
RECURSIVE DESCENT

COMPILING

A. J. T. DAVIE, B.Sc.

and R. MORRISON, B.Sc., M.Sc., Ph.D

Department of Computational Science

University of St. Andrews

Scotland

Table of Contents

Authors’ Preface ... 9

1 Introduction

1.1 What are Compilers? .. 11

1.2 The Phases and Passes of a Compiler .. 12

1.3 Recursive Descent Compiling .. 15

1.4 History of Recursive Descent and LL(1) 17

1.5 Informal Introduction to S-algol .. 18

2 Mathematical Preliminaries

2.1 Introduction .. 23

2.2 Relations ... 24

2.3 Digraphs ... 26

2.4 Properties and Algebra of Relations ... 27

2.5 Closures .. 28

2.6 Boolean Matrix Representation .. 29

2.7 Calculation of Closures .. 30

2.8 Summary .. 33

3 Grammatical Preliminaries

3.1 Grammars and Languages .. 34

3.2 Cholmsky’s Stratification ... 36

3.3 Context Free Grammars ... 38

3.4 Sentence Generation and Recognition ... 40

3.5 Derivations ... 41

3.6 Ambiguity and Syntax Trees .. 42

3.7 A General Top Down Method .. 45

3.8 Bottom Up Methods ... 49

3.9 Summary .. 50

4 Testing and Manipulating Grammars

4.1 The Need for Deterministic Methods ... 52

4.2 LL(1) Grammars .. 53

4.3 First and Follow Relations ... 55

4.4 Factorisation and Substitution .. 59

4.5 Left Recursion and its Elimination .. 61

4.6 Cheating ... 63

4.7 Summary .. 65

5 Compiler Construction

5.1 The Role of S-algol .. 67

5.2 The One Pass Nature of Recursive Descent Compilers 67

5.3 Stepwise Refinement .. 70

5.4 The Structure of a Recursive Descent Compiler 71

5.5 The Layers of the Compiler ... 72

5.5.1 Syntax Analysis ... 72

5.5.2 Lexical Analysis .. 72

5.5.3 Context Free Error Diagnosis and Recovery....................... 72

5.5.4 Type Checking ... 73

5.5.5 Environment and Scope Checking 73

5.5.6 Context Sensitive Error Reporting 73

5.5.7 Abstract Machine Definition ... 74

5.5.8 Code Generation .. 74

5.6 Summary .. 75

6 Syntax Analysis

6.1 The First Layer ... 76

6.2 The Lexical Analysis Abstractions ... 76

6.3 BNF and Coding .. 78

6.4 The Syntax Analyser .. 80

6.5 Expressions and Block Expresions .. 83

6.6 Summary .. 87

7 Lexical Analysis

7.1 The Function of a Lexical Analyser ... 88

7.2 Scanning ... 88

7.3 S-algol Scanning .. 90

7.4 Screening .. 95

7.5 Lexical Errors ... 97

7.6 Listing the Source Program .. 98

7.7 Mustbe and Have .. 99

7.8 Summary .. 99

8 Syntax Error Diagnosis and Recovery

8.1 What can we do about Errors? ... 101

8.2 The Pascal Error Recovery Scheme ... 103

8.3 The S-algol Error Recovery Scheme .. 104

8.4 Error Reporting .. 107

8.5 Summary .. 108

9 Type Matching

9.1 Context Sensitive Analysis ... 109

9.2 Type Matching Rules ... 109

9.3 The Representation of the Data Types 111

9.4 Checking the Equality of Two Types ... 113

9.5 Type Errors ... 114

9.6 The Type Checking Layer .. 116

9.7 Summary .. 124

10 Name and Scope Checking

10.1 The Need for a Symbol Table... 125

10.2 Symbol Table Organisation .. 125

10.3 Modelling Scope .. 128

10.4 Declarations .. 129

10.5 Accessing the Binary Tree ... 130

10.6 Refinement of the Syntax Analyser .. 132

10.7 Summary .. 135

11 Abstract Machine Design

11.1 Compiler Output ... 136

11.2 The S-algol Abstract Machine .. 138

11.3 The Stack .. 138

11.4 The S-algol Stack ... 139

11.5 The Heap .. 141

11.6 Heap Organisation .. 142

11.7 The Abstract Machine Code ... 143

11.8 The Stack Instructions .. 144

11.9 The Heap Instructions .. 144

11.10 Flow of Control Instructions .. 146

11.11 Summary .. 147

12 Code Generation

12.1 Simulated Evaluation of the S-code Machine 149

12.2 Declarations and the Use of the Symbol Table 153

12.3 The Final Refinement of the Syntax Analyser 155

12.4 Summary .. 163

13 Bootstrapping and Portability

13.1 The Need to Port Languages .. 164

13.2 T-Diagrams ... 165

13.3 Cross Compilation .. 167

13.4 Bootstrapping by Pushing .. 167

13.5 Bootstrapping by Pulling .. 171

13.6 Summary .. 173

Appendices

AA S-algol Syntax .. 174

AB Type Matching Rules ... 177

AC Procedure number .. 178

AD The Abstract Machine Code ... 180

AE S-code Generated by the S-algol Compiler 187

Index .. 189

Authors’ Preface

The computing community is well served with texts, good, bad and indifferent,

on the subjects of compiling and compilers. One of the most popular methods of

implementing a compiler is that of recursive descent and many compilers,

including ones for the languages Algol 60, Pascal, Algol 68R and BCPL, have

been written using this technique. It is therefore surprising that comparatively

little has been written about it. This text sets out to bridge this unexpected gap.

The subject matter of the text has formed the basis of courses at St.Andrews

University for both undergraduates graduates. Naturally the courses have

developed, and will continue to do so, over the years. At present the material

appears in, but does not form the whole body of, lectures on Graph Theory,

Grammars and Automata and Compiling Techniques.

The text sets out to give an introductory look at compiling in general through

the medium of one particular technique. It does not therefore claim to be a

complete reference guide to all aspects of compiling. Several topics, for instance

that of optimization, are only touched on briefly. The intention has been to set

out the main problems encountered in any compiler however simple, and show

how to tackle each of these in the relatively straightforward way which recursive

descent imposes.

Students who embark on any course on compilers will be expected to

something about programming languages. This text assumes that readers have

such knowledge, that they will be fairly proficient at programming computers

and that they will know about the fundamentals of program and structures and

how to manipulate them. It does not assume knowledge of any particular

language. However familiarity with a block or procedure structured language

such as one of the Algols or Pascal would be an advantage. As far as elementary

mathematics is concerned, only basic set theory and logic are assumed as

prerequisites.

The book is divided roughly into three parts. The first which consists of

Chapter 1 by itself is a general introduction. The second, comprising Chapters

2, 3 and 4, is mainly theoretical in nature. Chapter 2 introduces some essential

10 Authors’ Preface

mathematical notions chiefly that of closure. These are used in Chapters 3 and 4

which are about linguistic specification and testing whether languages are suitable

for the recursive descent treatment. Some hints are also given about how to

massage a linguistic specification into the correct form.

The third and major part of the book is about the practical realisation of a

recursive descent compiler. This is done by specifying a syntax-recognising

skeleton and adding flesh and muscle to it layer by layer. Chapter 5 gives an

overview of this process and outlines the different layers. Chapter 6 describes

the skeleton in detail and Chapter 7 the lexical analysis phase. Layers dealing

with errors and types are added in Chapters 8 and 9 and ideas of scope and

naming are discussed in Chapter 10. Chapters 11 and 12 deal with code generation,

the former with what code to generate and the latter with how to generate it. The

final chapter stands on its own rather. It is, strictly speaking, not specific to our

particular kind of compiler; but we felt that the subjects of bootstrapping and

portability were too important to be left out of any book about compilers.

We are indebted to many for helping with this book both directly and

indirectly: To many of our Honours students for reading and proofreading early

and late versions of various chapters and, by so doing, revising for their

examinations: To our colleagues for many useful comments, suggestions and

criticisms: To our wives who have put up with it all and provided nourishment

and encouragement. We must also show our gratitude to our children who, in

spite of the fact that they have actively hindered this book’s production, have

amused and entertained us by way of diversion.

Tony Davie and Ron Morrison

 St.Andrews

May 1981

CHAPTER 1

Introduction

1.1 WHAT ARE COMPILERS?

A compiler is a computer program which translates another program called the

source program into yet a third called the object program. The source programs

are written in the source language and each solves a particular problem for a

user, the object program produced for it solves the same problem but is expressed

in the object language. In general the source language should be one in which

users find it easy and natural to solve their problems, and the object language,

whilst probably quite opaque in meaning to users, will be a natural one for some

machine to execute. Thus we can view a compiler as a tool which transforms

programs from the users’ domain of problem solving into the machine’s domain

of problem execution, without varying the semantics, (i.e. meanings) of the

programs.

It will be well known to all programmers that programs normally pass through

several stages of development. Let us summarise them here. First they are

created, initially in the users’ minds and then in some computer in source

language, probably using an editor. Then they are compiled into object language.

This stage is known as compile time when the program is scanned, perhaps

several times, to discover its static or lexicographic properties. Compile time

errors may be reported, in which case the editor will be reinvoked to change the

erroneous program to the intended one; or, if the user has been more skillful, an

object program may be produced. This may be stored away in the computer’s

file system for subsequent combination with other compiled programs (such as

library routines) during load time. When it has been loaded the combined package

will be executed during what is known as run time. Alternatively the object

program, if self contained (i.e. only containing reference to standard facilities -

not other user defined routines), may miss out the load stage if the compiler is set

up to place the object program straight into store ready for execution. Such a

combination where compile time and run time are run into one another is called

a compile and go compiler.

12 Introduction [Ch. 1

Run time may take the form of the computer directly executing the object

program if it is suitable; alternatively it may consist of the computer interpreting

the object code. It is sometimes convenient that the object language be different

from the ‘native’ language of any particular computer. Many source languages’

philosophies suggest very forcibly the architecture of a ‘natural’ machine for

many to run on and the object language will be the machine code for this

hypothetical machine. It is rare for the architecture underlying a source language

to match that of a real computer because, sadly, hardware designers and language

designers very seldom get together at the start. An impressive exception is the

Burroughs 5000 and 6000 [1] series computer range where the architecture was

designed to support Burroughs’ own version of Algol 60 [2]. If the architectures

of the real and hypothetical machine don’t match we have two alternatives: we

can either, as mentioned already, interpret the object program by the process

whereby the real machine simulates the hypothetical one or we can pass the

object code through another translation stage to turn the ‘natural’ machine code

into code for the real computer. It can be mentioned in passing that there are

interpreters which directly interpret source code for some languages without any

compile time at all (e.g. APL [3]) but these will not concern us here.

During run time whether interpretative or otherwise, the dynamic execution

of the program takes place. At this stage we may either get run time errors or

alternatively correct results may be obtained. In the former case the edit-compile-

load-run cycle will have to be reinvoked; even in the latter case, it may be

invoked if the ‘correct’ results are the answer to a problem which is different

from the one the user intended, or if he wants to modify the program in the light

of the results.

To summarise, the two main stages are compile time and run time, during

which static and dynamic scanning of the programs take place respectively. Many

of the interesting problems of language design and compilers become apparent

when we try to separate the static aspects of the language under consideration

from the dynamic ones. Can the compiler tell statically whether or not a variable

name has been declared for a given usage (i.e. whether it is in scope)? This is the

case for most Algol like languages but no for LISP-like languages [4]. Can it tell

what type a variable has? Can it tell what value an identifier has? Can it even

tell if it is guaranteed to have some value?

1.2 THE PHASES AND PASSES OF A COMPILER

It is an opinion almost universally held throughout the computing community

that we should think about the problems we want to solve in a modular way; that

is, we should try to break down complicated tasks into easier subtasks which in

turn get broken into yet simpler problems until we arrive at ones which are ‘trivial’

to solve.

Sec. 1.2] The Phases and Passes of a Compiler 13

How can we break up the process of compiling into subtasks? We shall

confine ourselves in this chapter to the top level of such a refinement. The top-

level subtasks we give here are common to most compilers and are known as

phases. Later in the book we shall see how each of the main phases breaks up

into lower level subtasks.

The compiler must analyse the source program and synthesize the object

program. In fact nearly all compilers perform the analysis in two distinct phases

called lexical and syntactic analysis.

Lexical Analysis

The lexical phase consists of an analysis of the microsyntax of the source

program. By analogy with the spoken or written languages, this involves the

collecting together of phonemes or letters to form words without any reference

to the relationship of the words to one another, or to their meaning. In computer

languages it means the processing of a string of characters, transforming them

into a string of basic symbols (or lexemes). These will include keywords (or

reserved words) such as ‘if’, ‘begin’ and ‘write’, single symbol punctuation marks

such as ‘(‘, ‘]’ and ‘,’, operator symbols such as ‘+’ and ‘*’, multiple symbols of

both of the above kinds such as ‘<=’, ‘.LE.’ and ‘::’; assembly of literals such as

‘1’, ‘3.7’ and ‘true’, and finally the collecting together of the characters in

identifiers such as ‘x’ and ‘mean.temperature’. Writing the lexical analysis phase

is not always trivial. Consider the Fortran statements:

DO 1 I=1,12

DO 1 I=1.12

and

IF(I(J)-I(K))1,2,3

IF(I(J)-I(K))=123

Are ‘IF’ and ‘DO’ keywords or not? In the first example ‘DO’ is a keyword. In

the second ‘DO1I’ is a variable name because Fortran insists that blanks are non-

significant. In the third ‘IF’ is a keyword and in the last it is the name of an array

being subscripted. It doesn’t make the problem any easier that the subscript can

be arbitrarily long and complicated.

Syntax Analysis

The second analysis phase is syntax analysis. Again by analogy with ‘human’

languages this corresponds to such actions as finding the verb, subject and

predicate in sentences and in general parsing them. In computing terms some of

the actions the syntax analyser takes are: check that in Algol like languages the

begins and ends match up; make sure in Fortran that a DO statement referencing

a label actually finds a statement with that label later on; and that DO loops

14 Introduction [Ch. 1

don’t overlap. The input to this phase is the string of basic symbols produced by

the lexical analysis. What is the output? We will see later that it is a parse tree

which is an internal form of the program in a structure which allows subsequent

phases to see the relationship of the parts of the program to each other and to the

whole program.

Code Generation

The third important phase, that of code generation, is synthetic rather than

analytic. It takes the parse tree and traverses it. Based on the structural

relationships it finds there it produces object code in at least a preliminary form.

We could stop at these three phases because they are the ones common to

virtually every compiler but we will mention here some other optional ones.

Some compilers have a prepass phase which does some macro expansion allowing

the user the facility of making contractions of commonly used phrases in his

program. We have already mentioned that a further translation phase may be

written after code generation to convert ‘hypothetical’ to ‘real’ machine code.

This too is sometimes accomplished by macro expansion. The third and last

optional phase that we shall mention is that of optimization. In environments

where large programs go into heavy production use it will be advantageous to

make the object programs produced as efficient in time (or possibly space) as

possible. One way of solving this problem is to measure the program at run time

in order to find out which parts of the program take the longest time is and to

hand code these sections in assembly language. A good optimizer should be to

do this automatically. Note however a fundamental conflict: how can a compiler

which only sees the static aspects of the source program measure the dynamic

performance of the object program?

Optimization phases can occur at any stage of compilation: at the beginning

where it is called global optimization and often means automatic rewriting of

source code (e.g. taking unnecessary commands out of loops); in between two

other phases (e.g to optimize the tree produced by the syntax analyser); or right

at the end to improve the code produced by the code generator.

The organisation of the phases built into a compiler can be one of a number

of kinds. In particular one decision the compiler writer has to take is that of how

to organise the phases into passes. A multipass compiler makes complete scans

over the various forms the program goes through, both internal and external.

Each pass reads the output from the previous one (or the source program if it is

the first pass) and produces complete output for the next pass. No pass will be

invoked until the previous one is complete. For example if we were to organise

the lexical analysis phase as a pass, the compiler would first completely scan the

source and produce a file of basic symbols. Note that space, whether in main

store or in backing store, must be found for this intermediate form of the program.

Sec. 1.3] Recursive Descent Compiling 15

† UNIX is a trademark of Bell Laboratories

The next pass which will include at least the syntax analyser will then read this

file and produce its own output file.

However, in some compilers all the phases can be gathered together into one

pass and instead of storing complete files of intermediate data, the phases call

each other as subroutines to ask for or provide information one piece at a time.

Thus the syntax analyser may call the lexical analyser and ask it for the next

basic symbol. It may also call the code generator to emit the next piece of code.

The organisation of phases into passes may depend on the language being

compiled. Some languages actually require several passes. For instance if an

object in a program can be used before it is declared (e.g. a jump to a label may

occur before the label’s definition, or a procedure call may come before the

procedure declaration) then code cannot possibly be generated for the use of the

object without having complete knowledge of its properties. In such cases a

complete pass will have to be made to gather such knowledge and another to

generate code based on that knowledge.

In some languages one cannot even perform syntax analysis properly without

a complete lexical pass being made. For instance in a language where we could

define new operators and priorities for them one would not know whether to

treat an expression such as ‘a << b ++ c’ as ‘(a << b) ++ c’ or as ‘a << (b ++ c)’,

had the user had been so foolish as to leave the declarations of the priorities of

‘<<‘ and ‘++’ until later in the program.

We should note that the situation is sometimes confused by bringing the

operating system into the picture. A multi-pass compiler may be organised as a

number of cooperating processes which run at least conceptually in parallel.

They would have to be carefully synchronised but a good system would do this

automatically by making them communicate through pipes (UNIX† nomenclature,

see [7]) which replace those intermediate storage files that are the main

disadvantage of multipass compilers. However the gain will probably be more

than offset by the system overhead necessary for scheduling the processes in and

out of action.

1.3 RECURSIVE DESCENT COMPILING

In this book we are going to concentrate very heavily on one particular technique

and on its application to a particular language. The language is S-algol and we

give a brief introduction and summary of its usage in the next section. Here we

talk about the method around which we are basing the book - recursive descent.

This method centres itself around the syntax analysis phase of the compiler

which is divided up into a number of recognition routines, each of which has the

task of checking whether a particular kind of phrase is present in the input. Each

recognition procedure will be able to call upon the services of other ones to

16 Introduction [Ch. 1

recognise the appearance of subphrases and so on. For example we will see that

an S-algol program consists of a sequence followed by a questionmark. The

central recognition routine will therefore call the sequence recognising routine

and will then check for the appearance of the questionmark on the input stream.

The sequence recogniser will, in turn, call routines to check for declarations or

clauses because a sequence is basically a list of such entities. Most of these

routines will be mutually recursive reflecting the fact that within one sequence

we can find others embedded at a lower level. In the same way expressions can

contain subexpressions, declarations include inner declarations and so on. Each

of these has its own recogniser which is invoked from above when appropriate.

Some recognisers will have choices to make. In the example of the sequence

recogniser above, it will have to choose between calling the recogniser for a

declaration or for a clause. When such choices are to be made, decisions are

always taken by looking at the input stream for the next basic symbol. We shall

see that declarations in S-algol always start with one of the reserved words ‘let’,

‘procedure’, ‘structure’, ‘forward’, or ‘external’ and that no clauses start with

any of these symbols. Hence the sequence recogniser can choose the declaration

recogniser if it finds one of these, or the clause recogniser if it does not.

The task of a compiler is not, however, merely to recognise correct programs;

it must also produce object code. Therefore each recogniser will be modified or

refined to emit code. One can notice here that the syntax tree referred to as the

output of the syntax analysis phase in section 1.2 is never explicitly grown. This

is because the syntax analysis phase and the code generation phase are not

separated into distinct passes, but are integrated into one another in order to

understand clearly what each recogniser-emitter does. The tree is implicit in the

dynamic calling structure of the recognition routines and is traversed by the code

generation phase as it is built, and branches no longer of use are destroyed as the

routines are exited.

The addition of code generation to the recognition routines represents a

refinement of them. Other refinements will be introduced and are based on

error recovery and type checking. If a recogniser finds some program constructs

that it doesn’t expect, what should it do? Should it merely print the message:

‘You have made a serious mistake.’ as one early compiler was reputed to do? Or

should it offer ‘IEH377I’ or some such terse comment to the user? Are there

alternatives to these and can the compiler recover from errors?

Each recogniser must check that expressions, clauses, declarations and so

on have sensible type structures. One must not, for instance, add a string to an

integer if that is not allowed in the language. The type handling part of a recogniser

must also be able to pass type information back to its parent recogniser.

One of the main features of the recursive descent method when used

practically is that it must be able to do its recognition, type checking and code

Sec. 1.4] History of Recursive Descent and LL(1) 17

emission without ‘backup’; that is, if a recognition routine A decides to call

another, B, it can be sure from the first that, barring errors on the user’s part, it

has made the correct choice based on the input it has before it. This limits the

kind of language which can be compiled by the method, but not too severely. We

will devote several early chapters to seeing just what kind of restrictions are

placed on languages by this requirement, and how to get round them. Such

restrictions placed on a language are called the LL(1) conditions. We will explain

this term in section 4.2.

Our particular compiler will also have the property that it is one-pass in the

sense discussed in the previous section but we recognise that there are multipass

1.4 HISTORY OF RECURSIVE DESCENT AND LL(1)

For many years compiler writers have used recursive descent as an informal

method, grafting on parts of other methods and using different techniques when

expedient to do so. We certainly don’t pretend to know about all the recursive

descent compilers that have ever been written. There is little in the literature

about them. Perhaps this has been because the method was thought too obvious

or too simple. This, however, is not the same as saying that it is trivial because as

the principle of Ockham’s razor suggests, the simpler the better.

Of what has been written the following landmarks stand out.

(i) In 1968 Foster published a remarkable paper called ‘A Syntax

Improving Device’ [1] in which he showed how to manipulate

grammatical constructs for languages, if at all possible, into forms

suitable for what is now known as the recursive descent method.

(ii) Later in the same year, Lewis and Stearns published a paper ‘Syntax-

directed Transductions’ [10] which used the term LL(k) for the type of

grammatical restriction placed on languages to allow their syntax to

be scanned from left to right without backup, using a top down or

recursive descent method. This placed the whole theory on a sound

basis.

(iii) It is clear that the early Burroughs compilers [1] were recursive descent

compilers even though they were not specifically given that description.

Hoare [11] has pointed out that the early Elliott Algol [12] language

processor was also a recursive descent compiler

(iv) In 1971 Knuth published a tutorial guide to the grammatical aspects

of LL parsing called ‘Top Down Syntax Analysis’ [13]. This lucid

account deals, as does the Lewis and Stearns paper, mainly with

syntactic aspects.

(v) In the same year a group working at the Royal Radar Establishment at

18 Introduction [Ch. 1

Malvern used Foster's SID to improve the description of the language

Algol 68R [14] and automatically generate a recursive descent compiler

for it.

(vi) It was 1973 before any significant paper was written about the practical

aspects of compiling as a whole, using recursive descent when Amman

published ‘The Method of Structured Programming Applied to the

Development of a Compiler’ [15]. This explains how the method is

applied to writing a Pascal compiler and uses the techniques of program

1.5 INFORMAL INTRODUCTION TO S-ALGOL

We will use as our main programming vehicle the language S-algol, developed

at St. Andrews University, initially as teaching language to replace Algol W [16].

