3, 15, 19, 21, 22, 29, 30,

32, 35, 36, 46, 50, 52, 58, 59,
61, 66, 102

RATIONALE

118

raise function, 87
rand function, 101
range error, 82
register keyword, 51
remove function, 92
rename function, 92
repertoire, character set, 14
rewind, 94, 99
Ritchie, Dennis M., 5, 23

safe evaluation, 75
same type, 28
seanf function, 75, 87
scope, lexical, 21
sequence points, 12, 38
setbuf function, 91, 94
setjmp function, 85
<setjmp .h> header, 84
setloeale function, 77, 80
setvbuf function, 89, 91, 94
side effect, 48
SIGABRT macro, 102
sig_atomie-t type, 17
SIGILL macro, 87
signal function, 13, 16, 17, 24, 74,

86, 102, 103
<signal.h> header, 17, 86
signed keyword, 19, 51
significand, 18
sign-magnitude representation, 18
SIGTERM macro, 103
sizeof keyword, 5, 44, 45, 50
size_t type, 44, 74, 98, 102, 108
source file, 9
spirit of C, 47
sprintf function, 80
sseanf function, 96
statements, 58
static initializers, 50
<stdarg .h> header, 87
__STDC_ macro, 68

<stddef .h> header, 44, 46, 74
<stdio .h> header, 88, 89
<stdlib .h> header, 100

INDEX

storage duration, 21
streoll function, 107
streams, 90
streams, binary, 91
streams, text, 91
strerror function, 100, 108
strftime function, 110
strictly conforming program, 3, 6, 11
<string. h> header, 105
stringizing, 65
strlen function, 108
strneat function, 106
strnepy function, 106
strstr function, 107
strtod function, 100
strtok function, 107
strtol function, 100
structure types, 51
strxfrm function, 107
system function, 103

tags, 50
time function, 110
__TIME_ macro, 68
<time.h> header, 108
time_t type, 108
tIlLisdst field, 108
tmpfile function, 92
tmpnam function, 92
token pasting, 32, 66
trigraph sequences, 14
twos-complement representation, 26
type modifier, 54
typedef keyword, 54, 57, 60

#undef preprocessing directive, 75, 87
undefined behavior, 6, 11, 13, 22, 26,

30,42, 45, 87, 88, 103, 104
ungete function, 96, 97
UNIX operating system, 2, 35, 63, 71,

81, 86, 87, 88, 90, 92, 93, 96
unlink function, 92
unsigned preserving, 34
unspecified behavior, 6, 68

INDEX

/usr/group (UNIX system users
group), 71

va_arg macro, 87
va_list type, 87
value preserving, 34
<varargs .h> header, 87
va_start macro, 87
VAX/VMS operating system, 81
vfprintf function, 95, 96
void * type, 26, 37, 45, 47, 48, 95
void keyword, 19, 51
volatile keyword, 19
vprintf function, 96
vsprintf function, 96

W'chaLt type, 74
white space, 1~)

wide characters, 30, 32
widened types, 75

119

RATIONALE