We use it in this text not only as a language to be compiled but also as the language

to implement the demonstration compiler. Thus most of the later part of this

book is about writing a compiler in S-algol for translating S-algol programs.

We could have used any one of a number of languages for this text such as

Pascal or Algol 68. We could even have used non-Algol like languages such as

Fortran or Basic. In the former cases we felt that we would be side tracked too

much into discussing the finer points of language theology; and we feel that

languages of the latter class don't suit themselves easily to systems programming

of any kind (including implementation of compilers) chiefly because of their

paucity of data structures.

The rest of this section is therefore devoted to giving a brief resumé of the

features that make S-algol different from other Algol-like languages. We shall

assume that the reader is familiar with languages of this sort.

S-algol is a block and procedure structured Algol-like language. Blocks (to

use the Algol 60 terminology although they are not called that in the reference

manual [17]) are delimited by begin and end or ‘{’ and ‘}’ and their bodies

consist of an intermixed sequence of declarations and clauses. Declarations can

come at any point, subject to the constraint that no declared object can be used

before it has been declared. Thus the scope of a declaration is from the declaration

itself to the end of the sequence it which it appears. A ‘forward’ declaration of a

procedure may be made which specifies its parameter types and result type without

giving its body, which can occur later so that mutually recursive procedures can

be used.

Declarations are initialising and users can therefore be sure that ‘variables’

have some initial value at run time. Such declarations do not specify the type of

the identifier being declared, because the compiler will deduce this from the

type of its initial value.

Sec. 1.5] Informal Introduction to S-Algol 19

let x := 1 ! has type int i.e. integer

! "!" introduces comments which terminate

! at the end of the line

! ";" is not needed between

! clauses or declarations

! unless there are more than one on a line

let y := 2.7 ! has type real

let switch := x<pi !has type bool i.e. boolean

let name := if switch then "Tony" else "Ron" !has type string

let f := open("directory") !has type file

We put quotes around the word ‘variables’ above because identifiers may in

fact be given constant values which will not change (and this can be checked

statically) during the lifetime of the sequence. This is done by placing ‘=’ instead

of ‘:=’ after the identifier in the let declaration.

let e=2.71828 ! type creal i.e. constant real

let directory.name = reads ! type cstring because

!‘reads’ reads a string

! note identifiers can have ‘.’

! in them as a ‘letter’

let c = directory.name ++ "/myfile" ! type cstring

! ++ is concatenation

Four other kinds of declaration may be made: structure class declarations,

procedure declarations, forward and external declarations. Forward has been

mentioned above. External is similar to forward but marks the procedure as being

present in a separate compilation.

Structure class declarations introduce a template which is used to create

instances of structures (or records) of that shape:

structure identifier(cstring name ; real val)

Pointers to such structures can be declared by a ‘let’ declaration:

let var := identifier("x",1.732) ! type pntr

let const = identifier("pi",3.14159) ! type cpntr but its val

! field can be changed

The type of ‘var’ is pntr and types of structures are not further distinguished

statically. (However one can test the structure class of a pntr dynamically by the

use of the operators ‘is’ and ‘isnt’. for instance - if var is variable then ... else ...)

Procedure declarations are similar to those in most other Algol like languages

— they have a heading and a body. The simplest way to introduce them is to give

some examples:

20 Introduction [Ch. 1

procedure convert(cint L,S,D -> real)

L + S/20 + D/240 ! The body is an expression

! This is the value that is returned

procedure stack(cint val)

begin

st(st.p) := val

st.p := st.p + 1

end !The body is a void clause

procedure random(-> real)

begin

seed := f(seed)

seed !The body is an expression

end !block - see below

All parameters of procedures without exception are called by value and anything

without exception which can be declared can be passed as a parameter.

We introduced one compound data type above when talking about structures.

The other is the vector. Vectors are also allocated dynamically in one of two

ways:

let abc := @1 of cint [1,2,3,4]

let xyz = vector 1 :: n ,1 :: n of 0

The first is a one dimensional vector with lower bound 1 and constant values

specified individually. The second is an n!n 2-dimensional array, all of whose

elements are variable and initially 0.

Vectors are strictly to be distinguished from their elements. Both vectors and

their elements can be assigned to (if not originally declared as constants). Thus,

with the above declarations we could later say:

abc := @2 of cint [2,3,4]

but not

xyz := vector 1 :: n ,1 :: n of 1

and we could say

xyz(3,3) := 1.0

but not

abc(3) := 4

The types of ‘abc’ and ‘xyz’ are *cint and c**int respectively. A star is added for

each dimension of the vector and a ‘c’ whenever a level is constant.

Assigning a vector (rather than its elements) is not equivalent to copying the

elements. Such an assignment merely takes a copy of a pointer (in implementation

terms) to the vector.

Sec. 1.5] Informal Introduction to S-Algol 21

We have gradually strayed from declarations into the realm of clauses. Let

us enumerate the kinds allowed:

• ‘:=’ can be used to specify an assignment.

• ‘if ... then ... else ...’ has its usual meaning. To prevent the ‘dangling

else’ problem, there is a one armed version of the conditional — ‘if ...

do ...’.

• There is a ‘repeat ... while ... do ...’ construction (where either the

‘repeat ...’ part or the ‘do ...’ part, but not both, may be absent). This

allows the test for exit to be made at the beginning, in the middle, or at

the end of the loop.

• A fairly standard ‘for ... = ... to ... by ... do ...’ is present (the ‘by ...’

being optional). Note the use of ‘=’ rather than ‘:=’. The controlled

identifier is a cint (and is declared automatically by the ‘for’ clause’s

appearance).

• The ‘case’ clause is of interest because the case ‘labels’ don't have to

be compile time constants. (A clever compiler would notice if they

were and compile code accordingly.) e.g.

case true of

x<0: -x

x=0: 1

x<10: x+y

default: x

There are no abominations like the ‘esac’ of Algol 68. The ‘default’ case always

marks the end of the ‘case’ clause.

The example above showed a case expression. In fact there is no difference

in S-algol between expressions and other clauses. It’s just that clauses executed

for their side effect have conceptual type void while others have a ‘regular’ type.

The type of the last clause in a block determines the type of the block as a whole.

Thus block expressions are allowed.

A short word should be said about the primitive type string. Strings in S-

algol are atomic — that is their internal structure cannot be changed by assignment

or by any other means. That is not to say that they cannopt be manipulated freely.

One can replace a whole string by assignment. Strings can be concatenated using

the operator "++" and substrings can be taken. If S is a string then S(m|n) selects

the substring starting at the m’th character of S and n characters long. Both m

and n can be any integer expressions. There is a standard function ‘length’ which

finds the length of a string. The null string "" is allowed and its length is zero.

This ends our brief exposition of some of the features of S-algol. For further

details consult [17] and [18].

22 Introduction [Ch. 1

REFERENCES

[1] Creech, B.A. (1969), Architecture of the B6500, Proceedings COINS

[2] Burroughs Corporation, B6700/B7700 extended algol language

Information Manual (June 1972)

[3] Iverson, K. (1962), A programming language, Wiley

[4] McCarthy, J. et al. (1965), LISP 1.5 programmer's manual, MIT Press.

[5] Kernighan, B.W. and Ritchie, D.M. (1981), The C programming

language, Prentice-Hall

[6] van Wijngaarden, A. et al. (1975), Revised report on the algorithmic

language ALGOL 68, Acta Informatica, 5, 1–236

[7] Ritchie, D.M. and Thompson, K. (July 1974), The UNIX timesharing

system, CACM 17, 7, 365–375

[8] Richards, M. (1971), The portability of the BCPL compiler, Software,

Practice and Experience, 1, 135–146

[9] Foster, J.M. (May 1968), A syntax improving device, Computer

Journal, 11, 1, 31–34

[10] Lewis, P.M. II and Stearns, R.E. (1968), Syntax directed transduction,

JACM, 15, 3, 465–488

[11] Hoare, C.A.R. (February 1981), The emperor’s old clothes, CACM,

24, 2, 75–83

[12] Hoare, C.A.R. (1962), The elliott algol programming system,

Introduction to Systems Programming, 156–165, Academic Press

[13] Knuth, D.E., (1971), Top down syntax analysis, Acta Informatica, 1,

79–110

[14] Currie, I.F, Bond, S.G. and Morison, J.D., (1971), Algol 68R, its

implementation and use, Proceedings IFIP Ljubljana 3, 43–46

[15] Ammann, U. (1973), The development of a compiler, Proc. Int.

Symposium on Computing, 93–99, North-Holland

[16] Wirth, N. and Hoare, C.A.R. (June 1966), A contribution to the

development of algol, CACM, 9, 6, 413–431

[17] Morrison, R. (1979), S-algol reference manual, St.Andrews University

Computer Science Department Report CS/79/1.

[18] Cole, A.J. and Morrison, R. (1980), An introduction to S-algol

programming, St.Andrews University Computer Science Department

Report CS/80/1

CHAPTER 2

Mathematical Preliminaries

2.1 INTRODUCTION

This book uses very little mathematics, but one idea keeps cropping up time and

time again is the concept of closure. We shall describe this more formally later

but for the present we can give an informal explanation of the ideas central to it.

In computing we deal with operations being carried out; the computer changes

from one state to another. Often we are interested in following a computation

through a sequence of such state changes. The means we use to change from a

single state-changing operation to a sequence of operations carried out one after

the other is a closure operation which generates a ‘super’ state change

corresponding to the sequence of ‘primitive’ state changes. This idea of moving

from a single entity such as a state change, to a sequence of entities appears in

other ways. For instance in data structures in computing we frequently have one

primitive structure pointing at another. If this in turn points at a third structure

and so on we again see closure in operation by allowing the pointers to be followed

to any distance we like. Here we have a relationship between structures (A is

pointed at by B) rather than an operation which changes something and we are

finding a new ‘super’ relationship (A can be reached from B by following pointers

any number of times) which is the closure of the original relationship.

Closure also appears in ordered sets. We shall be concerned with sets later in

this text, especially ordered sets of characters of some alphabet which are called

strings in many programming contexts and which potentially form sentences in

some language, usually a programming language. The idea of concatenating any

number of characters together to form strings of any length is a closure of the

fundamental idea of concatenating two primitive characters.

Let us examine this in more detail and with mathematical formality. An

alphabet, A, is a finite set of symbols sometimes called letters. By a string of

length k we mean an ordered set of letters — that is a member of Ak = A!A!...! A,

the Cartesian product of A with itself k times. Instead, however, of writing a

24 Mathematical Preliminaries [Ch. 2

string of letters in the conventional mathematical way for an ordered set i.e.

(a,b,c,.....), we often prefer to place the letters in string quotes, thus: "abc.....".

We can also conceive of a unique string of length zero - the null string which we

shall write " or "". If we define A0 to be the set consisting of " alone then a string

(of any length) is a member of the infinite union:

n

n 0

A
=

#

U (1)

This union is written A* and is called the reflexive transitive closure of the

alphabet A under the operation of Cartesian product — !. The ‘*’ in A* is called

the Kleene star after the logician who defined it [1]. We sometimes just call A*

the closure of A, but there is another kind of closure used when we specifically

want to exclude the empty string, the transitive closure defined by:

n

n 1

A
=

#

U (2)

and written A+. This set is the set of all non-empty strings over the alphabet A.

We can define an operation called concatenation which takes two strings

from A* and produces another by placing the two ordered sets end to end,

juxtaposing them. This defines an algebra over A* with " as the unit element

since for any string s $ A*:

s . " = " . s = s

where ‘.’ is the concatenation operator. We quite often miss out the ‘.’ and just

write, for instance, ‘st’ instead of ‘s.t’. Concatenation is associative but not

commutative.

The essence of the term ‘closure’ is that it gives the smallest set containing a

given basic set and closed under certain operations. — i.e. if the operations are

carried out on members of the set the resulting object is still in the set.

In the above case the basic set has only one object, the null string " and the

allowed operations are those of concatenation with any letter of the supplied

alphabet.

2.2 RELATIONS

Another place in which closure appears is in another algebra — that of relations.

We have seen an example of a relation informally already, the ‘is pointed to by’

relation between data structures. Other common relations occurring in

mathematics and later on in this book are ‘is the greatest divisor of’, ‘is less than’

and ‘can come at the start of’. Some relations are so common that we give them

special symbols e.g. ‘<’.

Sec. 2.3 Digraphs 25

It is necessary to know what kind of object is being related to what. Thus in

the case of ‘can come at the start of’, do we mean horses at the start of the field

in a race? Or perhaps breakfast at the start of the day? In fact in this book we

mean something more like the statements that ‘begin can come at the start of a

clause in S-algol’; or that ‘a declaration can come at the start of a program’. We

shall see more of this particular relation in sections 4.2 and 4.3. The point is,

however, that when a relation is defined between objects we need to know what

sets the objects belong to.

More formally a relation between two sets S and T is merely a subset of their

Cartesian product S ! T, each member of the subset representing a pair of objects

lying in the relationship.

Example 2.2.1

Let S = T = {1,2,3}

Then the ‘less than’ relation can be defined as the set

U = { (1,2), (1,3), (2,3) }

though we more usually write

1<2 1<3 2<3

and, of course, for other elements in S ! T - U such as (2,2) we write

2<| 2

Example 2.2.2

Let S = T = the set of divisors of 12

Then the ‘is a direct divisor of’ relation contains the elements

{(1,2), (1,3), (2,4), (2,6), (3,6), (4,12), (6,12)}

In plain English ‘a is a direct divisor of b’ means that ‘a is less than and

divides b’ (another relation) but that ‘no multiple of a except b itself divides b’

(yet another relation).

We should point out that relations can be generalised to subsets of Cartesian

products of any number of sets but here we shall not use more than two and they

will quite often be equal to one and other as in the above examples.

Another way of defining a relation between S and T is to say that it is a

mapping from S ! T to the set {true, false}. The mapping takes the value true if

the arguments lie in the relational subset and false otherwise. It is often best to

think of a relation in this way if we write it as an infix operator e.g. ‘a<b’ can be

considered to have value true or false.

26 Mathematical Preliminaries [Ch. 2

–2 –1 0 1 2

Fig 2.2

St. Andrews Scotland

Edinburgh

Moscow

Kiev

London

England

Russia

Canada

S T

Fig. 2.1

2.3 DIGRAPHS

One picture is worth a thousand words; and it is therefore useful to give pictures

of relations (especially when they are finite). The digraph of a relation is a

picture of the two sets involved with arrows connecting the pairs of objects that

are related (i.e. are in the subset of the Cartesian product). Sometimes we shall

abbreviate ‘digraph’ to ‘graph’. The reader should understand however that there

is a difference which need not concern us here. See Berge [2] or Wilson [3] for

further details.

Example 2.3.1

The relationship ‘is a town in’ between S = the set of towns and T = the set of

countries looks like this:

Only some of the towns, countries and relationship arrows are shown.

If S=T (as is very often the case) then we only need to draw one set and the

arrows join elements of that set.

Example 2.3.2

Let S = T = the set of integers integers and let the relationship be ‘is the predecessor

of’. The graph is as in Fig. 2.2.

Note that the graph of the relation ‘is less than’ is a good deal denser. We normally

only draw graphs of finite relations.

Sec. 2.4 Properties and Algebra of Relations 27

Noah

Shem Ham Japheth

Elam Asshur Cush Mizraim Gomer Magog

Seba Ashkenaz

Fig. 2.3

2.4 PROPERTIES AND ALGEBRA OF RELATIONS

If A and B are two relations between S and T then we can define the following

concepts:

(i) A includes B if, for all s $ S and t $ T, sBt implies sAt. For instance

‘%’ includes ‘<’ where S = T = the set of integers.

(ii) A is the transpose of B if for all s $ S and t $ T, sAt if and only if tBs.

For instance ‘is a parent of’ is the transpose of ‘is a child of’ over the

set of people.

(iii) A is reflexive if S = T and for all s $ S, sAs is true. For instance the

equality relation ‘=’ over any set is reflexive. So is ‘%’ over the set of

integers.

(iv) A is transitive if S = T and for all r,s,t $ S rAs and sAt imply rAt. For

instance the ‘is a descendant of’ relation over the set of people.

How can these be interpreted graphically? If A includes B then every arrow

on B’s digraph will be present on A’s which may have others besides. If A is the

transpose of B then their digraphs will be the same but with the directions of the

arrows reversed. A reflexive relation will have ‘loop’ arrows starting and finishing

at every element of the set. A transitive relation will be such that if there is a path

(sequence of arrows all pointing in the forward direction) along several arrows

from one element to another then there will also be a direct arrow from one to the

other.

We can impose an algebra on relations by defining a product and a sum.

Example 2.3.3

Let S = T = the set of humans and let the relationship be ‘was the father of’.

28 Mathematical Preliminaries [Ch. 2

2.5 CLOSURE OF RELATIONS

We are now coming to the most important part of our exposition of relations. We

have been selective in what we have said about them, (any standard textbook of

algebra e.g. Birkhoff and MacLane [4] will give a fuller treatment), but we shall

finish by defining two kinds of closure on relations which will be used extensively

in the next two chapters. First the transitive closure of a relation A between S

and S, written A+, is defined by: s A+ t if and only if s Ak t for some k > 0.

Graphically this means that there is a path of any length from s to t. Another way

of saying the same thing is:

A0 = A1 + A2 + ...

=
i

i 1

A
=

#

& (3)

If A is a relation between R and S and B is a relation between S and T we can

define the product relation AB between R and T by: r AB t if and only if there

exists an element s of S such that rAs and sBt. As an example — if A is ‘is the

mother of’ and B is ‘is a parent of’ then AB is ‘is a grandmother of’.

Note that this product, though associative, is not commutative. For instance

BA in the above example is ‘is a maternal grandparent of’. Note also that the

equality relation acts as an identity element since multiplying by it on the left or

right leaves a relation unchanged. We usually write it as I. It should be noted

that technically speaking there is a different identity or equality relation for each

set. If A is a relation between sets S and T and if I
S
 and I

T
 are the corresponding

identity relations then:

I
S
A = A = A I

T

For a relation A between S and S we can define powers of A by the following

definition:

A0 = I

An+1 = An A n ' 0

Note (and prove!) that Ai always commutes with Aj and their product is Ai+j.

Graphically the powers of a relation can be thought of as follows: If there is

a path of length k arrows from s to t in the digraph of A then there will be a direct

arrow from s to t in the digraph of Ak.

We can also define a sum of two relations A and B between the same sets S

and T written A+B by: s A+B t if and only if sAt or sBt. This operation is

commutative and associative. As an example if S = T = the set of integers then

‘<’ + ‘=’ is ‘%’. Note that the sum of two relations thought of in their strict sense

as sets is merely their union.

Sec. 2.6 Boolean Matrix Representation 29

It is useful to realise that in calculating the transitive closure of a relation on

a finite set (of size k, say), the summation (3) terminates after a finite number of

terms. Intuitively this is because in the graph of the relation, if there is a path

between two elements, there must be a path (without loops) of length at

most k-1 because otherwise we would run out of elements to pass through.

It is sometimes necessary to define a further closure called the reflexive

transitive closure of a relation written A*. This is merely an extension to A+

obtained by adding in an extra term I = A0. Thus:

*

A A
i

i 0

=

=

#

& (4)

Compare equations (3) and (4) with (1) and (2) in section 2.1 . It can be proved

(and it is just as well for the sake of nomenclature) that the transitive closure of

a relation is transitive and that the reflexive transitive closure is reflexive.

We end this section with some examples of closures: ‘<’ is the transitive

closure of ‘is the predecessor of’; ‘is an ancestor of’ is the transitive closure of

‘is a parent of’; and ‘is a divisor of’ is the reflexive transitive closure of ‘is a

direct divisor of’.

2.6 BOOLEAN MATRIX REPRESENTATION

The examples given in this book are not exactly trivial but they are all very

simple and designed merely to show off the problems and their solutions. Usually

when presented with the digraph of a relation its closures can be ‘read off’ merely

by looking at the diagram and following the pointers. However sooner or later

all this must be applied to a ‘real’ problem. We will see later that, in order to

demonstrate a computer language’s suitability for treatment by the recursive

descent method, we need to calculate closures of finite but large relations and to

do this by hand is messy and error prone. It is therefore advisable to develop

computational methods for closure calculation.

We have already seen one model of relations — the digraph picture representation.

Now we require a model suitable for storage and manipulation in a computer.

The functional representation of a relation suggested at the end of section 2.2,

where it is given as a mapping from the Cartesian product of the relevant sets to

{true,false}, suggests that we might represent a relation by a function. However

it is difficult to ‘read in’ a function to a general program designed to process any

relation. Luckily a mapping from S ! T can be represented by a boolean matrix

with elements of S ranged down the left hand edge and those of T along the top

to be used as indices. The value of the mapping applied to a particular pair (s,t)

is found at the intersection of the row indexed by s and the column indexed by t.

If A is a relation we will represent it by matrix M(A). Let us put this into

practice by showing the matrix for the ‘is a direct divisor of’ relation given

in Example 2.2.2.

30 Mathematical Preliminaries [Ch. 2

Its digraph is as follows:

Representing ‘true’ by a ‘*’ and ‘false’ by a blank space, the matrix

representation is:

M(A) =

1 2 3 4 6 12

* *1

* *2

*3

*4

*6

12

The circled * represents, for instance, that there is an arrow from 3 to 6. The

matrices will not always in general be square. It will depend on the sizes of S and

T. But in most cases of interest to us S = T. Note that such matrices

overcharacterize the relation since we can choose the elements of S and T to be

taken in any order and each time get a different matrix representing the same

relation.

2.7 CALCULATION OF CLOSURES

In order to use the matrix representation to calculate closures, we have to be able

to find the sums given in equations (3) and (4) in section 2.5 . This means that

we are going to have to find matrices representing products of relations, in

particular powers, and matrices specifying sums of relations.

Let us look at the latter case first. The sum of two relations is obtained by

seeing if either (or both) of the relations is true for each particular pair of elements

12

4 6

2 3

1
Fig. 2.4

Sec. 2.7 Calculation of Closures 31

of the sets. Thus to add two relations we merely take the elements of the

corresponding matrices and ‘or’ them together element by element. Thus:

M(A+B) = M(A) (M(B)

For the product of two relations things are not much more difficult. Given

elements r and t and wishing to see if r AB t, we have to find out if there is any

element s such that rAs and sBt. We therefore have to look at the row indexed by

r in M(A). This gives the relationships of r with all the possible candidates s as

we move along the row. If we simultaneously scan the t indexed column of

M(B) we can see if the relationship sBt holds. This means that we must calculate

a ‘dot product’ of the row and column in a very similar manner to ‘ordinary’

matrix multiplication but with addition being replaced by the operation ‘or’ and

multiplication by ‘and’.

As an example let us calculate M(A2) where A is as in Figure 2.4 and M(A)

as shown below that. The product of M(A) with itself is then:

M(A2) =

1 2 3 4 6 12

* *1

*2

*3

4

6

12

This relation represents all the paths of length 2 in the graph of A. If we ‘sum’

M(A) and M(A2) we get:

M(A + A2) =

1 2 3 4 6 12

* * * *1

* * *2

* *3

*4

*6

12

32 Mathematical Preliminaries [Ch. 2

and this represents all the paths of length 1 or 2 in the graph of A.

Note that this summing of a matrix to another can only add new true elements

to it — none can be removed. This is another way of saying that the sum:

A + A2 + ...

terminates for finite relations; because the corresponding finite matrix will either

become full up with true elements or settle down to a steady state earlier than

that. Remember that it will always terminate at An-1 at worst where A is a relation

over a set of size n.

The ‘direct divisor’ relation A settles down after M(A3) is added giving:

M(A+) =

1 2 3 4 6 12

* * * * *1

* * *2

* *3

*4

*6

12

To get M(A*) all we need do is add true elements all the way down the diagonal

to make the relation reflexive.

When calculating M(A*) or M(A+) for a large relation A, efficiency will be

very important. A single matrix multiplication of n ! n arrays requires O(n3)

operations to be carried out. If we calculate M(A*) in the ‘direct’ way by

computing M(I), M(A), M(A2), ... M(An-1) we have to do O(n) matrix

multiplications so the whole process takes a time O(n4). If we notice, however,

that:

M(A + A) = M(A)

then we can calculate instead the sequence:

M(I + A)

M((I + A)2) = M(I + A + A2)

M(((I + A)2)2) = M(I + A + A2 + A3 + A4)

...

then we will only need about log
2
n matrix multiplications and so the whole process

is O(n3log n) in time.

Sec. 2.8 Summary 33

In fact there is an even faster method due to Warshall [5]. This calculates the

transitive closure of A (from which the reflexive transitive closure may easily be

obtained) as follows:-

! Read or calculate bool matrix A (n x n)

for i = 1 to n do ! Each time round the loop add a new node

! (number i) to the transitive closure graph

for j = 1 to n do ! Find all arrows leading into node i

if A(j,i) do ! If there is an arrow from node j to node i,

! find all those out of node i

 for k = 1 to n do ! make a direct path arrow between nodes j

A(j,k) := A(j,k) or A(i,k)

!Now A contains the transitive closure matrix

This method is O(n3) in time since each loop is executed a maximum of n

times. Note that the inner loop is perfectly suited to very fast parallel computation

which can be partially achieved on most conventional computers by holding the

columns of the matrix as bit patterns and ‘or-ing’ whole words together at a time.

2.8 SUMMARY

In this chapter we have introduced a small number of mathematical concepts

needed in later chapters. These have included strings, relations and graphs. We

have directed the development of these subjects towards the pivotal topic of

closure which will be extensively needed in Chapters 3 and 4, when we find out

whether certain grammars are suitable for describing languages which can be

compiled using the recursive descent technique.

REFERENCES

[1] Kleene, S.C. (1956), Representation of events in nerve nets and finite

automata, Automata Studies, Princeton University Press, 3–42.

[2] Berge, C. (1973), Graphs and hypergraphs, North Holland.

[3] Wilson, R.J. (1972), Introduction to graph theory, Longman

[4] Birkhoff, G. and MacLane, S. (1953), A survey of modern algebra,

Macmillan

[5] Warshall, S. (1962), A theorem on boolean matrices, JACM, 9, 1, 11–12

CHAPTER 3

Grammatical Preliminaries

3.1 GRAMMARS AND LANGUAGES

Before we can write a compiler for a computer language, we need to have a

precise definition of that language. We must therefore first have languages in

which such definitions may be given. Languages which discuss others in this

way are called metalanguages. A language being defined or considered by a

metalanguage is a subject language.

Initially we shall use the mathematics of set theory as our metalanguage but

we shall ‘humanise’ this in practice to a more palatable form using a more intuitive

metalanguage called BNF. This will be described in more detail in section 3.3.

First, however, let us see in very general form how set theory can be used to

define languages. Intuitively a language is a set (usually infinite) of texts

expressible in that language. Such texts are known to computational linguists as

sentences of the language. Thus the sentences of a subject language are a subset

of all the texts that could possibly be written using the letters of the alphabet

chosen for writing the language. We must somehow separate out the legal texts

of the language from the ungrammatical ones. To do this we can use a grammar

to specify the syntactic rules of a language.

A grammar (also known sometimes as a syntax) consists of four components:-

(i) A finite set T (called an alphabet) of symbols which form the basic

characters or groups of characters which can be strung together to

form texts of the language under consideration. Such symbols are

called terminal symbols.

(ii) Another finite alphabet of non-terminal symbols, N. If we are going

to analyse sentences we must have some way of naming parts of

sentences (phrases). Non-terminals can be thought of as variables

whose values are subphrases of a whole sentence. Alphabets T and N

must be disjoint. We must always be able to tell whether a symbol is

a terminal one or not.

(iii) A specially designated member of N called the distinguished symbol

or start symbol, S. This can be used for naming whole sentences.

[Sec. 3.1] Grammars and Languages 35

(iv) A set, P, of productions. We shall see that to generate a legal string of

terminal symbols which is a sentence we must successively transform

strings of terminals and non-terminals which describe sentences in

partially synthesised form.

As an example, consider the synthesis of a person's name. We might

carry out the transformations:

<name> ! <forenames> <surname>

! <firstname> <middlenames> <surname>

! David <middlenames> <surname>

! David <surname>

! David Smith

Here the members of the non-terminal language N appear as entities

in angled brackets and other elements are members of T. The

relationship ‘!’ shows successive mutations starting with the

distinguished symbol, in this case <name>, and ending up with the

sentence ‘David Smith’ of the simple language of names.

The rules which tell us which transformations are legal are known as

productions or production rules. Each production is a pair of strings P

and Q each of which can contain members of the alphabets T and/or

N. If (P,Q) is such a pair we are essentially saying that a transformation

which replaces P by Q is allowable. With this in mind we often write

‘P " Q’ for the pair (P,Q). ‘P ::= Q’ can also be used.

Thus:

<firstname> " David

<firstname> " Sue

<forenames> " <firstname> <middlenames>

<middlenames>"

<middlenames>" <middlenames> <midname>

are some of the productions of the small example language of names.

Note that the right hand side of the ‘"’ can be empty. In this case

<middlenames> is to be replaced by nothing at all — #, the empty

string — in the transformation. We place one important restriction on

productions ‘P " Q’. P must contain at least one non-terminal. Thus

no transformation can replace a subphrase consisting of terminals only

by something else. This, indeed, is why they are known as terminals.

More formally the rule of substitution can be stated as follows. The

relationship ‘V ! W’ holds (where V and W belong to (N $ T)*) if V

and W can be decomposed into substrings:

V = X V' Y

W = X W' Y

and there is a production V' " W'.

36 Grammatical Preliminaries [Ch. 3

For example, in the series of transformations given above, the following

step occurs:

<firstname> <middlenames> <surname>

! David <middlenames> <surname>

Here V' = <firstname>, W' = David, X is empty and

Y = <middlenames> <surname>.

Given these four elements of a grammar G we can define the language L(G)

produced by G as those terminal sentences generated by successive uses of ‘!’

starting with the distinguished symbol. (i.e. formed by ‘!* ’, the reflexive transitive

closure of ‘!’).

More formally

L(G) = { s % T* | S !* s }

The method used here to generate sentences by means of a grammar is called

the phrase structure method and this particular type of grammar is a phrase

structure grammar.

3.2 CHOMSKY'S STRATIFICATION

The definition of a language given in the last section was a very general one and

allowed a very large class of grammars to be used. In fact we need not use

grammars as powerful as this in this text.

Noam Chomsky [1] has categorised grammars into four classes, each one

essentially a subset of the previous one. The types of grammars he describes are

restricted by only allowing productions of certain types. The four classes are as

follows :-

0 A Chomsky type 0 grammar is the most general type of all. It is

sometimes called a semi-Thue grammar. It allows productions to be

as complicated as needed, and this type of grammar is just as described

in the last section. We will not need grammars with this unrestricted

power in this text.

1 We can restrict the generality of Type 0 grammars to Type 1 or context

sensitive grammars by insisting that the production rules are all of the

form :-

PAQ " PBQ

where P and Q are (possibly empty) strings of (N $ T)*, A is a single

non-terminal, and B is any non-empty string of (N $ T)+. What we

are doing here is allowing transformations in which A is replaced by B

in the context of P and Q. P is called the left context and Q the right

context.

Sec. 3.2] Chomsky’s Stratification 37

Once again this type of grammar is too powerful, in general, for our

needs; or, to be more honest, it does not provide a suitable framework

around which to build an efficient compiling method. In fact, to

describe most useful computer languages’ syntax completely, we would

need a context sensitive grammar or perhaps even a type 0 grammar.

Intuitively the illegality of the program

let a = 1

write b

?

is based on the fact that the occurrence of ‘b’ takes place in the wrong

context, one in which only ‘a’ has been declared — but it is neither

easy to see (a) how to reflect the declaration rules needed to prevent

this sort of thing in an appropriate type 1 grammar nor (b), how to

write a compiler based on such a grammar. In fact some work has

been done in this area but not using context sensitive grammars as

defined here but rather affix grammars [2] and attribute grammars[3].

Another approach is the two-level grammars of van Wijngaarden [4]

used to describe Algol68 [5] though it would be very difficult to base

a compiler on this method of syntax specification.

In this book, the contextual constraints put on a language will be

expressed in an informal manner. (However the type rules which we

shall describe in section 9.2 are a useful contextual device for limiting

a language to correctly typed expressions).

2 We therefore need a further restriction of grammars. Chomsky's type

2 category is also called the context free group of grammars. Here

the productions can only be of the form

A " B

where A % N and B is any string of symbols in (N $ T)*. (There are

problems if B is empty but let us neglect that for the moment — see

sections 4.2 and 4.3). Note that these rules are similar to Type 1 rules

except that we are not allowed to place any context sensitive constraints

P and Q around A and B.

This type of grammar is the most important from our point of view

which is why we devote the whole of the next section to it.

3 To complete our description of Chomsky's hierarchy we describe the

Type 3 or regular (or right linear) grammars. Here productions are

very restricted indeed. They can only be of the following types:

A " xB

A " x

38 Grammatical Preliminaries [Ch. 3

where A and B are non-terminals and x is any terminal symbol. It can

be shown that this kind of grammar can be useful for describing a

language at its lexicographic level, where groups of letters such as ‘b’,

‘e’, ‘g’, ‘i’, ‘n’ are taken together to form basic lexemes of the language.

We talk more about lexical analysis in Chapter 7 where we relate it to

regular grammars. More details about using regular grammars to help

to write lexical analysers can be found in texts such as Gries’s book [6].

3.3 CONTEXT FREE GRAMMARS

As we pointed out in the last section, context free grammars are going to be our

primary tool for describing object languages.

Let us make some conventions that will be useful in order that we do not

have to keep qualifying sentences with such phrases as ‘...where A is a non-

terminal’. We shall talk about context free grammars using two conventions in

fact: one when we are looking at their theoretical aspects to give fairly trivial but

pointed examples in this and the next chapter, and the other to be used in actual

practice when we describe real languages.

Convention 1

The first, theoretically used, convention is that we shall consistently use capital

letters to denote non-terminals and small letters and other characters such as ‘(’,

‘+’, ... to denote basic symbols. Unless otherwise stated, ‘S’ will always be

reserved for the distinguished symbol.

For example the following is a grammar that describes a small subset of the

expressions available in many programming languages. We shall use it from

time to time in examples and shall refer to it as grammar G, and to the language

it describes as language L.

Non-Terminals: Productions:

S (Distinguished symbol) S " E

E (Expressions) E " T

T (Terms) E " E + T

F (Factors) T " F

U (Units) T " T * F

F " U

Terminals: F " (E)

+, *, (,), 0, 1, 2, ... , 9 U " 0

U " 1

U " 2

...

U " 9

Sec. 3.3] Context Free Grammars 39

As we pointed out in section 3.2 above, the left hand side of a context free

production must consist of a single non-terminal. We make a further addition to

the convention that if several production rules have identical left sides then they

may be combined by placing a vertical bar, ‘|’, between their right hand sides.

Thus grammar G’s rules can be shortened to:

S " E

E " T | E + T

T " F | T * F

F " U | (E)

U " 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Convention 2

The second convention which we shall use in practical cases is called BNF which

stands for Backus Naur Form or Backus Normal Form. Backus and Naur were

both involved in producing the famous Algol 60 Revised Report [7]. Naur was

the editor and Backus the inventor of a notation now known as BNF which was

used in this report to describe Algol’s syntax.

In BNF non-terminals are represented by meaningful names or phrases

enclosed in angled brackets ‘<’ and ‘>’. The ‘"’ between the pair of elements of

a production is replaced by ‘::=’. The ‘|’ notation as defined above in convention

1 is used here also and means the same thing. Thus the following grammar (or

set of productions — we shall often use the terms synonymously when, as with

both these conventions, it is obvious what the terminals, non-terminals and

distinguished symbol are.) is a BNF version of grammar G:

<S> ::= <Expression>

<Expression> ::= <Term> | <Expression> + <Term>

<Term> ::= <Factor> | <Term> * <Factor>

<Factor> ::= <Unit> | (<Expression>)

<Unit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The result is, of course, more long-winded than convention 1 but with careful

choice of syntactic variable names it will have a much more transparent meaning.

We will use a slight extension of BNF in this book for reasons of brevity. Two

new additions to the convention are introduced. If a part of the right hand side of

a production is enclosed in square brackets ‘[’ and ‘]’, it means that it is optional

whether that part has to appear at all. Thus

<somevar> ::= & ['] (

where & and (both belong to (N $ T)*, and ' belongs to (N $ T)+, is equivalent

to

<somevar> ::= &(| &'(

40 Grammatical Preliminaries [Ch. 3

If, in addition, an asterisk, ‘*’, (the Kleene star again) is placed after the

square brackets, it means that the entities within can appear any number of times

(including zero). Thus:

<somevar> ::= & [']* (

has the same effect as

<somevar> ::= & <betaplus> (| &(

<betaplus> ::= ' [<betaplus>]

In fact in most useful cases (is empty.

Language L may now be described (with a little obvious transformation

of grammar G) by:

<S> ::= <Expression>

<Expression> ::= <Term> [+ <Term>]*

<Term> ::= <Factor> [<times> <Factor>]*

<Factor> ::= <Unit> | (<Expression>)

<Unit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<times> ::= *

(Note how ‘*’ is playing two rôles here — one as a basic symbol

and one as what is called a metasymbol — a symbol of the metalanguage, not

the subject language. Something similar must obviously be done for ‘[’, ‘]’,

‘|’, ‘<’ and ‘>’ if they appear in the subject language.)

We will see later that this iterative way of specifying repeating groups (rather

than the recursive way that ‘pure’ BNF usually uses) has a direct reflection in the

way we code recognition procedures for syntactic categories involving it (see

section 6.3) — using while loops rather than calling the procedures recursively.

It also helps to solve a rather tricky grammar transformation problem which we

shall discuss in section 4.6.

As we hinted earlier in this chapter, we shall impose some context sensitive

restraints on the languages we discuss, using what we call the type rules. These

will be discussed further in section 9.2.

3.4 SENTENCE GENERATION AND RECOGNITION

The transformational grammars which we have described here were originally

designed by Chomsky to be used by linguists. As we have seen, the idea is to

start with the distinguished symbol and, by successive transformations, mutate it

into a sentence consisting only of basic symbols. Thus we can, by choosing

different sequences of transformations, generate different sample sentences of

the language under consideration.

There is another logical way of considering such a succession of

transformations and that comes about by thinking of the sequence backwards;

that is starting with the sentence and transforming it step by step into the

distinguished symbol. Such a process is, of course, no different in principle

Sec. 3.5] Derivations 41

from the generative one. But there is a psychological difference in that we think

of a given sentence being recognised as a legal one rather than being generated

(possibly arbitrarily) from the distinguished symbol.

When a compiler attempts to parse a sentence (program), it may in fact use

either of the above processes and at this stage it becomes apparent that the

difference, to a computer, is no longer just psychological because the kinds of

programs used for generative parsing are very different from those for recognitive

parsing. The technical terms for these methods are top down (generative) and

bottom up (recognitive). Of course we need hardly say that top down synthesis

of a sentence is not done arbitrarily in practice. At each stage the process is

guided by the form of the particular program being compiled and care is taken to

make sure that that is the one actually generated.

The major part of this book is about one particular top down method (recursive

descent) but we shall discuss briefly some of the other methods available,

including bottom up processes, later in this chapter.

3.5 DERIVATIONS

For the moment however let us discuss the transformation process itself without

worrying about whether it runs backwards or forwards. A sequence

&
0
 ! &

1
 ! ... ! &

n

is called a derivation of &
n
 from &

0
 (which we write &

0
 !* &

n
 so that ‘!* ’ is the

‘is derived from’ relation). Its single steps &
i
! &

i+1
 (0) i < n) are called direct

derivations. Thus the sentences of a language are all derivations from the

distinguished symbol. The converse is not true since non-terminals may be

present. If they are, we have what are called sentential forms which are half-

way stages in derivations between the distinguished symbol and the ultimately

recognised sentence.

Consider the following sentence of the language L:

1 + 2 * 3

We know that it is a sentence of L because of the transformation sequence:

S ! E

! E + T

! T + T

! F + T

! U + T

! 1 + T

! 1 + T * F

! 1 + F * F

! 1 + U * F

! 1 + 2 * F

! 1 + 2 * U

! 1 + 2 * 3 (5)

42 Grammatical Preliminaries [Ch. 3

In fact, however, we could have used the sequence:

S ! E

! E + T

! E + T * F

! E + T * U

! E + T * 3

! E + F * 3

! E + U * 3

! E + 2 * 3

! T + 2 * 3

! F + 2 * 3

! U + 2 * 3

! 1 + 2 * 3 (6)

or indeed any one of a whole host of other transformation sequences. The reader

might like to care to try to work out how many legal derivations of ‘1 + 2 * 3’

there are using grammar G. The answer is 2,100. Which one should we choose?

Does it matter? One is initially tempted to say that it does, until one notices that

in each such sequence the same transformations are carried out in the same places

but in a different order. They are all the ‘same’ parse in some sense.

3.6 AMBIGUITY AND SYNTAX TREES

Before we tighten up this notion, let us consider a related question. Why did we

use grammar G to describe language L? On the face of it, the following productions

(grammar G') would have served our purpose just as well:

S " E

E " 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

E + E | E * E | (E)

The answer is that, although G' and G describe the same language L (prove

it!), different derivations of the same sentence using the productions of G'

sometimes use sequences of transformations either entirely different or used at

different places in the sentence rather than just in a different order.

To make this clear, consider the following example. The sentence ‘1 + 2 * 3’

can be derived using G' by:

E ! E+E ! 1+E ! 1+E*E ! 1+2*E ! 1+2*3 (7)

or by

E ! E*E ! E+E*E ! 1+E*E ! 1+2*E ! 1+2*3 (8)

Sec. 3.6] Ambiguity and Syntax Trees 43

 Although we have used the same productions in a different order here, they

are being used at different points in the sentence. The use of E " E * E in

derivation (7) represents a multiplication of ‘2’ by ‘3’ and in (8) of ‘1+2’ by ‘3’.

Our intuition tells us that the first is the ‘correct’ derivation because that is the

way we group multiplication and addition; and there is something ‘wrong’ with

grammar G' in that it allows the second derivation (8) at all. Such ‘wrong’

derivations cannot happen with grammar G and we see that its hierarchical nature

forces the correct grouping of expressions into sums of terms which are, in turn,

products of factors. In fact the grammar G also imposes left associativity on the

operators ‘+’ and ‘*’ by specifying:

E " E + T

T " T * F

rather than

E " T + E

T " F * T

We shall see that the former (which are called left recursive productions

because the left hand side appears as the leftmost component of the right hand

side) cause some problems for our method of parsing.

How can we capture this ambiguity of grammar G' in a more rigorous sense?

Consider derivations (5) and (6) again. There is something special about them.

In (5) we always picked the leftmost non-terminal for expansion, using a suitable

production rule and in (6) the rightmost non-terminal was used. Those particular

derivations are hence known as leftmost and rightmost derivations. We say

that a grammar is ambiguous if there exist sentences with more than one leftmost

derivation. (We could have substituted ‘rightmost’ with the same effect.) Now

consider the two derivations (7) and (8). These are both leftmost derivations and

hence grammar G' is ambiguous.

Above, we stated it as a fact that G was unambiguous. We will not enter

here into the complicated but tedious ways in which the ambiguity or unambiguity

of particular grammars can be proved. Suffice it to say that it is unsolvable for a

general context free grammar though individual grammars may be proved. The

reader is referred to [8] for further discussion of such points.

Another way of looking at ambiguity is to consider parse trees. We will not

define these rigorously but appeal to the reader’s intuition. For a tight definition

see [8]. A parse tree or syntax tree is a tree structure labelled with terminals at

its tips and non-terminals at its other nodes, with, in particular, S labelling the

root. The idea is that when a production, say ‘A " & '(...’ is used in a derivation

(where &, ' and (are terminals or non-terminals), a corresponding subtree of the

44 Grammatical Preliminaries [Ch. 3

final parse tree is created.

Thus the steps of derivation (5) grow successive trees:

until we end up with

Steps of derivation (6) will grow the same final tree, but the intermediate

trees will be different since the nodes are developed in a different order. We

could in fact have defined ambiguity with reference to these trees. If every

sentence generated by a grammar has only one parse tree, the grammar is

& ' (. . .

A

Fig. 3.1

E

S

E

SS

E + T

...

Fig. 3.2

E

S

E + T

T +

F

U

2

F

U

3

T

F

U

1
Fig. 3.3

Sec. 3.7] A General Top Down Method 45

unambiguous.

So we should expect grammar G' to admit different parse trees for some

sentences; and so it does. Derivations (7) and (8) correspond to the trees:

Besides their having the nasty effects mentioned above, there is another reason

why we would like to get rid of ambiguous grammars; no ambiguous grammar

is a suitable foundation from which to build a recursive descent compiler. We

shall see this in Chapter 4 where we introduce LL(1) grammars upon which

recursive descent parsing is based. There it will be shown that no ambiguous

grammar is an LL(1) grammar.

Fig. 3.4

E

E + E

E *

2

E

3

1

E

E E

E E+

*

1 2

3

3.7 A GENERAL TOP DOWN METHOD

The basic problems of compiling are the building of the unique syntax tree from

a legal sentence, and the subsequent traversal of the tree attaching meaning or

semantics to it either by directly ‘executing’ the tree, interpreting it, or by

generating code for subsequent execution by a computer or interpreter. This is

done by traversal of the tree, visiting its nodes in some appropriate order. Note

however that the tree need never be built explicitly. The dynamic structure of

the parsing algorithm may reflect the structure of the tree and be its only model

of existence. The semantic walk-through of the tree may well take place at the

same time as it is being built. This is the approach that most recursive descent

compilers take. Chapters 6 and 7 discuss this in more detail.

We shall leave the semantics part of the problem — the breaking down of

the tree — until Chapter 12. We shall however look in some detail at how a top

down analyser, faced with an arbitrary grammar, might try to build a tree from a

sentence. This will give us some insight into the problems which are to be faced.

We have seen that an unambiguous grammar gives rise to a single leftmost

derivation for any sentence of its language and informally that such derivations

will be in one-to-one correspondence with parse trees. Our problem in growing

the parse trees (or merely recognising the correctness of the sentence by doing so

implicitly) can therefore be reduced to that of finding a leftmost derivation.

We should therefore try to imagine a top down parser at some stage having

before it some sentential form that is one of the steps in the derivation. This

form will consist of terminals and non-terminals in general. It starts by being the

46 Grammatical Preliminaries [Ch. 3

distinguished symbol and ends up by being the sentence which is being parsed.

Since we are building a leftmost derivation, it is always the leftmost non-terminal

which is the current candidate for expansion using some production rule. Naturally

the main part of the problem for the parser is to choose the correct rule. Note that

all the terminals up to this point must match some initial substring of the sentence

string being parsed. We can consider this string as being steadily eaten into by

being read into the computer one terminal at a time. As the parse proceeds, new

terminals appear at the left of the derivation and are matched with terminals read

in. At this stage they can be discarded from the sentential form the parser is

considering; so that it always has the leftmost non-terminal at the start of the

section of sentential form it is working on ready to match against the next section

of input. This non-terminal is called the target, goal or active symbol.

If at any moment a match fails, this means that the parsing process has taken

a wrong turning at some previous stage (or that the input string is in error and is

not a sentence). This mismatch is not only caused if terminal symbols at the left

hand ends fail to correspond, but if either of the strings runs out of symbols. A

parse only succeeds if both strings run out simultaneously. In the case of a

mismatch we must backtrack to the last position where a choice (of which

production to apply) was made, ‘unreading’ all the input symbols that have been

read since then, restoring the fragment of the current sentential form to its previous

state, and ‘undoing’ any semantic actions of code generation or direct execution

that may have been carried out while searching down the blind alley the parser

has found itself in. We must also ‘unbuild’ at least part of the syntax tree if we

have been doing this explicitly.

This obviously presents real problems as ‘unreading’ and ‘undoing’ are very

unnatural processes for a computer. What we would like is for the parser to be

oracular, to be able to tell, merely by looking at the input on hand what is the

correct path to follow. Obviously this will only be possible for certain classes of

grammar. Our job in Chapter 4 will be to see what classes behave in this

deterministic way.

It should be remarked at this stage that backtracking is a fairly well used

technique in the field of combinatorics and Floyd [9] has written an interesting

paper on how to do it by making algorithms run backwards; but most of these

problems have solutions whose time taken is exponential relative to the length of

the input. Ideally we would like to parse long programs in a time proportional to

their length.

Will the method described above always work? If not, what modifications

do we have to make to it to convert it into one that does?

Let us try an example. In the following the left hand column represents the

still-to-be-matched part of the sentential forms under consideration. The right

hand column shows successive states of the input. Its left hand character represents

the next one to be read. Our starting position is:

Sec. 3.7] A General Top Down Method 47

1. S 1 + 2 * 3

Our ground rules say that we must now choose a rule to substitute S, being

the leftmost (and only) non-terminal and hence the target. In this case there is

only one rule ‘S " E’ so we move to our next position:

2. E 1 + 2 * 3

Simultaneously the tree, if we are growing it explicitly will extend to:

At this stage we have a choice of rules to apply. We could either use ‘E " T’

or ‘E " E + T’. We now note the first dangerous trap that the general parser may

fall into. The compiler has very little to go on in making its choice except the

next few input symbols and these do not obviously help. In such a case it will

have to choose the rules one by one in some consistent order, backtracking

occasionally to try another. If it so happens that the rule ‘E " E + T’ is the

parser’s regular first choice, it will get into a loop:

E + T 1 + 2 * 3

E + T + T 1 + 2 * 3

E + T + T + T 1 + 2 * 3

...

Perhaps we might circumvent this by arranging for such left recursive

productions to be placed at the end of the choices to be made. This would have

to go for mutually recursive rules as well such as

A " B | C D

C " E | A F

For our particular grammar this is an easy task, but it is clear that in the

general case, it may be quite difficult to order the alternatives appropriately.

Let us continue our parse with the left recursive rules left until the end. The

next few steps are:

3. T 1 + 2 * 3

4. F 1 + 2 * 3

5. U 1 + 2 * 3

E

S

Fig. 3.5

48 Grammatical Preliminaries [Ch. 3

It should be noted that we can use the input symbol ‘1’ here to choose between

‘F " U’ and ‘F " (E)’ because the latter definitely starts with ‘(’ which will not

match. Similarly we must now choose ‘U " 1’ to give

6. 1 1 + 2 * 3

whereupon the leading (matching) symbols may be dropped in both columns to

give

7. # + 2 * 3

where # represents the empty string. We now have a mismatch because the

sentential form in the left hand column has run out (there is no target symbol) so

we must backtrack to the last choice point which was the move from step 3 to

step 4. (In fact a parser will probably have to backtrack through all the stages

‘discovering’ at each one that there is no further choice available.) So we undo

everything we have done back to stage 3 and continue with:

8. T * F 1 + 2 * 3

9. F * F 1 + 2 * 3

10. U * F 1 + 2 * 3

11. 1 * F 1 + 2 * 3

Again we have a mismatch. The initial ‘1 *’ of the sentential form does not

correspond to ‘1 +’. So we must backtrack again. This time we go back to step

8 and continue with

12. T * F * F 1 + 2 * 3

...

We note that we are again caught in the loop caused by left recursion. So we

see that the simple act of ordering the rules is not sufficient to eliminate loops.

Somehow we must remove the left recursion from the grammar. Luckily this is

always possible and we give an algorithm for it in section 4.5.

Even if we do remove the left recursion, it must be fairly clear to the reader

that the above is going to be very inefficient indeed. We have only used the

example to reinforce the desire for a deterministic algorithm and we need consider

this ‘general’ method no further. A complete algorithm for any non-left recursive

grammar is given in Aho and Ullman [8].

We shall, in the next chapter, look at some techniques which can transform

grammars (in some cases) into ones that admit deterministic parsing in the sense

that the parser will, by looking only at the next input symbol, be able to decide

which production to apply next in the parse.

Sec. 3.8] Bottom Up Methods 49

3.8 BOTTOM UP METHODS

It is only fair that we should, before moving on to the particular method we have

chosen as the subject of this book, give a brief summary of some bottom up

methods of parsing which are often used in compilers. These are very popular

with those who advocate automatic parser generators where, from a stylised

form of syntax and semantics, a compiler is generated. It is usually table driven

in that, from the grammatical rules, a table is built which is used to control a

central parsing loop. (Table driven methods are also available for top down

methods as)

Bottom up methods work in general on the shift-reduce principle (Floyd

[10]). Since such methods build the syntax tree from the bottom up, they will

have, at any moment, a list of subtrees representing parts of the whole syntax

tree. Practical parsers nearly always scan the input from left to right so the

subtrees that have been formed will be from the left hand part of the whole tree.

For instance, with grammar G and the input ‘1 * 2 + 3 * (4 + 5)’ the following

subtrees might at some stage have been formed:

As the parse proceeds there are at any moment two main alternatives from

which the parser has to chose. Firstly it could shift a symbol from the remaining

input over to the list of subtrees where it will form a new primitive subtree by

itself at the right hand end of the list of subtrees. Secondly it could collect one or

more of the trees at the right hand end of the list together and reduce them to a

single subtree by using a production rule and making a new node with its left

hand non-terminal as its label. The parser may have to choose which production

to use. Such a collection of subtrees is called a handle since it is a collection of

objects that we grasp together into one by the reduction. In general a parser will

shift until the right hand end of the list of trees contains a handle and then reduce

it.

* (4 + 5)

Remaining Input

+

Subtree 2 {

T

E

T *

F

U

1

F

U

2

Subtree 1{

F

U

1

Subtree 3{ {

Fig. 3.6

50 Grammatical Preliminaries [Ch. 3

In the above example a parser would probably shift the ‘*’ and ‘(’ and ‘4’

and then reduce the ‘4’ successively to ‘U’, ‘F’, ‘T’ and ‘E’ before continuing by

shifting ‘+’ and so on. We will not go into the details here.

As with top down methods, it is easy to see that a general shift-reduce parser

will have severe backtracking problems. So the methods used in practice are

again deterministic.

The differences between the various methods lie in what information is used

to decide between shifting and reduction and, if the latter, which rule to apply.

In simple precedence parsing (Wirth and Weber [11]) only the single symbol

at the left hand end of the input and the single symbol at the root of the rightmost

subtree of the list are used to decide whether to shift or reduce. A precedence

table is built to allow these to be compared. When a handle is to be reduced, its

left hand end is found by a series of similar comparisons between adjacent roots

of the trees at the right hand end of the list. This determines which rule to use

(because no two are allowed to have identical right hand sides, which is a severe

restriction at times).

In operator precedence parsing (Floyd [12]) a similar procedure to the above

is carried out but only the terminal symbols are used in the comparisons to

determine the handle. An informal use of the operator precedence method

manifests itself in Dijkstra's ‘shunting’ algorithm [13] which is used in many

compilers, notably that described in Randell and Russell [14]. In fact many

basically top down compilers use this method to compile arithmetic and boolean

expressions, leaving the top down treatment to the larger program constructs

such as blocks, while and if statements and declarations.

LR(k) parsing (Knuth [15]) (Left to right using a Rightmost derivation and

the next k symbols in the input stream) and its variants such as LALR(k)

(lookahead LR) use the whole list of subtrees and the next k symbols of the input

to make their decision about what to do next. In nearly all cases k=1. In practice

the parser need not scan the whole list of subtrees, but will be in one of a finite

number of states determined by the list. As changes are made to it by shifting

and reducing, the parser changes state so as to reflect the contents of the list; and

it is this state plus the next k symbols which are used to determine the next move.

The calculation of the tables which have to be looked up to do this is very

complicated and in non-trivial cases is best done by a custom built compiler

generator program such as YACC [16]. It is too difficult a task for hand

calculation. For further details and discussion of these techniques the reader is

referred to Gries [6], Aho and Ullman [8] and [17] and Bornat [18].

3.9 SUMMARY

In Chapter 3 we have seen how grammars, in particular context free ones, can be

used to define languages by generative or recognitive techniques that involve

Sec. 3.9] Summary 51

the construction of a derivation or a parse tree. We gave two conventions which

are used in the book to describe grammars. We indicated the dangers of ambiguity

and informally gave a ‘general’ algorithm for non-left-recursive grammars which

was seen however to be highly inefficient. This led us to a desire for deterministic

methods. Finally we summarised some bottom up methods which are sometimes

used in the syntax analysis phase of compilers.

REFERENCES

[1] Chomsky, N. (1959), On certain formal properties of grammars,

Information and Control, 2, 2, 137–167.

[2] Koster, C.H.A. (1971), A compiler-compiler for affix grammars,

Mathematisch Centrum Amsterdam report MR 127/71.

[3] Pagan, F.G. (1981), Formal Specification of Programming Languages,

Prentice-Hall.

[4] van Wijngaarden, A. (1965), Orthogonal design and description of a

formal language, Mathematisch Centrum Amsterdam report MR76.

[5] van Wijngaarden, A. et al., (1975), Revised report on the algorithmic

language ALGOL 68, Acta Informatica 5, 1–236.

[6] Gries, D. (1971), Compiler Construction for Digital Computers, Wiley.

[7] Naur, P. et al., (January 1963), Revised report on the algorithmic

language algol 60, CACM 6, 1, 1–17.

[8] Aho, A.V. and Ullman, J.H. (1972), The Theory of Parsing, Translation

and Compiling, Prentice-Hall.

[9] Floyd, R.W. (1967), Nondeterministic algorithms, JACM 14, 4, 636-644.

[10] Floyd, R.W. (1961), A descriptive language for symbol manipulation,

JACM 8, 4, 579–584.

[11] Wirth, N. and Weber, H. (January 1966), EULER — a generalization

of algol and its formal definition Part I, CACM 9, 1, 13–23.

[12] Floyd, R.W. (1963), Syntactic analysis and operator precedence,

JACM 10, 3, 316–333.

[13] Dijkstra, E.W. (1961), Making a translator for algol 60, A.P.I.C.

Bulletin, 3–11.

[14] Randell, B. and Russell, L.J. (1964), Algol 60 Implementation,

Academic Press.

[15] Knuth, D.E. (1965), On the translation of languages from left to right,

Information and Control, 8, 6, 607–639.

[16] Johnson, S.C. (1975), YACC — yet another compiler-compiler, Bell

Laboratories, New Jersey.

[17] Aho, A.V. and Ullman, J.H. (1977), Principles of Compiler Design,

Addison-Wesley.

[18] Bornat, R. (1979), Understanding and Writing Compilers, Macmillan.

CHAPTER 4

Testing and Manipulating

Grammars

4.1 THE NEED FOR DETERMINISTIC METHODS

We spent some time in section 3.7 showing first that a top down method was not

as general as it might have seemed and even then, when modified to deal with

grammars with no left recursive productions, that it would be grossly inefficient

because of the amount of backtracking involved. We concluded that a

deterministic method of some kind would be desirable. We can emphasise the

inefficiency of the method by pointing out that actions associated with the ‘pure’

parsing, the tree building part, may well be interleaved with semantic actions

based on the structure of the tree itself. For instance, code may be generated

(which may write material to an output file) and entries may be made in a highly

structured symbol table (see Chapters 10 and 11). Not only must these actions

be ‘undone’, but in many cases the may have to be ‘done’ again!; and sometimes

nearly immediately. For instance if we have two productions which describe a

conditional construct as follows:

C ! if B then C else C | if B do C

and a sentence containing the phrase

if complicatedbooleanexpr do someclause

is parsed and if further the parser tries the ‘if...then...else’ production to start

with, it will fail when ‘do’ and ‘then’ cause a mismatch. It will then have to back

up. Now the ‘complicatedbooleanexpr’ may involve compiling a whole block

together with local declarations possibly including those of procedures. Not

only must all the work done when parsing it be unravelled but, when we try the

second alternative, exactly the same work as before has to be carried out again.

In section 4.4 we will see how ‘factorisation’ can be used to overcome this

particular problem in appropriate cases. However it should by now be abundantly

clear, if it was not before, that a deterministic method is desperately needed. We

shall proceed to outline one.

Sec. 4.2] LL(1) Grammars 53

4.2 LL(1) GRAMMARS

We have seen that the trouble that gives rise to non-determinacy and backtracking

in top-down syntax analysis shows itself at one place only — that is when a

parser has to choose between several alternative productions with the same left

hand side. What information is available to help it make the right choice? The

answer would appear to be — only the input sequence to hand at that time. We

have indicated that methods which have to back up must ‘unread’ any input

which has been scanned ahead of time. Any method therefore that looks ahead in

this way, even a deterministic one, will only work well if we provide some sort

of buffer internal to the compiler where input can be examined. Conceptually

this buffer represents the first few terminals of the input, the rest of which is still

in ‘the outside world’. In practice, it is an advantage for efficiency and ease of

access if this buffer is of fixed length. A top down parser which can make a

deterministic decision about which alternative to choose when faced with one, if

given a lookahead buffer capable of holding k terminals, is called an LL(k)

parser. The first L stands for ‘Left to right scanning’, the second for ‘using a

Leftmost derivation’ and the k says how many terminals of lookahead are allowed.

In practice k is usually 1. The grammar that an LL(k) parser scans is an LL(k)

grammar and any language that has an LL(k) grammar description is an LL(k)

language.

The technique described here first appeared in the computing literature in

papers by Foster [1] and later received a more theoretical treatment by Lewis

and Stearns [2] who coined the term LL(k). Knuth [3] gives a good tutorial

treatment based on some lecture notes.

The intelligent reader may take exception to at least one of the statements

which we made above, though we were careful to qualify them! That was to the

effect that the only information we had at hand which should help the parser

make a choice of alternatives was the next few terminals in the input. We could

also however draw on information embedded in the history of the parse done so

far. If we do this what we obtain are strong LL(k) parsers, grammars and

languages. We shall pursue this no further here except to say that when k=1

there is no difference between LL(1) and strong LL(1) parsers. The interested

reader can find further reference in Backhouse [4] and Rosencrantz and Stearns [5].

In what cases then can we say that a grammar is LL(1)? When a given target

symbol, A, is due for expansion and several alternatives are available:

A ! "
1
 | "

2
 | ... | "

n

we must be able to choose one of the "
i
 uniquely merely by looking at the next

input symbol. The set of "
i
 must therefore partition the terminal symbols into

(disjoint) sets and by selecting the set in which the lookahead input symbol lies,

we select the corresponding "
i
 to substitute for A. These sets are called (after

Griffiths [6]) the director sets for the productions, written D(A ! "
i
). In fact

54 Testing and Manipulating Grammars [Ch. 4

there will be an extra set in the partition such that, if any of its members turns up

on the input, the parser will immediately know that an error has occurred.

As a first approximation to calculating the director sets, it is obvious that if

"
i
 #* t $, where t is some terminal, then t % D(A ! "

i
) because then A #+ t $ is

a valid derivation that could occur. Let us define a relationship ‘<<’ between

symbols of (N & T) such that ' << " holds if there is a production " ! ' ... (i.e.

' is the first symbol on the right hand side). For obvious reasons we can call this

relation ‘can immediately start’. If we form its reflexive transitive closure we

get ‘<<*’, the ‘can start’ relation. Forming ‘<<*’ for the symbols of a particular

grammar is going to be of considerable help to us in calculating the director sets.

For a particular symbol ", those symbols ' in the relationship '<<*" form what

is known as the start set of ", START("). Obviously if " is a terminal, then

START(") = {"}; but in other cases the set START(") will be larger.

If we consider one of the alternative productions, in particular A ! "
i
, and

suppose:

"
i
 = '

1
'

2
 ... '

r

then it is clear that any terminal belonging to START('
1
) also belongs to D(A!"

i
).

As an example, let us calculate the start sets of grammar G. The digraph of

the ‘<<’ relation is:

so that

START(U) = {U,0,1,2,3,4,5,6,7,8,9}

START(F) = {F,(} & START(U)

START(T) = {T} & START(F)

START(E) = {E} & START(T)

START(S) = {S} & START(E)

As we said above, the director set of a production contains, at least, the terminals

in the start set of the first symbol on its right hand side. It is therefore easy to see

that G is not an LL(1) grammar because, for instance, D(E ! T) and D(E ! E + T)

are certainly not disjoint. The terminals in the start sets for T and E are the same.

In fact we can go further and say that no grammar with left recursive rules is

S E T F

(

U

0

1

9

Fig. 4.1

Sec. 4.3] First and Follow Relations 55

LL(1) because D(A ! A $) contains all the terminals in START(A) which will

include some from the director sets of other alternatives and consequently these

will not be disjoint. (Note of course that in a ‘sensible’ grammar there will be

alternatives to this rule because otherwise it recurses infinitely.)

4.3 FIRST AND FOLLOW RELATIONS

But are the terminals in the start sets of '
1
 the only members of D(A!"

i
)?

Suppose t is the next terminal in the input. Consider the following trees (Figs.

4.2 – 4.4) which show the different ways in which a parse could proceed if A!"
i

were the correct production to use:

This is the case we have already dealt with where t % START('
1
). But any

of the following could also be the case:

if (and only if) some of the leading '
i
 can produce the empty string (. In fact we

could even have:

. . .

A

'1 '2 'r

t.

Fig. 4.2

Fig. 4.3

.

. . .

A

'1 '2 'r

t.

.

. . .

A

'1 '2 'r

((t. . .(

Fig. 4.4

.

. . .

A

'1 '2 'r

(((t . . .

56 Testing and Manipulating Grammars [Ch. 4

Let us leave this last category for the moment. In the other cases we will

have to augment D(A ! "
i
) by the terminals in START('

2
), START('

3
) ... until

we come to a '
j
 which cannot produce the empty string.

To formalise the solution to this problem we have to extend the function

START, which can only have as arguments members of (N & T), to a function

FIRST which can take a whole string '
1
 '

2
 '

3
 ... '

r
 of (N & T)* and find out

which terminals can start it. Then a better approximation to D(A!"
i
) is

FIRST("
i
). We can calculate this with the (recursive) definition:

FIRST(l) =)

FIRST($*) = terminals of START($) & FIRST(*)

if $ #* (

FIRST($*) = terminals of START($)

otherwise

where $ % (N & T) and * % (N & T)*. An algorithm for calculating FIRST can be

based on this definition.

Note that we need to be able to determine when a derivation $ #* (exists.

In such a case we say that $ has the EMPTY property and write EMPTY($) = true.

This can be worked out from the definition of ‘#’; and an algorithm based on

the following description then applies:

1. If $ % T then EMPTY($)=false

2. If $ % N then

2a. If there is a production ‘$! (’ then EMPTY($)=true

2b. If there is a production ‘$! *
1
 ... *

k
’ where for all 1+i+k

EMPTY(*
i
)=true then EMPTY($)=true

3. For all other $, EMPTY($)=false

Let us take a concrete example at this stage. Consider the following syntax

for the type structure of a section of an Algol like language — grammar H:

S ! T

T ! L B | L C array

L ! long | (

C ! B | (

B ! real | integer

We can see that EMPTY(L)=true and EMPTY(C)=true immediately but the further

application of the rules shows that EMPTY(S) = EMPTY(T) = EMPTY(C) = false

(and of course no terminal has the empty property).

We can also calculate START. The ‘<<’ relation has the graph:

Sec. 4.3] First and Follow Relations 57

so the start sets (restricted to terminals) are:

START(S) = START(T) = START(L) = {l}

START(C) = START(B) = {r,i}

We can now find FIRST for each of the right hand sides:

FIRST(T) = START(T) = {l}

FIRST(L B) = START(L) & FIRST(B)

(since EMPTY(L)=true)

= {l} & START(B)

= {l,r,i}

FIRST(L C array) = START(L) & START(C) & {a}

(since EMPTY(L) = EMPTY(C) = true)

= {l,r,i,a}

FIRST(long) = {l}

FIRST(() =)

FIRST(B) = START(B) = {r,i}

FIRST(real) = {r}

FIRST(integer) = {i}

We can see that this grammar is not LL(1) because D(T ! L B) and D(T ! L C array)

have FIRST(L B) and FIRST(L C array) as subsets respectively.

Let us now complete the calculation of the director sets by seeing what we

must do for the case exhibited in Fig. 4.4 where a right hand side of an alternative

#* (. An example of this category occurs in grammar H if either L or C is the

target nonterminal. In both sets of productions one of the right hand sides #* (

(in fact = (in this case).

By looking at Fig. 4.4 we see that, when "
i
 #* (, A!"

i
 will be the correct

choice if and only if the terminal t can follow A. So in cases where "
i
 #* (, we

must calculate a new function FOLLOW(A) which will augment D(A!"
i
) for

such cases.

We can calculate FOLLOW in the following way. First of all calculate a

FINISH set for each member of (N & T) in an exactly analogous fashion to the

S T L l

C B

i

r

Fig. 4.5

58 Testing and Manipulating Grammars [Ch. 4

way START sets were calculated but using a relationship ‘>>’ (‘can immediately

finish’) such that ' >> " holds if there is a production " ! ...' (i.e. ' is the last

symbol on the right hand side), forming >>* (‘can finish’) and then, for a given

symbol, ", of (N & T), FINISH(") consists of those ' in the relationship '>>*".

For grammar H the graph of the ‘>>’ relation is:

so that:

FINISH(B) = {B,l,r}

FINISH(C) = {C,B,l,r}

FINISH(T) = {T,B,l,r,y}

FINISH(S) = {S,T,B,l,r,y}

FINISH(L) = {L,g}

FINISH for a terminal is merely the set whose only member is that terminal.

(In fact we shall not need all these sets; we only need FINISH for non-terminals

A such that EMPTY(A) = true.) Having calculated the FINISH sets we can

finally calculate FOLLOW by the following means. Consider every position on

the right hand side of a production where two symbols of (N & T), " and ', come

side by side. Then for each symbol $ % FINISH("), all the members of FIRST(')

belong to FOLLOW($).

For grammar H, the production ‘T ! L B’ gives rise to FOLLOW(L) (and

FOLLOW(g)) both containing START(B) = {r,i} as subsets. ‘T ! L C array’

gives rise to FOLLOW(L) containing START(C array) = {r,i,a} and to

FOLLOW(C) (and FOLLOW(B)) containing START(array) = {a}. Various

other members of FOLLOW sets can be calculated but we are not particularly

interested in these. We only want to know about FOLLOW(L) and FOLLOW(C)

which are thus {r,i,a} and {a} respectively, because these are now the director

sets D(L ! () and D(C ! (). In fact we have all the director sets for H now.

They can be summarised as follows:

S T B

L g

l

r

Fig. 4.6

C

y

Sec. 4.4] Factorisation and Substitution 59

D(S -> T) = {l}

D(T -> L B) = {l,r,i}

D(T -> L C array) = {l,r,i,a}

D(L -> long) = {l}

D(L -> () = {r,i,a}

D(C -> B) = {r,i}

D(C -> () = {a}

D(B -> real) = {r}

D(B -> integer) = {i}

There remains one point to clear up. What happens if an LL(1) parser is

looking for the next symbol to check against a director set and there isn’t one

because we have come to the end of the input. This will, in most cases indicate

an error condition, but it is just possible that the parse is finishing off with an

empty subtree of the parse tree:

In this case we will be looking for D(A ! ...) and trying to see if the current

input symbol lies in it. We can get over this problem by adding a special end of

file symbol ‘ ’ which we treat as an extra terminal to our grammar. The reader

may have wondered why our grammars have always had an isolated production

(for instance S ! T in H) for the distinguished symbol. The reason now becomes

clear. If we add ‘ ’ at the end of this rule (to give S T in H) we can treat it as an

extra terminal which is considered to be present when an end of file condition

obtains. Readers should note the ‘?’ which comes at the end of S-algol programs.

This is serving the purpose of an end of file marker. For an example where this

really matters see grammar H''' in the next section.

Fig. 4.7

. . .

S

A

 (

4.4 FACTORISATION AND SUBSTITUTION

The grammars we have exhibited as test cases so far have not been LL(1). This

chapter has, so far, been devoted to testing for the LL(1) condition. Can we do

anything about it if a grammar is not LL(1)? Can we transform it into an

equivalent grammar (one that recognises the same language) which is LL(1)?

60 Testing and Manipulating Grammars [Ch. 4

Unfortunately the answer to this question is — not in every case. For instance

no ambiguous grammar is LL(1), because it admits of at least two left parses of

some strings and the LL(1) conditions would direct a parser deterministically to

exactly one. The process of ‘disambiguating’ a grammar is in general unsolvable

(see Aho and Ullman [7]) and informally we can see that in such cases the process

of making a grammar LL(1) will similarly be unsolvable. However we must not

lose hope. In certain cases there are special techniques which may work. One of

these is factorisation. Take the example we gave at the start of section 4.1:

C ! if B then C else C | if B do C

We see that both productions start with the same subphrase ‘if B’. Indeed it

is exactly this that causes a grammar containing these productions not to be

LL(1). But we can factor the subphrase out to give:

C ! if B T

T ! then C else C | do C

and this has no conflicts in the director sets.

Can we do anything to grammar H? The obvious transformation changes it

into H' as follows:

S ! T

T ! L X

X ! B | C array

L ! long | (

C ! B | (

B ! real | integer

This, unfortunately, is still not LL(1) because the director sets for ‘X ! B’

and ‘X ! C array’ both contain {r,i} as a subset. This is because of ‘C ! B’.

We can use another technique here prior to further factorisation and that is

substitution. If we substitute the possible right hand sides for C wherever it

appears we get H'':

S -> T

T -> L X

X -> B | B array | array

L -> long | (

B -> real | integer

and we can now carry out factorisation of B in X to give H''':

S -> T

T -> L X

X -> B Y | array

Y -> (| array

L -> long | (

B -> real | integer

Sec. 4.5] Left Recursion and its Elimination 61

This grammar is indeed LL(1) as the reader should verify by calculating the

director sets. (S ! T will here need to be modified to S ! T and we will find

that D(Y ! () = { }.)

4.5 LEFT RECURSION AND ITS ELIMINATION

We pointed out in section 4.2 that no grammar with sensible left recursive

productions could be LL(1). We shall give here a method of transforming left

recursive grammars into ones without left recursion.

First we need to be able to detect left recursion when it arises. When the

recursion is direct it is obvious, but sometimes (though very seldom in practice

— in fact the authors have never seen a ‘real life’ case) the recursion can be

indirect or mutual. We may get for instance:

A ! B | C

B ! A | D

Such mutual recursion can be detected by calculating the ‘<<+’ transitive

closure (which will probably be done anyway while calculating ‘<<*’ en route to

the START sets). If a non-terminal A exists such that A <<+ A then it is involved

in a left recursive loop, direct or otherwise.

Let us look at the direct left recursive case first as this is the one that nearly

always occurs. In its most general form we will have rules of the form:

A ! A"
1
 | A"

2
 | ... A"

i
 | '

1
 | '

2
 | ... '

k

where none of the '’s start with A. By ‘collecting like terms’ and factorising we

can rewrite this as:

A ! A X | Y

X ! "
1
 | "

2
 | ... "

i

Y ! '
1
 | '

2
 | ... '

k

so that A ! A X | Y is the general recursive case to be solved. By ‘expansion’ we

see informally that this is equivalent to:

A ! Y | Y X | Y X X | Y X X X |

which can be rewritten as

A ! Y Z

Z ! (| X Z (9)

neither of which is left recursive. This, then is a general solution to direct left

recursion. For indirect left recursion we shall pick an (artificial) example and

show how to solve it. From this the reader should be able to manufacture a

general method.

62 Testing and Manipulating Grammars [Ch. 4

Example 4.1

A ! A x | B y | z

B ! A p | B q | r (10)

Choose one of the left recursive non-terminals, say A. ‘Solve’ the equation

involving A to remove the direct left recursion using the method given above in

(9). This gives first:

A ! A x | Y

Y ! B y | z

and then

A ! Y Z

Z ! (| x Z

which can be re-expanded to:

A ! B y Z | z Z

Z ! (| x Z

which is now rid of the direct left recursion in A. We now substitute for A in the

second equation of (2) to give:

B ! B y Z p | z Z p | B q | r

Z ! (| x Z

Gather like terms to give:

B ! B X | Y

X ! y Z p | q

Y ! z Z p | r

Z ! (| x Z

The first equation is the only (now direct) left recursive rule remaining and this

can be solved as in (9). We will not go into the details.

If this seems to be messy, it is; but we doubt if the reader will ever come

across it in actual practice. Those skilled in linear algebra will recognise an

analogy with Gaussian elimination [8] in the solution of linear equations in several

unknowns. Foster [1] bases his original method on this and gives an elegant

general solution which automatically converts the input grammar to LL(1) form

if it can.

As a more realistic example take the grammar G which we used extensively

in the last chapter and remove its (direct) left recursion.

E ! E + T | T

becomes

E ! T E'

E' ! (| + T E'

Sec. 4.6] Cheating 63

and

T ! T * F | F

transforms to

T ! F T'

T' ! (| * F T'

to give a complete grammar:

S ! E

E ! T E'

E' ! (| + T E'

T ! F T'

T' ! (| * F T'

F ! (E) | U

U ! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

which is LL(1). The reader should verify this by calculating the director sets as

an exercise.

4.6 CHEATING

The reader may object to the transformations we have given to get rid of left

recursion for the reason we gave in section 3.6 — that the original grammar G

imposed left associativity on the operators ‘+’ and ‘*’. If we examine the syntax

tree of ‘1 + 2 + 3’ using the transformed grammar we have:

E

T

F

U

1

T'

(

E'

T

F

U

2

T'

(

E'

T

F

U

3

T'

(

E'
+

+

S

Fig. 4.8

64 Testing and Manipulating Grammars [Ch. 4

which looks as if it imposes right associativity on ‘+’. Some might even say that

‘+’ is not directly associating its arguments at all on the tree.

One way round this problem is to leave it to the semantic part of the compiler

(which ‘knows’ which operators associate which way) to sort it out. This is the

approach taken by Foster [1] in his Syntax Improving Device (SID). Here

functions representing semantic actions can be interspersed with the normal

objects on the right hand side of productions. Foster shows that, when a grammar

is transformed (in particular to remove left recursion) the semantic rules can be

‘carried around’ following the syntactic entities they are attached to so that correct

semantics results, even from a distorted tree.

Another way of looking at this problem is to rewrite equations (9), which

give the general solution to a direct left recursive problem, using a notation

borrowed from our second convention (extended BNF) for writing grammars, as:

 A ! Y [X] *

Thus for grammar G we get:

E ! T [+ T] *

and a similar rule for multiplication. This gives an iterative flavour to the rules

rather than the ‘normal’ recursive one, and this is reflected by the fact that a

parser could make use of a while loop to parse this sort of construct rather than

recursion. We shall see this in action in some detail in Sections 6.5 and 12.3.

We shall also see what to do if all else fails and we cannot make our grammar

LL(1) by any of the above techniques. Sometimes ad hoc methods may be used.

The following example, similar to one given by Griffiths [6], is based on the

block structure of Algol 60 where declarations must precede statements. ‘d’ stands

for a declaration and ‘s’ for a statement:

B ! begin D ; S end

D ! d | D ; d

S ! s | S ; s

After removing the left recursion one gets:

B ! begin D ; S end

D ! d [; d]*

S ! s [; s]*

but this is still not LL(1) because, when a ‘;’ is encountered after a ‘d’, the

parser is not sure whether to go round the ‘[; d]*’ loop again or go on to ‘; S end’.

No amount of factorisation or substitution seems to work, but the following which

is LL(1) can be used:

B ! begin D S end

D ! d ; [d ;]*

S ! s [; s]*

Sec. 4.6] Cheating 65

Note that the ‘;’ has migrated to the other end of the ‘d’ and will not be involved

in the director sets for productions for D.

If a shot in the dark such as the above doesn’t work, all hope is not yet lost.

We can resort to dirty tactics. An example of this and its solution are given in

sections 6.5 and 10.6 where a conflict arises because in S-algol a sequence of

declarations and clauses can end in an expression with a type or in a void clause,

one variety of which is an assignment. There is no LL(1) way of distinguishing

the left hand side of an assignment, which must be a name (a rather restricted

sort of expression) from the more general type of expression with which we are

allowed to end a sequence. The solution is to leave the context sensitive part of

the parser to patch this up.

4.7 SUMMARY

In this chapter we have reiterated our need for a deterministic method of parsing

a program from the top down. We have investigated a method for checking

whether a given grammar admits of such a parser where the lookahead is 1 terminal

symbol. Such a parser is called LL(1). This involves calculating director sets of

terminals for each alternative production, which in turn requires calculating which

terminals can come first in a string of (N & T)* and which can follow certain

non-terminals.

We have also given a number of rules for transforming grammars which

may help to make them LL(1) parsable. These include removal of left recursion,

factorisation and substitution. We have pointed out that such rules are not

foolproof and that other ad hoc methods may need to be applied. Finally we have

shown that, in a real life situation, we may have to cheat to achieve results.

REFERENCES

[1] Foster, J.M. (1968), A syntax improving device, Computer Journal,

11, 1, 31–34.

[2] Lewis, P.M. II and Stearns, R.E. (1968), Syntax directed transduction,

JACM, 15, 3, 465–488.

[3] Knuth, D.E. (1971), Top down syntax analysis, Acta Informatica, 1,

79–110.

[4] Backhouse, R. (1979), Syntax of programming languages, Prentice-Hall.

[5] Rosencrantz, D.J. and Stearns, R.E. (1969), Properties of deterministic

top down grammars, ACM Symposium on the Theory of Computing,

Marina del Rey, California.

[6] Griffiths, M. (1976), LL(1) grammars and analysers, Compiler

Construction — An Advanced Course, (Lecture Notes in Computer

66 Testing and Manipulating Grammars [ch. 4]

Science, 21, Eds. Goos, G. and Harmanis, J., Spinger Verlag.

[7] Aho, A.V. and Ullman, J.H. (1972), The Theory of Parsing, Translation

and Compiling, Prentice-Hall.

[8] Finkbeiner D.T. II (1978), Introduction to Matrices and Linear

Transformations, 3rd Edition, Freeman.

CHAPTER 5

Compiler Construction

5.1 THE ROLE OF S-ALGOL

In these next chapters we will outline a method of constructing recursive descent

compilers. This is intended as a practical guide to compiler construction using

the theoretical results developed in Chapters 1 to 4. It is our aim that the reader

will be able to build his own compiler after assimilating the information.

We will not describe every technique or method that claims to be recursive

descent. Rather we will concentrate on one particular method in order to give a

detailed account of how to write such a compiler. Whenever it is instructive, we

will highlight the consequences of different design decisions and sometimes

explore alternative methods of progress. However, for the main part, we will

stick to a detailed description of one technique and how it can be implemented.

Of course any particular part of the general method may be varied to suit a

particular language or implementation.

The compiler we will use to illustrate the technique is for the programming

language S-algol. S-algol is typical of most modern day programming languages

and has typical problems in compilation, such as static type checking, block

structure, recursive procedures and an infinite number of data types. Furthermore,

it has most of the common control structures like for, case, if ... then ... else ...,

while etc., and has simple and aggregate data objects including dynamic arrays

and pointer structures. Finally S-algol requires both a stack and a heap for

implementation at run time. The language is therefore well suited to illustrate

the problems encountered in building a recursive descent compiler.

Since S-algol is a powerful high level block structured language it is also

suitable for writing compilers. Indeed the S-algol compiler is written in S-algol

and we will use the language here. The problem of how to get started with a

compiler written in the language it is compiling is described in Chapter 13.

5.2 THE ONE PASS NATURE OF RECURSIVE DESCENT COMPILERS

The structure of compilers such as Algol W [1] and Whetstone Algol 60 [2]

68 Compiler Construction [Ch. 5

typify the method of compiler construction used before recursive descent became

popular as a compiling technique. Such a compiler was constructed in three

phases.

1. lexical analysis

2. syntax analysis

3. code generation

The lexical analysis phase converts the characters of the source text into the

basic symbols of the language. The syntax analysis takes these basic symbols,

parses them and produces an equivalent form of the program called the syntax

tree. Finally the code generation takes the syntax tree and converts it into machine

code for the target computer. This is shown diagrammatically in fig 5.1 .

The three phases can be organised in one or more passes and in the days of

computers with small main stores it was more common to have the phases

organised as separate passes. To arrange the phases otherwise pre-supposes an

operating system which will support co-operating sequential processes of some

sort, and even then there has to be enough store available for the whole compiler,

to avoid unnecessary swapping of the phases. Either method of organisation

very sensibly separates the machine dependent stages of code generation and

lexical analysis from the machine independent stage of syntax analysis.

The description of compiler organisation given above is necessarily simplified

as it can be shown that some grammars, such as those of Algol 60 and Algol 68,

require more than one pass to parse them and that the code generation phase can

easily be a multi-pass operation.

The major disadvantage of a compiler organised in passes is that the

information transmitted from one pass to the next is encoded by some means and

often written out to backing store to save space. This is slow and it requires extra

programming at each stage of the compiler to encode and decode the information.

However it does mean that less store is required to run the compiler since only

one pass need be resident in store at any one time.

With some methods of compiling, including recursive descent, the sentences

of the language can be parsed in one pass. That means there is no need to keep a

syntax tree for use by further passes of the parser or the code generator. The

syntax tree for any construct may be thrown away immediately the parsing of

that construct is complete. Indeed often there is not even a need for an explicit

syntax tree.

Fig. 5.1

Source
Code

Basic
Symbols

Syntax
Tree

Object
Code

Lexical
Analysis

Syntax
Analysis

Code
Generation

Sec. 5.2] The One Pass nature of Recursive Descent Compilers 69

In a recursive descent compiler every syntactic construct (i.e non-terminal

in the language to be compiled) has a procedure defined in the compiler that will

parse and generate code for that construct. This forms a set of mutually recursive

procedures to parse the language. The recursive nature of the grammar is modelled

dynamically by the recursive evaluation of the compiler program itself. For

example the while clause in S-algol is described in BNF by

while <clause> do <clause>

The procedure that compiles the while clause will be called from the procedure

that compiles clauses and will then call upon that procedure recursively to compile

the sub-clauses in the while clause. It will also use the lexical analyser to recognise

the symbols while and do. Since the compiler begins at the start symbol and

descends the productions of the grammar, the compiling technique is called

recursive descent.

Every procedure that parses a non-terminal in the language has the section

of the syntax tree for that non-terminal defined implicitly by the variables it uses

and the procedures it calls. Thus in the recursive evaluation of the compiler

program, the section of the syntax tree that is of interest at any time is contained

in the data area of the active procedures. On entering such a procedure a new

section of the syntax tree is created implicitly in the data area for that procedure

activation. On leaving the procedure the data area and therefore that section of

the syntax tree disappears. Of course, this technique is ideally suited to a compiler

written in a high level block structured language.

To eliminate completely the need for an explicit syntax tree, the code

generation for each section of the tree is placed in the procedure to parse the

construct, instead of being collected together in a separate pass. It is a short step

to do the same for lexical analysis and make the whole process one pass. Of

course the process can still be implemented as a set co-operating sequential

processes, but it seems unnecessary to involve the overhead of process switching

when it is not imperative.

The one pass nature of the grammar and the fact that we have eliminated the

intermediate encodings between the passes should make the compiler faster. Since

the compiler has to be resident in store at the same time, it may require more

store to execute, but this is not generally a serious problem on modern day

computers. Indeed even most micro computers today have enough store to support

many high level languages. The real significance of recursive descent compilers

of this sort is that they are small in terms of total code, they are written in a high

level language, and the code to compile each non-terminal is collected in one

place. This results in better written, more portable and more easily understood

compilers.

70 Compiler Construction [Ch. 5

5.3 STEPWISE REFINEMENT

The technique of problem solving that we will employ in describing compilers is

sometimes called stepwise refinement [3] since the problem is solved by a series

of steps. At each step, all the sections of the program are considered for refinement

and re-written if necessary. The process starts with an abstract description of the

problem and the refinement is performed in steps until a final program which

requires no further refinement is obtained. In this manner very large and complex

problems may be mastered by considering a series of well defined sub-tasks.

A note on terminology is required here. Since the refinement of the abstract

problem involves adding abstractions which are later refined and since these

abstractions are implemented in a program by procedures we will use the terms

procedure and abstraction interchangeably.

The first step in the refinement process is to define the problem. In our case

we wish to write a program (compiler) that will take another program (the source

program) as input, check that it is legal and if it is write out an equivalent form of

the program (the object program). This can be summarised by the three steps

1. read in the source

2. check the syntax

3. generate the code

We can readily see how early compilers obtained their structure in terms of

passes. However there is little need for the refinement process to develop in this

manner. It is indeed the order in which information will flow through a compiler

but is not necessarily the only method of constructing the compiler program. We

will start with the syntax analysis and refine that. Whenever a section of the

lexical analysis or code generation is required we may refine that as necessary.

We have already started some way along the design process since we have

assumed that at least the programming language is well defined and suitable for

compilation by recursive descent. If it is not, some of the techniques presented

in the earlier chapters of this book may be applicable to make it so. The target

computer may also be known but it may not, as we would probably wish the

compiler to be adaptable to producing code for various machines. Within bounds

the details of the target machine may be left until a later level of refinement.

However some of the details of the underlying machine will already have been

decided with the language design. For example, most languages are designed to

execute on Von Neumann type machines. The most obvious consequence of this

is the store concept giving rise to the ideas of assignment, pointers and sequencing

in high level languages. In languages without these concepts the underlying

machine may be very different indeed. For details of one such alternative the

reader is referred to Turner [4].

The main aim of the technique of stepwise refinement is to enable us to

Sec. 5.4] The Structure of a Recursive Descent Compiler 71

develop the complete compiler program without at any time being overawed by

the complexity of the task at hand.

5.4 THE STRUCTURE OF A RECURSIVE DESCENT COMPILER

The structuring technique that we will use to build a recursive descent compiler

was first outlined by Amman [5] where he developed a compiler for the language

Pascal. He was not the first to build a recursive descent compiler and earlier

examples are the compilers for Algol 68 [6] and the Burroughs Algol 60 compiler

[7]. In the cases of Algol 68 and Algol 60, the languages have to be altered to

allow compilation in one pass whereas Pascal was specifically designed for one

pass compilation. The structure of each compiler varies slightly according to the

nuances of the language being compiled and the following is the structure used

to build the S-algol compiler. Since S-algol is not quite LL(1), or indeed LL(k)

for any fixed k, we will also use it to demonstrate how to overcome the problem

of parsing a grammar that is not strictly LL(1).

The compiler is designed as a series of layers rather than passes or phases.

Once the first layer is established, usually by writing the syntax analysis from a

formal description of the language, the other layers are added rather like extra

coats of paint. The stepwise refinement therefore consists of a series of steps

each adding one layer. This is the view of the refinement process at the gross

level. Within each layer we will use stepwise refinement again and again to

simplify the tasks of the layers. Eventually we will end up with code for that

layer. Of course, that code may be spread far and wide in the compiler itself.

The layers in the S-algol compiler consist of performing the following.

1. Write a pure syntax analyser

2. Write a lexical analyser

3. Add the context free error diagnosis and recovery

4. Add the type checking and type handler

5. Add the environment handler and scope checker

6. Add the context sensitive error reporting

7. Add the data and code address calculation

8. Write the code generation

 While the layering describes the structure of the compiler it does not tell the

whole story about building such a compiler. For that we must inspect each layer

and design the interfaces between them. Indeed it will become obvious that

some of the layers will not fit neatly on the framework of the syntax analysis

procedures. Such layers will constitute separate sections of the compiler and

will be used only in the abstract in the parsing procedures. Furthermore, we

have to decide how information collected about the source program is to be

recorded and accessed. Let us spend a little more time refining the layers described

72 Compiler Construction [Ch. 5

above and outline some of the design decisions that must be taken at each stage.

5.5 THE LAYERS OF THE COMPILER

5.5.1 Syntax Analysis

The syntax analysis forms the first layer of a recursive descent compiler. As has

been suggested in chapter 4, the syntax analyser may be written down from the

formal definition of the syntax. Normally this description is written in extended

BNF and each non-terminal in the grammar has a procedure defined in the

compiler to parse it. Even at this early stage the syntax analysis is not isolated as

a layer. The syntax analyser must also take notice of terminal symbols in the

language and therefore we have to consider the interface between the syntax

analysis and the lexical analysis. Lexical analysis is, by and large, a separate

phase of the compiler and at this stage we need only define the abstractions that

the syntax analyser will use when calling the lexical analyser to perform some

function for it; for example, ‘find the next basic symbol in the input stream’.

Further refinement of the lexical analyser can take place later. The details of the

syntax analysis layer are to be found in chapter 6.

5.5.2 Lexical Analysis

The lexical analyser reads in the characters of the source program and forms

them into the basic symbols of the language. This section of the compiler must

necessarily know about the concrete syntax of the language, the concrete syntax

being the actual characters that make up the basic symbols. For example, the

lexical analyser must know how to form literals such as ‘1’, ‘23.5’ or ‘"hello"’,

special symbols such as ‘!’, form composite symbols like ‘<=’ and recognise

identifiers and reserved words when necessary. These basic symbols must be

represented inside the compiler by some means and left in a convenient place for

use by the rest of the compiler.

Since the lexical analysis abstractions are usually implemented as procedures

for use by the rest of the compiler, the abstract details of the lexical kind are now

settled. Examples of this are a procedure to provide the next symbol in the input

stream and the variable to store that symbol. Chapter 7 deals with the problems

of lexical analysis.

5.5.3 Context Free Error Diagnosis and Recovery

It is possible for a parser when parsing an LL(1) grammar to discover an error

immediately it occurs. This can be achieved very cheaply in terms of coding.

However recovery from that error, in order that the compiler may continue, is

arbitrarily complex depending on the grammar of the language.

A general strategy has to be devised to deal with error recovery. With most

languages in use today it is impossible to devise a foolproof algorithm for error

Sec. 5.5] The Layers of the Compiler 73

recovery. Therefore we have to decide how important error recovery is and how

much code to invest code to perform the required function. We should also

consider the form of error reporting at this stage. Chapter 8 contains further

details of error diagnosis and recovery.

5.5.4 Type Checking

This section refers not only to the checking of types of expressions but more

generally to all the composition rules in the language. By associating a type with

every unique syntactic form, the composition rules for blocks, statements,

declarations, expressions etc. may be dealt with uniformly.

The data structures to represent the various types must be chosen and defined

along with the procedures to check the compatibility of two types. Two types

are only compatible if the rules of the language allow them to be used together.

For example most languages will allow integers to be added to integers and

some will allow reals and integers to be added together. In this context real

numbers and integers are type compatible. If the language has an infinite number

of types these procedures and data structures will be defined recursively.

It is essential to have a formal definition of the type and composition rules at

this stage. This type checking layer is discussed in chapter 9.

5.5.5 Environment and Scope Checking

The environment and scope checker handles all the details concerned with using

identifiers. A data structure must be designed to record all the necessary

information for an identifier. For a language with block or procedure structure

the data structure will be placed in a larger structure which models one level of

scope. Finally an even larger structure is used to model all the levels of scope in

use. This data structure is usually called the symbol table.

When designing each level of this large structure, consideration must be

given to how compact the data structure is and how quickly it may be accessed.

For this reason hashing techniques or binary trees are often used. The abstractions

that are used by the rest of the compiler centre around accessing and creating

these data structures. Chapter 10 describes the symbol table details.

5.5.6 Context Sensitive Error Reporting

This layer modifies the last two layers to deal with context sensitive errors. A

context free error is where a wrong symbol is used in a program. For example

 while a < b if a := b

The symbol if is used where we would expect a do. A context sensitive error is

more subtle in that the program will parse correctly but will be meaningless. For

example the expression

1 + true

74 Compiler Construction [Ch. 5

These context sensitive errors may be type errors, duplicate names etc. It is usually

sensible to make the method of error reporting similar to the one designed earlier

for syntax errors.

5.5.7 Abstract Machine Definition

It is at this point in an refinement process that an abstract machine must be defined

in detail if this has not already been done. The abstract machine for any

programming language is the machine that the implementor would design to

implement the language, given a freedom of choice. It may be realised by a real

machine, by an interpreter, by micro code or some mixture of these. As mentioned

above the general nature of the abstract machine has already been kept in mind

in the design of the language even if only implicitly. For example, a language

with assignment requires a store in the abstract machine and some languages

require stacks and heaps for their implementation.

The first level of refinement of the abstract machine is to decide on a storage

layout. Every name in a program will require a storage location and therefore

we must decide such questions of whether the item is a stack or a heap item and

how the address is to be calculated at run time. The addresses, if known, are

stored in the symbol table along with all the other information about identifiers.

These addresses will be used later by the code generation. This layer therefore

provides the link between the use of names in a program and the generation of

code to find their values at run time. Further consideration is given to abstract

machine design in chapter 11.

5.5.8 Code Generation

This is the final layer in the compiler. At this stage a target machine must be

fully defined. In order to generate code for a given machine the compiler must

simulate the evaluation of the program in execution. For example, to calculate

stack addresses it may be necessary to simulate the action of the stack and to

keep track of the stack pointers. How good the code is at the end of the day

depends on how sophisticated this simulation is.

The code generator also has to decide the form of the compiler output. It

may be a file to be input to an assembler, or a loader, or it could be directly

executable by a computer or an interpreter without further ado. If the last method

is chosen we have a ‘load and go system’.

The code generation section is necessarily implementation dependent and to

achieve portability it is usually wise to separate the code generation from the rest

of the compiler. This may be done by ensuring every abstract machine instruction

has a procedure defined to simulate its execution and to output the necessary

code. When the syntax analysis procedures wish to generate code the appropriate

procedure in the code generation is called. Chapter 12 deals with the details of

the code generation layer.

Sec. 5.6] Summary 75

In order to transport the compiler to another machine it should only be

necessary to alter these code generation procedures. However, in some cases,

for example when changing character codes, it may also be necessary to alter the

lexical analysis. Some devices may not have the full character set and alternatives

may have to be decided upon. For instance the character ‘{’ is not present in the

EBCDIC character set and it may be necessary to alter the lexical analysis to

recognise ‘/(’ or some other composite symbol.

5.6 SUMMARY

In this chapter we have outlined the general structure of one particular type of

recursive descent compiler. The language S-algol has been introduced as a vehicle

to demonstrate the problems of writing a recursive descent compiler since it is

typical of modern day programming languages. Because S-algol is a block

structured high level language with recursive procedures and data structures it

will also be used to write the compiler program.

The compiler will be constructed using the technique of stepwise refinement.

The steps of the refinement have been described briefly and the interfaces between

the steps and the problems of each step discussed. It is emphasised that the

method described is not unique and that other techniques, notably table driven

methods, may be used to construct recursive descent compilers.

The advantages of this type of compiler is that it is easier to write, therefore

more likely to be correct, more portable and easier to understand. From a software

engineering viewpoint it is desirable since it is easier to maintain.

REFERENCES

[1] Bauer, H., Becker, S. and Graham, S. (1968), Algol W implementation,

Technical Report No CS98, Stanford University.

[2] Randell, B. and Russell, L.J. (1964), Algol 60 implementation,

Academic Press.

[3] Wirth, N. (April 1971), Program development by stepwise refinement,

CACM 14, 4, 221–227.

[4] Turner, D.A. (1979), SASL language manual, University of St.Andrews

Department of Computer Science Report CS/79/3.

[5] Ammann, U. (1973), The development of a compiler, Proc. Int.

Symposium on Computing, 93–99, North-Holland.

[6] Currie, I.F, Bond, S.G. and Morison, J.D. (1971), Algol 68R, its

implementation and use, Proceedings IFIP Ljubljana, 3, 43–46.

[7] Creech, B.A. (1969), Architecture of the B6500, Proceedings COINS.

CHAPTER 6

Syntax Analysis

6.1 THE FIRST LAYER

The syntax analysis forms the heart of a recursive descent compiler and is the

first layer in the stepwise refinement of the compiler program. We will assume

at this stage that the grammar has already been prepared for one pass compilation

as far as possible using some of the techniques of factorising, substitution and

removing left recursion as described in chapter 4. When this is done the syntax

analysis layer can be written down from a formal specification of the language,

in extended BNF for example.

As mentioned in Chapter 5, the syntax analyser is made up of a set of mutually

recursive procedures, one for each non-terminal symbol in the grammar. Strictly

there should be a procedure to parse each terminal symbol as well but it is more

sensible for the syntax analyser to deal only with basic symbols and let the lexical

analyser handle the micro syntax of these basic symbols. Thus the details of

advancing the input stream etc. can be confined to one place (the lexical analyser)

rather than spread throughout the compiler. This is desirable since we may have

to re-write the lexical analyser to transport the compiler to another machine.

The syntax analyser still has to take note of the terminal symbols and so we

must design the interface between the lexical analyser and the syntax analyser.

That is, the abstract form of the lexical analyser must be defined before the syntax

analyser can be written.

6.2 THE LEXICAL ANALYSIS ABSTRACTIONS

The lexical analysis abstractions, implemented as procedures, are used by the

syntax analyser to compile terminal symbols in the language. The syntax analyser

only deals with the basic symbols of the language and not the individual characters

that make up a symbol. Therefore the first procedure we require is one to identify

basic symbols. Since the syntax analyser always asks for the next basic symbol

in the input stream, we will call this first abstraction next.symbol. In an LL(1)

[Sec. 6.2] The Lexical Analysis Abstractions 77

grammar, the parser will ask for one symbol at a time and once the symbol has

been recognised there is never any need to backtrack on the input to re-discover

what the symbol was. Thus the lexical analyser does not need to remember the

input symbols. Next.symbol is defined as follows :-

procedure next.symbol

! Place the next basic symbol in the global

! string variable called symbol.

! This will advance the input stream.

The terminal symbols can now be compiled by the procedure next.symbol

and the basic symbol found in the string variable called symbol when necessary.

For the moment we have used the character string to represent itself inside the

compiler. Thus the reserved word let would be represented by the string "let".

The implications of this decision are discussed later. Strictly speaking, procedure

next.symbol is all that is required to write the syntax analyser. However we will

make the job a lot simpler by defining two other procedures before we start.

These are

procedure mustbe(cstring s)

! if s is the symbol in symbol then call next.symbol

! to compile the next basic symbol. Otherwise report an error.

procedure have(cstring s -> bool)

! if s is the symbol in symbol then call next.symbol

! to compile the next basic symbol and return true.

! Otherwise return false.

These procedures work on the principle that once a symbol has been

recognised in recursive descent compiling, it is no longer of interest and can be

discarded because backtracking is unnecessary. The procedure mustbe is useful

in cases where there is no option in the choice of symbols. It is defined here

since this situation occurs frequently in recursive descent parsers. The important

point about the procedure is that not only does it check that we have the desired

symbol, but also, that it moves on to the next basic symbol automatically.

Combining the two functions shortens the amount of code to be written and

therefore should make the code easier to write and understand. The second

abstraction, procedure have, is used when we have more than one choice in a

production. The procedure will reject incorrect choices and move on to the next

basic symbol automatically when the choice is correct. It is designed to be used

as the boolean expression in an if ... then ... else or while clause. Again this will

shorten the code with the same attendant benefits.

Another decision that we will make at this stage is one to allow us to parse

identifiers and literals in a consistent manner. The syntax analyser does not wish

78 Syntax Analysis [Ch. 6

to parse every identifier or literal separately and therefore when the lexical analyser

encounters such a symbol it places "identifier" or "literal", whichever is

appropriate, in the global variable called symbol. Naturally, the lexical analyser

will have to place the actual identifier or literal in another global location, but

since the syntax analyser is not interested in the actual values of these symbols

we can leave the details to a later level of refinement.

6.3 BNF AND CODING

The full syntax of S-algol is given in Appendix A. For simplicity the syntax is

defined by two separate sets of rules. The sets of rules are short and transparent

and define the legal class of programs as briefly as possible. The two sets of

rules are

1. a context free grammar written in extended BNF.

2. a context sensitive set of rules to govern the possible types of expression

in the language. These are called the type matching rules.

For an S-algol program to be syntactically correct it must obey both the BNF

and the type matching rules. However to write the syntax analyser we only

require the context free syntax and therefore we can leave the type matching

rules to chapter 9.

A study of the S-algol syntax will reveal that the grammar is not LL(1) or

even LL(k). This problem only occurs in one place and we will highlight it later.

We have chosen this syntax deliberately to demonstrate the power of recursive

descent as a parsing technique. The parser will be easier to write if the grammar

is LL(1), as is S-algol in most places, but the language designer may feel that this

constrains the language too much. Every time the language designer allows the

syntax to stray from the LL(1) style, the power in the language that is gained

from doing so must be weighed against the difficulty of writing the parser. When

all other details are equal the designer should chose an LL(1) form rather than

any other.

We are almost ready to write the syntax analyser but before we must discuss

a number of tricks of the trade. For example, the analyser will be written from a

specification of the language in extended BNF. Therefore productions of the

form

< > ::= a<A>

translate directly into the code

mustbe("a") ; A

using the lexical analysis abstractions defined in section 6.2. A production of the

form

< > ::= a<A>|b

Sec. 6.3] BNF and Coding 79

translates into

if have("a") then A else { mustbe("b") ; B }

and more generally

< > ::= a <A> | b | c <C> | d <D>

translates into

case symbol of

"a" : { next.symbol ; A }

"b" : { next.symbol ; B }

"c" : { next.symbol ; C }

default : { mustbe("d") ; D }

The repetition metasymbol ‘*’ can also be coded.

< > ::= <A> [b <A>]*

translates into

repeat A while have("b")

This is a rather special case of ‘*’ but it is one we will use in parsing expressions.

A more difficult situation to code is where each option in a production starts

with a non-terminal symbol. In this case we must follow all but one of the non-

terminals until all the legal starting symbols are found. For example:

<A> ::= | <C>

 ::= d <D> | e <E>

translates to

case symbol of

"d" : { next.symbol ; D }

"e" : { next.symbol ; E }

default : C

This eliminates some procedures, in this case procedure B, from the compiler.

Since the grammar is one pass this is always possible, but care should be taken

especially when the productions that are removed are used elsewhere in the

grammar.

Another solution to this problem is to make use of the director symbols

described in chapter 4. For example the above productions

<A> ::= | <C>

 ::= d <D> | e <E>

where ‘d’ and ‘e’ are directors for the productions of B translates to

80 Syntax Analysis [Ch. 6

case symbol of

"d","e" : B

default : C

This solution will always be less efficient since procedure B will have to

distinguish between the symbols "d" and "e" again. However it may be more

convenient to write it in this way.

Adding to the above the ability to model the recursive nature of the grammar

in the recursive calling of the procedures of the compiler program means we

have enough tools to write the syntax analyser.

6.4 THE SYNTAX ANALYSER

Sections of the syntax of S-algol given in Appendix A will be reproduced where

they are required. In the compiler, the procedure that parses a non-terminal has

a name corresponding to the name of the production. For example an S-algol

program in defined by

<program> ::= <sequence>?

To parse this production we have

procedure program

begin

next.symbol

sequence

mustbe("?")

end

Procedure program uses procedure next.symbol to find the first symbol in the

program, procedure sequence to compile the non-terminal production <sequence>

and procedure mustbe to compile the terminal symbol "?". The main section of

the compiler is merely a call of the procedure program. To continue the syntax

analysis

 <sequence> ::= <declaration> [;<sequence>] |

<clause> [;<sequence>]

Here we meet our first problem. Both of the alternatives of production

<sequence> start with a non-terminal symbol. The first alternative starts with

<declaration> and the other with <clause>. We cannot call the procedures to

compile the non-terminals in turn since this may lead to backtracking. Therefore

we must use the rule described in the previous section. That is follow one of the

alternatives to find its start symbols thereby eliminating it. Since <clause> is

used elsewhere in the language and <declaration> is not, we follow <declaration>.

A declaration can have start symbols of let, procedure, structure or forward.

Sec. 6.4] The Syntax Analyser 81

Notice also that the definition is recursive in that the last reference is to itself.

This is called tail recursion and may be replaced by the generally more efficient

iteration as suggested in section 6.3. We can therefore write:

procedure sequence

repeat {

case symbol of

"let" : let.decl

"procedure" : procedure.decl

"structure" : structure.decl

"forward" : forward.decl

default : clause }

while have(";")

This procedure compiles sequences of clauses made up of declarations and clauses

separated by semi-colons. It will have to be refined later because if a semi-colon

is missing, incorrect programs parsed by this procedure may stop compiling sooner

than is desired for error recovery purposes. Of course there is now no procedure

to compile declarations. The alternative to this is the code

procedure sequence

repeat {

case symbol of

"let", "procedure",

"forward", "structure" : declaration

default : clause }

while have(";")

which follows the grammar better but is less efficient since the various start

symbols have to be recognised again in procedure declaration. We continue to

<clause> which is defined by

<clause> ::= if <clause> do <clause> |

if <clause> then <clause> else <clause> |

repeat <clause> while <clause> [do <clause>] |

while <clause> do <clause> |

for <identifier> = <clause> to <clause>

[by <clause>] do <clause> |

case <clause> of <case.list> default : <clause> |

<name> := <clause> |

<write> | abort |

<expression>

Here all but three options start with a terminal symbol. For the moment we will

compile ‘:=’ as an infix operator and include this kind of clause along with

82 Syntax Analysis [Ch. 6

expressions. We will see later that this choice is not made by accident but for the

present it allows us to code procedure clause.

procedure clause

case symbol of

"if" : if.clause

"repeat": repeat.clause

"while" : while.clause

"for" : for.clause

"case" : case.clause

"abort" : abort.clause

"write" : write.clause

default : expression

We will take the process one stage further and write code for if clause and

write clause before returning to declarations and expressions. All the other

procedures may be coded in a similar manner.

The if <clause> has two variants

if <clause> do <clause>

and

if <clause> then <clause> else <clause>

We have

procedure if.clause

begin

next.symbol

clause

if have("do") then clause else

begin

mustbe("then")

clause

mustbe("else")

clause

end

end

Notice that when we get into the if clause we immediately throw away the

symbol ‘if’ by calling next.symbol. It has served its purpose in getting us here as

is no longer useful. This is done in every procedure where the production starts

with a terminal symbol. Note also the use of the procedure have to make the

choice between the symbols ‘do’ and ’then’.

We will now develop the write clause.

Sec. 6.5] Expressions and Block Expressions 83

<write> ::= write <write.list>

<write.list> ::= <clause> [: <clause>][, <write.list>]

which yields

procedure write.clause

begin

next.symbol

repeat { clause

if have(":") do clause }

while have(",")

end

This shows an interesting variation on the looping construct described in section

6.3. We have also combined the two productions into one procedure.

Finally we will look at a declaration since it will be used later to illustrate

further points. The parsing is performed in exactly the same manner.

<let.decl> ::= let <identifier> <init.op> <clause>

<init.op> ::= := | =

gives

procedure let.decl

begin

next.symbol

mustbe("identifier")

if ~have("=") do mustbe(":=")

clause

end

The problem of which particular identifier is being declared will be dealt with

later in chapter 10 as will the fact that we wish to perform different actions on

encountering ‘:=’ rather than ‘=’. Nevertheless this procedure will parse the

declaration and adequately fills the role of the first layer of the compiler.

The other declarations are more difficult to parse in the sense that they require

more code. It will become tedious if we go through the exercise of writing code

to parse them all. Instead we will leave that as an exercise for the reader and

concentrate on the problem of parsing expressions which deserves a section to

itself.

6.5 EXPRESSIONS AND BLOCK EXPRESSIONS

So far it has been relatively easy to write the syntax analyser. This has been

helped by the fact that until now the grammar has been LL(1). It is at this point

that the grammar of S-algol is no longer LL(1). In fact we shall see that it is not

84 Syntax Analysis [Ch. 6

LL(k) for any fixed k. However it is still suitable for parsing by recursive descent.

The full syntax of expressions is

<expression> ::=<exp1> [or <exp1>]*

<exp1> ::= <exp2> [and <exp2>]*

<exp2> ::= [~] <exp3> [<relop> <exp3>]

<exp3> ::= <exp4> [<addop> <exp4>]*

<exp4> ::= [<addop>] <exp5> [<multop> <exp5>]*

<exp5> ::= <name> [(<clause> <bar> <clause>)] |

<literal> |

{ [<sequence>] } |

begin [<sequence>] end |

vector <bounds> of <clause> |

@ <clause> of <type1> <bra> <clause.list> <ket> |

(<clause>)

<name> ::= <identifier>|<expression>(<clause.list>)[(<clause.list>)]*

<bounds> ::= <clause> :: <clause> [, <bounds>]

<clause.list> ::= <clause> [, <clause>]*

The problem is caused in <clause> where

<clause> ::= . . .

<name> := <clause> |

<expression>

Since a name as well as an expression can be arbitrarily complex we cannot tell

in any fixed number of symbols which of the above two productions we are

parsing. The reason for such a production in a grammar is a matter of language

design philosophy. In the above syntax it allows clauses to be expressions where

sensible. It does not define where occurrences are sensible since it is a context

free syntax. Later we will use the type matching rules to define the legal uses of

<clause> ::= <expression>

The main point about such a rule is that it allows if, case, and block expressions.

Whether this is desirable is a debate which is certainly not within the scope of

this book.

Some languages, for instance Pascal, do not allow if, case and block

expressions in order to preserve the LL(1) nature of the grammar. If it is done

solely for this reason it is unnecessarily restrictive since we shall show that we

can still use recursive descent to compile languages like S-algol which have if,

case and block expressions.

When this type of problem arises in recursive descent parsing, the solution is

to delay making the choice for as long as possible. It was suggested earlier that

‘:=’ should be regarded as an infix operator which like the other infix operators

has a left and a right expression. This suggests the code to parse expressions.

Sec. 6.5] Expressions and Block Expressions 85

procedure expression

repeat exp1 while have("or")

procedure exp1

repeat exp2 while have("and")

procedure exp2

begin

let not = have("~")

exp3

case symbol of

"is","isnt","=","!",""",">","#","<" : { next.symbol ; exp3 }

default : {}

end

procedure exp3

repeat exp4 while have("+") or have("-")

procedure exp4

begin

let addop = have("+") or have("-")

repeat exp5 while have("*") or have("/") or have("div") or

have("rem") or have("++")

end

procedure exp5

begin

case symbol of

"identifier","literal" : next.symbol

"begin","{" : block

"vector" : begin

next.symbol

repeat { clause ; mustbe("::") ; clause }

while have(",")

mustbe("of")

clause

end

"@" : begin

next.symbol

clause

mustbe("of")

type1

mustbe("[")

repeat clause while have(",")

mustbe("]")

end

86 Syntax Analysis [Ch. 6

"(" : { next.symbol ; clause ; mustbe(")") }

default : {}

if have("(") do compile.bracket

if have(":=") do { next.symbol ; clause }

end

procedure block

begin

let last = if symbol = "{" then "}" else "end"

next.symbol

if ~have(last) do { sequence ; mustbe(last) }

end

At this point we run into another problem. In the procedure compile.bracket

when the left expression is a string we wish the code

next.symbol

repeat { clause

mustbe("|")

clause

mustbe(")") }

while have("(")

to parse it which allows expressions of the form

A(i|j)(k|m)

However if the left expression is a vector, structure or procedure we require

repeat { next.symbol

repeat clause while have(",")

mustbe(")") }

while have("(")

The difficulty is that we do not know which code sequence will be appropriate

because the syntax is context sensitive at this point. Fortunately it can be overcome

using recursive descent. One way of resolving the problem is to select a different

type of bracket for strings. If this is not desirable we can leave the code informally

defined at this stage. We know that it can be compiled if we have some context

sensitive information on the left expression. In this case the type of the left

expression will do. The problem can therefore be resolved at a later level of

refinement when the application of the context sensitive parts of the rules are

considered.

The same applies to the assignment clause. We have been excessively

generous in compiling it as

<expression> := <clause>

Sec. 6.6] Summary 87

However this can again be restricted by some further context sensitive

information and the code refined at a later level. We will return to both these

points.

The problem of compiling assignment clauses disappears if we use right

assignment instead of the more common left assignment. For example

a -> b(i)

means b(i) becomes the value of a. Here there is less difficulty in compilation

since we can apply the stricter rules to the name being assigned to since we have

already encountered the ‘->’ symbol. Therefore we know it is an assignment and

not part of something else. Indeed it is hard to justify using left assignment as it

is more difficult to compile and less obvious in meaning.

There is at least one drawback to the recursive descent approach in compiling

expressions. It can be readily seen that the amount of recursion required to parse

even simple expressions is going to be large. For this reason it may be expeditious

to explore other techniques for parsing expressions. One such technique is

operator precedence parsing which is often used in conjunction with recursive

descent when parsing expressions (see section 3.8). However it is beyond the

scope of this book to explore the depths of operator precedence parsing.

6.6 SUMMARY

We have taken the first step in writing our compiler. The syntax analyser forms

the first layer and it is this layer that we will refine until the compiler it is complete.

Many people, we are sure, will be surprised with the ease with which this layer

was written. There are two reasons for the simplicity. First, considerable work

has already been done on the grammar to make writing the parser an easy task.

For example the grammar is LL(1) in most places although there is considerable

freedom here as recursive descent is used to compile some constructs that are not

even LL(k) for any fixed k. Indeed we deliberately did not choose an LL(1)

grammar, but one to highlight the diverse syntactic problems that can be handled

by recursive descent parsers. Secondly the choice of abstractions for the lexical

analysis was not made at random, but with a certain amount of skill built up from

writing and studying compiler programs over a number of years. Putting this

skill together with a well defined syntax does indeed yield a simple method of

generating parsing programs.

We have left a number of sections of the parser incomplete. In some cases

this was done because it would be tedious and not very instructive to write more

code. In other cases, notably in the parsing of expressions we left some problems

to be resolved by later levels of refinement. These we will return to.

CHAPTER 7

Lexical Analysis

7.1 THE FUNCTION OF A LEXICAL ANALYSER

It is not absolutely necessary to write the lexical analyser at this stage in the

development of the compiler but since it has already been used in the abstract

and has to be written at some time, it is perhaps better out of the way. A working

lexical analyser will, of course, allow testing of the parser in its skeletal form.

The lexical analyser forms the characters in the input stream into basic

symbols (sometimes called lexemes or terminals) of the language when requested

by the syntax analyser. It does this in two logical parts, by scanning the input

stream and then screening the symbols formed by the scanner. Scanning involves

forming all the basic textual units of the language such as identifiers, literals of

various types, single and multiple character symbols plus all the punctuation

characters. Screening involves discarding some of these textual elements to

leave only the basic symbols of the language for the syntax analyser. This will

normally involve removing from the input such symbols as spaces, tabs, newlines

and comments. The screening part of the lexical analyser will also recognise

which of the identifiers are reserved words if such objects exist in the language.

Finally, it is often quite common for the lexical analyser to organise the

printing of the program text with suitable annotation if this is required.

7.2 SCANNING

Recognising the terminal symbols of most programming languages is usually a

relatively simple task. The syntax of the most difficult part, that of identifiers

and literals, is usually in the form of a regular expression or Chomsky type 3

language as described in section 3.2. Regular expressions may be parsed as

special cases of most parsing techniques used for a full programming language

and is therefore a simple problem to solve. The remainder of the lexical analysis,

that of forming single and multiple character symbols can also be recognised

using a regular expression parser.

Sec. 7.2] Scanning 89

Even though it is a simple task to write a lexical analyser, it is often worth a

considerable amount of careful design because of its overall effect on the efficiency

of the compiler. Typically lexical analysers are about 5-10% of the source code

but may use up to 50% of the execution time of the compiler. This is due to the

massive reduction in bulk of the input that the lexical analyser effects. A large

number of characters may be reduced to a single basic symbol and although the

cost to process one character is low, the overall total cost can be high. For this

reason we must be conscious of efficiency when designing and coding the lexical

analyser.

We could use recursive descent to parse the terminal symbols. However the

compression of the input characters into basic symbols is rather like a bottom up

parsing technique. That is, at this level we look at the input to decide what

lexemes to produce; we do not ask for a particular lexeme and complain if we do

not get it. That task is left to the top down parser. Often the lexical analyser is

coded from a transition state diagram of the syntax using case and while clauses.

For example forming an identifier from the BNF rules

<identifier> ::= <letter> [<id>]*

<id> ::= <letter> | <digit> | .

can be achieved by the code

let identifier := "" ; let more := true

if letter(peek) do

repeat {

let s = peek

case true of

letter(s) , digit(s) , "." : identifier := identifier ++ read

default : more := false }

while more

with the result being left in the variable called identifier. This directly reflects

that the syntax at this level (often called the micro syntax) can be parsed by a

regular expression parser.

We can also use a reduced recursive descent technique. Recursive descent is

rather too powerful to parse terminal symbols, because the only type of recursion

in the syntax involves tail recursion. Tail recursion is where the last action of a

procedure is to call itself. Since we are being efficiency conscious, we can replace

the tail recursion by iteration. By a strange coincidence this gives us a technique

similar to the bottom up method.

We will again use stepwise refinement to build the lexical analyser. The

scanning process will be written first. Instead of the screening process acting on

the output of the scanner, it will be built into the scanner by layering in just the

same way as we are in building the rest of the compiler. Although there may be

many layers there will still be only one pass on the source text.

90 Lexical Analysis [Ch. 7

7.3 S-ALGOL SCANNING

The contract for the scanning process is to form the characters it reads into the

basic textual units of the language. In the case of S-algol these units can be

identifiers, literals of type integer, real, boolean or string, composite symbols

such as ‘::’ and single character symbols such as ‘=’. Any symbol which is not

a literal, an identifier or a composite symbol can be regarded by the scanner as

a single character symbol whether or not it is legal. The screening process will

remove some of these single character symbols such as punctuation, and will

also change some of the identifiers into other basic symbols such as reserved

words.

In chapter 6 when designing the lexical analysis abstractions, we used the

character string of the symbol to represent that basic symbol inside the compiler.

Thus the symbol else is represented by the string "else" in the compiler. This is

not a common practice and often the basic symbols are coded into integers and

passed around the compiler as integer values. Normally this is done for efficiency

or simply because the language that the compiler is written in does not have a

data type string with string operations. In such a compiler the writer has to

remember the integer coding of each basic symbol. Furthermore there must be

a reverse process to obtain the basic symbol from the integer value in order to

write error reports. Such compilers are often difficult to read, alter and maintain.

We have already stated that one of the design aims of recursive descent compiling

is to rid the compiler of such intermediate forms. Thus since we have a language

that will support strings properly we will use character strings to represent the

basic symbols.

We will make one concession to efficiency here without affecting the clarity

of the compiler. Instead of using the string literal to represent the basic symbol

in the compiler, we will define an S-algol string constant for that basic symbol.

For example the else symbol has the constant declaration

let else.sy = "else"

in the compiler. This ensures that there is only one copy of the literal value in

the compiler even if the compiler does not. All the constant names which

represent the basic symbols will end in .sy and will be of fairly obvious meaning

to help the clarity of the compiler. Anywhere in the compiler where the basic

symbol is used, the constant name rather than the string literal is used. There is

no loss of clarity in printing error messages since printing the string constant

do.sy will yield the string "do". Thus the procedure to compile the if clause

which is given in section 6.4 should really be

procedure if.clause

begin

next.symbol

clause

Sec. 7.3] S-Algol Scanning 91

if have(do.sy) then clause else

begin

mustbe(then.sy)

clause

mustbe(else.sy)

clause

end

end

Changing all the other syntax analysis procedures accordingly along with

using the lexical analysis abstractions in the syntax analyser constitutes the lexical

analysis layer of the stepwise refinement but we will not re-write the syntax

analyser here as we will have plenty of opportunity to study the results in later

chapters.

Let us return to the scanning process and examine the micro syntax of the

basic symbols before writing code. The lexical analyser is the procedures

next.symbol, have and mustbe to the rest of the compiler. The procedure

next.symbol reads the input text and leaves the basic symbol in the string variable

called symbol. As we examine each basic symbol category we will invent further

conventions in order that the lexical analyser may perform it function.

An identifier in S-algol is defined by

<identifier> ::= <letter> [<ident>]*

<ident> ::= <letter> | <digit> | .

Some of the identifiers will be reserved words but we will ignore this problem

at the moment since the screening process will find them. The string variable

symbol is set to the value identifier.sy when an identifier is found and we will

leave the actual value of the identifier in another string variable called the.name.

Notice that there is no restriction on the length of identifiers. There is no limit to

the length of an identifier in the syntax and it is not the job of the lexical analyser

to introduce such artificial limits. If such a limit exists it should be included in

the definition of the language and not imposed by the implementation. In

compiling a language such as Fortran where the identifiers are of fixed maximum

length, it is usual for the compiler to recognise the whole identifier and then

truncate it to the fixed maximum length.

Literals may be of various types. When a literal is found the string variable

symbol is given the value literal.sy and the actual value of the literal is placed in

one of the variables int.literal, real.literal, string.literal or bool.literal for literals

of type int, real, string or bool respectively. The screening process can be left to

recognise the boolean literals true and false from the identifiers, since these are

reserved words.

92 Lexical Analysis [Ch. 7

The composite symbols in S-algol are

:: := <= >= ~= -> ++

The string variable symbol is set to the value of the composite symbol if one

is recognised. We must look for these before we decide that we have a single

character symbol and set the value of the variable symbol accordingly.

Each one of the above lexical categories, except for integer and real literals,

can be distinguished by is first character. In writing the code for the lexical

analyser, we will use the S-algol peek to look at the next character in the input

stream without moving the input on, and the procedure next.ch to read the next

character and move the input on. The need for the procedure next.ch will become

obvious when we discuss the problem of program printing.

We will look for a composite symbol when we have recognised its first

symbol. Procedure try must attempt to form the composite symbol by looking at

the next character in the input stream and the next character in the target symbol.

If the two characters are the same, we have a composite symbol. In S-algol the

composite symbols are all of length two and so we can write

procedure try(cstring s)

if s(2|1) = peek do{ let discard = next.ch ; symbol := s }

That is, if we have a composite then we must move the input stream on one

character but otherwise do nothing. The coding device

let discard = next.ch

simply moves on the input stream. This procedure is sometimes thought of as

part of the screening process but we prefer to regard it as part of the scanner.

We will now write procedure next.symbol.

procedure next.symbol

begin

if digit(peek) then number else

if letter(peek) then try.name else

case peek of

colon.sy : begin

symbol := next.ch

if peek = colon.sy then

begin

let discard = next.ch

symbol := dcolon.sy

end else try(assign.sy)

end

lt.sy : { symbol := next.ch ; try(le.sy) }

gt.sy : { symbol := next.ch ; try(ge.sy) }

not.sy : { symbol := next.ch ; try(neq.sy) }

minus.sy : { symbol := next.ch ; try(arrow.sy) }

Sec. 7.3] S-Algol Scanning 93

plus.sy : { symbol := next.ch ; try(dplus.sy) }

dquote.sy : begin

let discard = next.ch

symbol := literal.sy

string.literal := read.string

end

default : symbol := next.ch

end

A careful study of this procedure will reveal most of the secrets of the lexical

analyser. The procedure looks for a digit, in which case we have an integer or

real literal; if a digit is not found the procedure looks for a letter, in which case

we have an identifier. The procedure then looks for all the composite symbols

and string literals and finally if it has not found one of the above we have a single

character symbol.

Finally procedure read.string will read the rest of the string literal and the

enclosing double quote and can be written as

procedure read.string(-> string)

begin

let s := ""

while peek = / dquote.sy do s := s ++ next.ch

let discard = next.ch

s

end

This first attempt at procedure read.string is rather simple minded. It does

not allow for special characters inside the string literals. Special characters are

characters that we wish to represent inside the string literal without writing them

down. For example if we wish a backspace character in a string literal we may

not always wish to type the backspace key as this may spoil the program listing.

Other such characters are tabs, newpage and newline. We may also wish the

double quote character inside a string literal. These problems must be solved by

the language designer.

In S-algol, the single quote character is taken as an escape character when

used inside a string literal. Thus to represent a double quote inside a string literal

we use '". Of course this complicates the problem of representing a single quote

since if we write "'" this is an incomplete S-algol string literal rather than the

character '. The representation of the rest of the special characters inside a string

literal are

'n newline

'p newpage

'b backspace

't tab

94 Lexical Analysis [Ch. 7

An escape character inside a string may represent itself as long as it cannot

be made into a special character. Otherwise it must use the escape character. We

can now rewrite procedure read.string.

procedure read.string(-> string)

begin

let s := ""

while peek ! dquote.sy do s := s ++ next.char

let discard = next.ch

s

end

procedure next.char(-> string)

begin

let ch = next.ch

if ch = squote.sy then

case peek of

"n" : { let discard = next.ch ; nl.sy }

"t" : { let discard = next.ch ; tab.sy }

"b" : { let discard = next.ch ; bs.sy }

"p" : { let discard = next.ch ; np.sy }

dquote.sy : { let discard = next.ch ; dquote.sy }

squote.sy : { let discard = next.ch ; squote.sy }

default : ch

else ch

end

We continue with procedure try.name.

procedure try.name

begin

symbol := identifier.sy

let s := next.ch

while ok do s := s ++ next.ch

the.name := s

end

procedure ok(-> bool)

letter(peek) or digit(peek) or peek = dot.sy

It should be fairly obvious that this code will form the identifiers according to

the syntax of S-algol given above.

The only unresolved part of the scanning process is now procedure number

which recognises integer and real literals. Although the writing of this procedure

forms a nice demonstration of a piece of structured programming, it would be

quite tedious to develop it here. We feel that a procedure to parse integer and

Sec. 7.4] Screening 95

real literals has been done so well and so often before in the literature that there

is little value in repeating the exercise. If the reader wishes, it will form a nice

little programming problem and, if difficulties arise, other pieces of literature,

especially Wirth [1], can be referenced. For completeness the procedure number

is given in Appendix C. We will assume that it has been written and press on to

the the screening process.

7.4 SCREENING

As described earlier, the screening process discards some of the textual units of

the program. In S-algol this means eliding spaces, tabs, newlines and comments.

The second function of the screener is to convert certain symbols into others. In

particular this means recognising reserved words and literals such as true and

false and separating them from the identifiers. The screening function is written

as a layer of the scanning process rather than as a separate pass on the input.

Therefore the two functions of the screener may be applied at different stages in

the recognition of the text. The elision of punctuation may be performed before

the scanning starts and the identification of the reserved words and so on

performed after the identifiers have been formed.

Punctuation may appear between any two symbols. Therefore the first action

the procedure next.symbol must take is to remove the punctuation. If this

procedure calls procedure layout to remove this punctuation then the procedure

layout may be coded thus.

procedure layout

begin

let more := true

repeat

case peek of

space.sy,tab.sy,nl.sy : { let discard = next.ch }

comment.sy : while next.ch ! nl.sy do {}

default : more := false

while more

end

Procedure layout throws away all combinations of spaces, newlines and tabs.

A comment in an S-algol program is the characters from the symbol ‘!’ up to the

end of the input line. This is also thrown away. When we encounter a character

that is none of the above we leave procedure layout as its task is complete.

The second part of the screening process is to separate the reserved words

and boolean literals from the identifiers. This may be done be rewriting procedure

try.name.

96 Lexical Analysis [Ch. 7

procedure try.name

begin

let s := next.ch

while ok do s := s ++ next.ch

symbol := case s of

true.sy : { boolean.literal := s ; literal.sy }

false.sy : { boolean.literal := s ; literal.sy }

default : if reserved.word(s) then s else

begin

the.name := s

identifier.sy

end

end

Thus once the identifier has been formed we check that it is not a boolean literal

or a reserved word before assigning a value to the variable symbol.

The recognition of reserved words is done by procedure reserved.word which

returns the value true if the input string is a reserved word and otherwise the

value false. This may be done in many ways from simply scanning a list of

reserved words, through searching a binary tree balanced according to the

frequency of usage of the reserved words, to a perfect hashing function. If a

simple list is used, the average length of the search of a list of length n will be

proportional to n/2. This will most certainly be too expensive for a large number

of reserved words. Using a binary tree balanced according to the frequency of

usage of occurrence of the reserved words will be much faster especially for the

most commonly accessed words [2]. However it may take some time to gather

enough statistics on the use of the reserved words to form a well balanced tree.

An ordinary binary tree constructed alphabetically may also be used. This

guarantees that in a balanced tree the longest search through a tree of n reserved

words is proportional to log n.

A compromise between the linear scan method and a balanced binary tree is

a technique called a binary chop. In the binary chop method we take a vector of

reserved words ordered in some way, probably alphabetically, and apply the

following algorithm. The section of the vector in which the target reserved word

might lie is bounded by the variables top and bottom. We choose the mid point

of the vector and compare it with the string we are searching for. If they are

equal we have found the reserved word and are finished. Otherwise if the required

string comes before the mid-point in the chosen collating order, we repeat the

process with the bottom half of the vector and, if the required string comes after

the mid point, we use the top half. We repeat this halving of the vector until the

string is found or we can no longer half the vector. Again the number of accesses

for a vector size n is at most proportional to log n. The algorithm may be coded

as

Sec. 7.5] Lexical Errors 97

procedure binary.chop(*cstring words ; cstring s -> bool)

begin

let bottom := lwb(words) ; let top := upb(words)

let found := false

while bottom <= top and ~found do

begin

let middle = (bottom + top) div 2

case true of

words(middle) > s : top := middle - 1

words(middle) < s : bottom := middle + 1

default : found := true

end

found

end

The procedure returns the value true if the string is found in the vector of

words and false otherwise.

A hashing function may also be used to identify the reserved words. A

hashing function in this case is a procedure which takes the characters that make

up the identifier and produces an integer value. Any hashing function for reserved

words should give a unique integer value for each reserved word. A perfect

hashing function is one where all the integer values of the hash are consecutive.

However the construction of such a hashing function is not an easy task[3]. The

unique integer of the hash can then be used as an index into a table of reserved

words. Even when the hash value is legal, i.e. within the bounds of the table, the

table entry and the original string must still be compared in case there is another

identifier with this hash value. We will return to this subject in chapter 10 when

we discuss methods of constructing and accessing the symbol table.

7.5 LEXICAL ERRORS

The main difficulty in dealing with lexical errors is that there is usually very

little redundancy in the micro syntax of the lexical items. The next character in

the input stream is either part of the symbol being formed or it is not. Therefore

an error, if there is one, will only show up as part of the next symbol to be

formed.

There are a number of characters that are not legal in S-algol if they are

formed into symbols. For example the character ‘#’ is not an S-algol symbol.

The character is legal as part of a string literal but not on its own. The screening

process could find such symbols and report errors but we feel that it is just as

simple to pass the symbol to the syntax analyser allowing it to find the error and

handle it in the uniform manner described in chapter 8. Otherwise every single

character symbol has to be screened.

98 Lexical Analysis [Ch. 7

Another source of possible error is in the forming of literals. Integer and

real literals, if converted to integer and real values inside the compiler, may be

outwith the range of the host or target machine. This type of error should be

detected, but care must be taken to ensure that the compiler does not ‘blow up’

during any conversion. In some compilers this ‘blow up’ happens on real or

integer overflow.

The most difficult error of all to deal with is a missing double quote at the

end of a string literal. Any method of solving this will almost certainly be

unsatisfactory. If we decide that the double quote is missing after so many

symbols, then we indirectly impose an artificial limit on the size of string literals.

If we do not impose a limit, then the rest of the program may be read in as part of

the string literal. Neither method gives a satisfactory solution.

7.6 LISTING THE SOURCE PROGRAM

The last duty of the lexical analyser is to organise the listing of the source text.

Whether this is a desirable feature of a compiler depends on the language

designer's philosophy. In some well known operating systems e.g. UNIX [4],

the compilers do not produce source listings. This is because there are other

facilities in UNIX for listing a file and the underlying philosophy is never to

duplicate effort. However most compilers are written to be independent of

operating systems and machines and so we should cater for all tastes. Also the

compiler knows more about a program than any utility and may use this

information to annotate the listing accordingly. The listing and the annotation

should be made optional to the user for the whole or part of the program.

The annotation facilities can be regarded at several levels. The annotation

of the whole program may include facilities such as underlining the reserved

words and producing a cross reference listing of the identifiers. Annotation of a

page of output may include facilities to produce page numbers and titles on the

page and an ability to control the number of lines printed on a page. Finally the

annotation of a line of output may give line numbers and block counts. A block

count is an indication of how deeply nested a program is. Every time a block is

entered the count is increased by one and then decreased on block exit. This

allows missing begins or ends to be found easily. A first attempt at producing a

program listing could be this code for procedure next.ch.

procedure next.ch

begin

let ch = read

write ch

ch

end

Sec. 7.8] Summary 99

To implement the annotation features described above means developing

procedure next.ch to include them. To implement some of the facilities such as

block counts may require the whole line of input to be collected together before

it is printed. This is usually also necessary for printing error messages in the

correct place.

We will not write the code for this section of the compiler in this book as it is

very subjective as to what a ‘good’ program listing looks like. However we will

issue a word of warning before we go on. The task of implementing a program

listing facility with the above annotation facilities can be expensive in terms of

code and the run time of the compiler. It is very easy indeed to double the size

and the run time of the lexical analyser in producing such a listing.

7.7 MUSTBE AND HAVE

We can now write the two outstanding lexical abstractions mustbe an have. These

are defined by

procedure have(cstring -> bool)

! if s is the symbol in symbol then call next.symbol

! to compile the next basic symbol and return true.

! Otherwise return false.

if symbol = s then { next.symbol ; true } else false

procedure mustbe(cstring s)

! if s is the symbol in symbol then call next.symbol

! to compile the next basic symbol. Otherwise report an error.

if symbol = s then next.symbol else !error

Which brings us very neatly to the syntactic error diagnosis and recovery of

chapter 8.

7.8 SUMMARY

We have now written the lexical analyser and designed the outstanding

conventions that the rest of the compiler requires in order to use it correctly. We

did not need to write the lexical analyser at this stage in the development of the

compiler, but we took the opportunity of getting it out of the way. We did not

rewrite the syntax analyser since most of the lexical layer is already there. The

only change that we would have made would be to change the string literals that

represented the basic symbols into string constant names. We indicated how this

would be done for procedure if.clause and assumed that is was done throughout.

We will see the results of this layer in later chapters.

The lexical analyser is split into two logical sections, scanning and screening.

The scanning process forms all the characters in the input stream into the textual

100 Lexical Analysis [Ch. 7]

units of the language. These textual units may be identifiers, literals, single and

multiple character symbols and punctuation. The screening process removes

some of these textual units, for example punctuation, and converts some identifiers

into reserved words or literals leaving only the basic symbols for the rest of the

compiler. The two processes of scanning and screening are not independent and

the screening process is built as a layer on top of the scanning process. This

ensures that there need only be one pass made on the input text.

The problems of lexical error detection are both dealt with and passed on.

Illegal single character symbols are passed to the syntax analyser so that a syntax

error message may be issued in the uniform manner which will be discussed

later. The detection of illegal literals is dealt with by the lexical analyser. However

no strategy is proposed for recovery after such an error.

Finally the problems of producing and annotating a source listing are

discussed. The lexical analyser is now complete. The abstractions mustbe, have

and next.symbol have been written and the conventions for passing on information

to the rest of the compiler are defined.

REFERENCES

[1] Wirth, N. (1976), Algorithms + Data Structures = Programs, Prentice-

Hall.

[2] Kari-Jouko Raiha and Zweben, Z. (September 1979), An optimal

insertion algorithm for height balanced binary search trees, CACM

22, 9, 508–512.

[3] Cichelli, R. (January 1980), Minimal perfect hash functions made

simple, CACM, 23, 1, 17–19.

[4] Ritchie, D.M. and Thompson, K. (July 1974), The UNIX timesharing

system, CACM, 17, 7, 365–375.

CHAPTER 8

Syntax Error Diagnosis and

Recovery

8.1 WHAT CAN WE DO ABOUT ERRORS?

It is an unfortunate fact of life for the compiler writer that some users will submit

programs that are syntactically incorrect. The compiler must react to an erroneous

program by detecting the errors and furthermore must be able to deal with any of

a large number of possible kinds of error. This chapter considers how the compiler

may react to such errors and how the code for the syntax analyser may be refined

to handle them.

Fortunately for us, LL grammars and especially LL(1) grammars have good

error detection properties. The program is scanned top to bottom, left to right.

For every input symbol the compiler has a goal symbol that may be one of a

number of symbols. If the input symbol is not one of the goal symbols an error

has been detected. In an LL(1) grammar where we look only one symbol ahead,

we can discover if the input symbol is legal before moving on.

What should the compiler do when an error is detected? Naturally, the user

should be informed that an error has occurred; we will return to the subject of

error reports in section 8.4. The question really is ‘what attempt should the

compiler make to remedy the situation?’

The first solution is to give up. This is not such a stupid suggestion as it first

seems. When an error is encountered the compiler issues an error report and

stops. The compiler is therefore easy to code and in some environments, like a

good timesharing system where re-compilation is fast and inexpensive, this

approach may indeed be a feasible solution.

A scheme that detects only the first error and gives up should be regarded as

the minimum response that a compiler can give. In practice it is usually never

acceptable since it may make the debugging of a large program a very trying

exercise. More importantly, the compiler designer has to design the compiler to

be machine independent and cannot depend on the compiler living in a good

environment. In a batch environment the above type of operation is definitely

102 Syntax Error Diagnosis and Recovery [Ch. 8

unacceptable. If we do not adopt this approach, however, we are forced to consider

error recovery.

An error recovery scheme ranges from the very simple, (e.g. we could carry

on with lexical analysis alone in order to detect further lexical errors) through

the intermediate where we try to repair the error, to the very expensive where we

try to correct the error. An error repair is where we attempt to minimise the

effect of the error without trying to correct it, so that we may carry on with the

syntax analysis. An enormous amount has been written on the subject of syntax

error recovery and could easily fill a book by itself. We do not wish to spend any

great effort adding to this literature and would therefore refer the reader to

Backhouse [1] or Aho and Ullman [2] if more than we give is required on the

subject.

The underlying philosophy of error recovery, be it repair or correction, is to

change an incorrect program to the ‘nearest’ syntactically correct one. How

much the designer is willing to invest in an error recovery scheme depends on

how worthwhile he considers error recovery to be. If it is not considered

worthwhile we return to a ‘detection only’ scheme.

An error recovery scheme can never be foolproof since that would involve

reading the mind of the programmer. It is also unwise to attempt to make the

recovery scheme foolproof since the law of diminishing returns applies. The

nearer we get to making the scheme foolproof, the more we need to invest in

code to catch a few relatively unusual types of error. A compromise is to design

a simple scheme that is low in cost in terms of time and code and will still recover

from the majority of errors.

The compiler designer must attempt to find out the most common sources of

error among the user population. We would suggest the following as common

types of error

1. the insertion of extra symbols

2. the omission of symbols

3. the replacement of symbols

4. the transposition of two symbols

Any error recovery scheme that can recover from the above types of errors has a

high chance of being successful overall.

Careful design of the language can also help in error recovery. The careful

design involves building redundancy in to the syntax in order that the compiler

may use the extra symbols as landmarks for recovery — for example the Algol

68 habit of reversing a keyword in certain places to mark the end of the sphere of

influence of the keyword. If the S-algol while clause were designed as

while <clause> do <clause> od

then the extra keyword od could be used in error recovery as it delimits the

whole while clause. Such techniques are often considered too expensive since

Sec. 8.2] The Pascal Error Recovery Scheme 103

they alter the appearance of the language and penalise the programmer who does

not make syntactic errors by making the language more verbose.

We will consider two techniques for error recovery. Both schemes are

relatively simple and can be coded inexpensively. Furthermore they both have

the possibility of extension. The first scheme was designed by Amman for use in

his Pascal compiler [3] and the second was invented by Turner [4] for use in a

compiler for the applicative language SASL [5]. Both Pascal and SASL have

grammars that are LL(1) and both compilers use recursive descent as a parsing

technique.

8.2 THE PASCAL ERROR RECOVERY SCHEME

The Pascal error recovery scheme was designed by Amman [3] who built one of

the first Pascal compilers. The technique was so successful that most other Pascal

compilers have copied it. The method is more of a mechanism on which error

recovery can be built than a strategy for recovery. This allows different

implementors to tune the strategy for particular applications without having to

redesign the whole recovery method.

The basis of the scheme is to divide the legal Pascal basic symbols into two

disjoint sets, the set of relevant symbols and the set of irrelevant symbols. Here

the technique makes good use of the Pascal concept of a set. The two sets,

although disjoint, are dynamic in nature and will change depending on the

production being parsed. Every procedure that parses a non-terminal in the

grammar is given as a parameter the set of relevant symbols. If an error occurs

and depending on the recovery strategy, the parsing procedure may skip all the

input symbols up to the first relevant one. The syntax analysis can now continue

but without any further reading from the input stream until a point is reached

where the new symbol is accepted as correct. This will allow the recursion to

unwind if necessary. It is the duty of the parsing procedure to augment the set of

relevant symbols when it thinks a symbol might be skipped which it does not

wish to be. The parsing procedure must also pass on the set of relevant symbols

to any other parsing procedure that it calls.

For example in compiling the while clause, before the procedure tries to

compile the boolean clause following the while symbol, it would add the symbol

do to the set of relevant symbols. If an error is detected in compiling the boolean

clause, the error recovery will not skip passed the do symbol. The syntax analysis

can now continue without reading any further symbols until it returns to the

procedure compiling the while clause. It may then resume normal service from

the recognition of the do symbol.

The technique is basically both simple and sound. It attempts to balance the

input stream and the branch of the syntax tree that we are on. The method does

not force skipping but allows the compiler designer to decide where this may be

104 Syntax Error Diagnosis and Recovery [Ch. 8

done. Also the method does not define when a symbol becomes relevant but

again leaves the decision up to the compiler writer. For this reason the method is

very flexible with the recovery strategy being built into the set of relevant symbols

and the application of the skipping.

Amman's technique is particularly well suited to the syntax of Pascal.

However, like any other recovery scheme it may, depending on the input, recover

at the wrong point. This is more likely with a language that has a highly recursive

grammar that includes such syntactic categories as block expressions. Even

then it will not perform too badly, because at worst it will only skip further than

is absolutely necessary.

8.3 THE S-ALGOL ERROR RECOVERY SCHEME

The S-algol error recovery scheme is borrowed directly from Turner [4] who

invented it whilst developing a compiler for the language SASL [5]. The technique

can easily be built into our compiler. An error is detected when a call of the

procedure mustbe encounters a symbol in the input that is not the goal symbol.

Therefore we may make the first refinement to procedure mustbe

procedure mustbe(cstring s)

! if s is the symbol in symbol then call next.symbol

! to compile the next basic symbol. Otherwise report an error.

if symbol = s then next.symbol else syntax(s)

procedure syntax(cstring s)

err.message("** Syntax Error ** ",symbol," found where ",s," expected")

Procedure err.message will print the error report in the appropriate place as

discussed in section 8.4.

If we were to stop here, the error detection would be very low cost indeed.

However it turns out that with only a little more thought we can dramatically

improve the technique. The problem with the above is that it does not attempt to

recover. Therefore it is most likely that it will generate an unpredictable number

of spurious error messages after the correct one. Notice, however, that if an

error does occur, the error message is issued and the compiler continues as if the

symbol were present. For example in compiling

while a < b a := b

the compiler will detect that the symbol do is missing and repair the error by

inserting it. This allows the compiler to continue.

Turner approaches the general problem of recovery from the opposite

direction to the Pascal method. Instead of skipping the input for a relevant symbol

and then continuing the syntax analysis without moving the input until the symbols

balance, Turner continues the syntax analysis until the next goal symbol. This

occurs on the next call of procedure mustbe. At this stage the compiler may have

Sec. 8.3] The S-Algol Error Recovery Scheme 105

already recovered, as will be the case when only one symbol is missing, or it is

now forced to recover by skipping the input until the goal symbol and the input

symbol match. The syntax tree and the input are now balanced as best they can

be.

An example of this recovery can be seen in compiling

if a < b c then a := 2 else b := 3

Since the operator between ‘b’ and ‘c’ is missing the compiler will find ‘c’ when

looking for then. It will attempt to continue the syntax analysis and eventually

try to recognise the symbol else. At this point the input stream will be far behind

where it should be and so the compiler skips the intervening symbols until the

else symbol is found in the input.

It is emphasised that this method, although similar in aims to the Pascal

technique, is not the same and will perform quite differently. Turner’s method

provides a recovery strategy without using any tables or forcing the designer to

concern himself with error recovery at each stage of the syntax analysis.

Furthermore the method does not disrupt the flow of control in the compiler,

allowing context sensitive actions such as type matching to continue across an

error. The overall simplicity of the method and its extremely low cost are its

main attractions.

To implement Turner's method we re-write procedures mustbe and syntax.

let recovering := false

procedure mustbe(cstring s)

! if s is the symbol in symbol then call next.symbol

! to compile the next basic symbol. Otherwise report an error.

if recovering then begin

while symbol ! s do next.symbol

next.symbol

recovering := false

end else

if symbol = s then next.symbol else syntax(s)

procedure syntax(cstring s)

if ~recovering do

begin

err.message("** Syntax Error ** ",

symbol," found where ",s," expected")

recovering := true

end

The boolean variable recovering, initially false, is set true when an error has

been detected and we are trying to recover from it. If we are recovering from an

error and procedure mustbe is called with a goal symbol, then the input is skipped

106 Syntax Error Diagnosis and Recovery [Ch. 8

until the goal symbol is found in the input. If we are not recovering and the

procedure mustbe is called, then either the symbol in the input is the goal symbol

or we have an error, in which case we call procedure syntax which will report the

error and put the compiler into recovery mode. To eliminate a large number of

useless error messages, procedure syntax refuses to issue an error message if the

compiler is already recovering.

It can readily be seen that Turner’s method is extremely low cost. How well then

does it perform? The method will recover from all first order errors such as a

missing symbol, an extra symbol and a replaced symbol. However if two nearby

symbols are incorrect, especially where the symbol we are recovering on is in

error, then an unduly large proportion of the input may be skipped. This may

still be not too bad since at least the user will not be inundated with a large

number of redundant error messages. The worst case is where the second symbol

in error which we are recovering on does not occur again in the input stream.

For this reason the while clause in procedure mustbe should be written

while ~eof and symbol ! s do next.symbol

Fortunately misadventures of this kind rarely occur in practice. However, one

place where it may occur is when an end symbol is missing and the block it

delimits gets out of synchronisation. In this case the recovery reduces to lexical

checking of the input.

If at any stage the above recovery scheme is felt to be inadequate, the compiler

writer can resort to Amman’s trick of incorporating local checking and skipping

to augment the strategy. It is not often necessary to augment the error recovery

but we indicated in section 6.4 that procedure sequence may terminate sooner

than is desirable for error recovery, when a program is in error. In particular it

stops parsing clauses and declarations if a semi-colon is not found as a separator.

If the compiler is already recovering from a syntax error, it should try to force

recovery at this point. This will be done if we re-write procedure sequence as

procedure sequence

begin

let more := true

repeat {

case symbol of

let.sy : let.decl

procedure.sy : proc.decl

structure.sy : structure.decl

forward.sy : forward.decl

default : clause

Sec. 8.4] Error Reporting 107

if ~have(semi.sy) do

if recovering then

begin

while symbol ! semi.sy and ~eof do next.symbol

recovering := false

end else more := false }

while more

end

8.4 ERROR REPORTING

The most important point about an error report is that the message is clearly

understandable and that there is a clear indication to what the message refers.

We do not consider it useful for the compiler to issue a message such as

 error number 34

which the user can look up in a manual. The compiler should communicate to

the user as much relevant information as possible. LL(1) grammars have good

error detection properties which makes it relatively easy to pinpoint the errors

and there is therefore no excuse for this type of error report in a recursive descent

compiler.

There are many solutions to the problem. We will suggest one and leave the

reader to think of variations. The program is listed in lines. Every time a line is

printed the compiler will also print any error messages for errors which have

been discovered on the line along with the symbol ‘^’ under the offending symbol.

Here is a sample of output from the S-algol compiler

3 -- let b = 2

4 -- let a = 1

5 -- while a < 2 { let a = 3 ; write b }

 ^

***** Syntax Error ***** { found where do expected

6 -- ?

Compilation Fails

Number of Error Messages = 1

We consider the above to be a clear indication of the error. There should be one

message and one ‘^’ symbol for every error encountered. However it is too easy

to confuse the user by inundating him with error messages. Therefore the wise

compiler designer would limit the number of error messages issued, since it may

reasonably be assumed that after so many errors something has gone drastically

wrong with the error recovery. This may be done by only issuing the ‘^’ symbol

and not the error message itself after so many errors. The controlling of the

108 Syntax Error Diagnosis and Recovery [Ch. 8

number of error messages is part of the annotation of the program listing and the

user may wish to control the number of error messages per line or in total. If this

is the case then the facility should be made available.

To implement the above scheme we need to write procedure err.message in

such a way that it records the position of the error and the messages for one line.

Procedure next.ch is then refined to print any error messages after a line of source

has been printed.

8.5 SUMMARY

Error detection is an essential part of the design of any compiler. Top down

deterministic parsing techniques such as recursive descent have good error

detection capabilities and we have used this fact to diagnose errors and to build

an error recovery scheme.

Since error recovery can never be foolproof we have adopted a software

engineering approach to the problem. Two methods of error recovery, due to

Amman and Turner, are given as examples of inexpensive but very effective

error recovery mechanisms. Both methods attempt to balance the parser and the

input string after an error has occurred, but each takes a different approach to the

problem. We have taken Turner’s method and used it in our compiler.

Finally we discussed the problems involved in issuing error reports. The

syntax error diagnosis and recovery layer of refinement is very thin indeed. This

is because we incorporated the error reporting and recovery into the lexical

analysis abstractions that were already in use by the syntax analyser. The layer

consists of the above plus any ad hoc tuning that may be felt necessary to augment

the error recovery. An example of such tuning is given by re-writing procedure

sequence in the syntax analysis. Fortunately it is not often necessary to augment

the syntax error recovery scheme.

REFERENCES

[1] Backhouse, R. (1979), Syntax of Programming Languages, Prentice-Hall.

[2] Aho, A.V. and Ullman, J.H. (1977), Principles of Compiler Design,

Addison-Wesley.

[3] Ammann, U. (1973), The development of a compiler, Proc. Int.

Symposium on Computing, 93–99, North-Holland.

[4] Turner, D.A. (August 1977), Error diagnosis and recovery in one pass

compilers, Information Processing Letters, 6, 4, 113–115.

[5] Turner, D.A. (1979), SASL language manual, University of

St.Andrews, Department of Computer Science, Report CS/79/3.

CHAPTER 9

Type Matching

9.1 CONTEXT SENSITIVE ANALYSIS

The next stage in the stepwise refinement of the compiler is to design and write

the layer that performs the context sensitive analysis. We have developed the

compiler as far as possible by analysing the context free syntax, and now we

must try to make sense of the analysed program. The context sensitive analysis

is developed in two parts and this, the first part, is concerned with checking the

types of the clauses of the program. The second part of the context sensitive

analysis is concerned with the legal use of names and will be dealt with in chapter

10.

In a recursive descent compiler the syntax analysis is performed as the

recursive evaluation of the compiler program progresses. The type of a syntactic

element can only be checked after the element has been parsed and so each

procedure must check the type of any syntactic element that it causes to be parsed.

Therefore any parsing procedure must produce, as a result, the type of the syntactic

element it has just parsed in order that the type may be checked by the calling

procedure. Thus the syntax analysis is performed as the recursion progresses

and the type checking carried out on the return journey. A convenient way to do

this is to make every procedure in the syntax analysis into a function which

returns a codified representation of the type of the clause it has just parsed. The

calling procedure may then check that an appropriate type representation has

been returned.

Before we can refine the syntax analysis procedures we must build ourselves

some tools. We need to define how the data types will be represented inside the

compiler and we need to invent abstractions that will check for the legal use of

these types. First of all, however, we will return to the language specification to

obtain a formal definition of the type rules.

9.2 TYPE MATCHING RULES

We have already seen in chapter 6 that by manipulating the syntax of the language

110 Type Matching [Ch. 9

we can ease the problem of writing the parser. We also suggested that the language

should be formally specified in two parts, a context free syntax written in extended

BNF and a set of type rules to qualify the BNF. Here we present the notation for

the formal specification of the type rules and indicate how the two sets of rules

interact.

For each BNF production in the language there is an equivalent type matching

rule which further qualifies the manner in which the syntactic construct may be

used. In a production where any of the terminal or non-terminal symbols has a

data type associated with its legal use, the type rule has that data type name

enclosed in the meta symbols ‘{’ and ‘}’ instead of the terminal or non-terminal

symbol’s name itself. The type rule also indicates the result type of the production

by use of the meta symbol ‘!’.

e.g. the or expression

BNF <expression> or <expression>

TR {bool} or {bool} ! {bool}

The BNF indicates that an expression may be formed by taking two

subexpressions and applying the operator or to them. The type rule (TR) further

qualifies this by showing that both subexpressions must be of type bool and that

the result is also of type bool. Anything else is illegal.

e.g. 1 or true is not permitted by the TR

Furthermore the if clause is defined by

BNF if <clause> then <clause> else <clause>

TR if {bool} then {T} else {T} ! {T}

 These rules indicate the form of the if clause and show that the first clause

must be of type bool. The two alternatives can be of any type but must be the

same, producing a result of that type.

Thus if a < b then true else 4 is not permitted

whereas if a < b then 4 else 6 is valid and of type int

If we regard clauses which do not produce a data object to be of type void

they can also be included in the type rules.

e.g. the for clause

BNF for <identifier> = <clause> to <clause> [by <clause>] do <clause>

has a type rule

TR for <identifier> = {int} to {int} [by {int}] do {void} ! {void}

It is our opinion that the two sets of rules taken together make the syntactic

rules easier to understand than if there were only one set of rules. As a by-

product, defining the language in this way eases the compiler writer’s difficulties

because the compiler can now be defined more easily in layers, as we are doing,

by mapping the types of entities on to the values returned by the recognition

Sec. 9.3] The Representation of the Data Types 111

procedures.

The type matching rules can be made as comprehensive as required. We

have already indicated that the rules can be used to specify more than just the

legal construction of data objects. By including the type void to represent clauses

which do not produce a result, (e.g.Algol 60 statements) we can specify all the

program construction rules for such clauses. In S-algol we have to stretch this

further to include types for procedures, structure classes and structure fields, all

of which can be named but not assigned like a data object. Each language translator

will have similar decisions to implement.

The full type matching rules for S-algol are given in Appendix B but for

clarity we will reproduce them where necessary for use in examples.

9.3 THE REPRESENTATION OF THE DATA TYPES

Every data type in the language being compiled must have a unique representation

inside the compiler. This is necessary because a parsing procedure returns this

representation of the type of the syntactic element it has just parsed. It is these

representations that will be compared when the types are checked.

The number and structure of the representations of the data types depend on

the language being compiled. The situation is analogous to the problem of

representing the basic symbols for the syntax analyser. When two types do not

match, the compiler will have to issue an error report which indicates the two

types involved and the reason for their incompatibility. Therefore as with the

basic symbols, the type representations should include the name of the type as a

string. We will now show how to represent the S-algol data types and allow the

reader to adapt these to other languages.

First we will look at the legal S-algol data types. There is an infinite number

of data types in S-algol defined recursively by the following rules.

1. The scalar data types are int, real, bool, string and file.

2. For any data type T, *T is the data type of a vector with elements of

type T.

3. The data type pntr comprises a structure with any number of fields,

with any data type allowed in each field.

In addition to the above data types there are a number of other objects in S-

algol where it is convenient to give them a type, in order that the compiler may

check their use for consistency. The user requires to know about these types in

order to follow the complete type matching rules.

4. The type of a procedure with parameters T
1
, ... ,T

n
 and result type T

m
 is

(T
1
, ... ,T

n
 -> T

m
).

112 Type Matching [Ch. 9

5. Clauses which yield no value are of type void.

6. The class of a user defined structure with fields of type T
1
, ... ,T

n
 is of

type (T
1
, ... ,T

n
)-structure and its field names are of type T

i
-field.

We will deal with each of these categories in turn defining structure classes

in the compiler to represent the data types. The scalar data types will be

represented inside the compiler by a structure defined by

structure scalar(cstring t.name)

Each of the scalar data types will have a constant pointer to a structure of this

class. For clarity the name of the constant pointer will be the type name in

capitals. Thus

let real.sy = "real"

let REAL = scalar(real.sy)

defines the representation of the reserved word real and the data type real inside

the compiler. Any time we wish to represent the type real we will use the constant

name REAL. In this way there is only one structure incarnation for each scalar

type. The string constant will be used for error messages and there is an equivalent

pair of declarations for each scalar data type. We could have defined a different

structure class for each scalar data type but this is unnecessary since all the

structure classes would have the same shape, namely one field that holds a string

constant.

The structure class called scalar is sufficient to represent the types int, real,

bool, string and file. It can also be used for type void and pntr since these act in

the same manner as scalars. A vector is represented by

structure VECTOR(cpntr elements)

Thus a vector of integers would be represented by

VECTOR(INT)

and a two dimensional vector of reals by

VECTOR(VECTOR(REAL))

Notice however that we do not give the vector representations constant names.

This is because there is an infinite number of types of vector, so we leave the

representations to be constructed as required. Notice also that the bounds of the

vector are not part of the type in S-algol and are therefore not represented. A

compiler for a different language might have included these.

A procedure representation will require to retain the types of the parameters

and the result for complete type checking of a call of the procedure. We therefore

represent a procedure type by

structure proc(cpntr args,result)

Sec. 9.4] Checking the Equality of Two Types 113

The parameters will be formed into a linked list of types using the structure class

structure cons(pntr hd,tl)

A structure class itself is represented by

structure STRUCTURE(pntr fields)

The fields are again a linked list of types. Finally a structure field is represented by

structure field(cpntr field.type)

We do not have constant names to represent procedure, structure class or structure

field types because again there is again an infinite number of them.

9.4 CHECKING THE EQUALITY OF TWO TYPES

Now that we have defined a representation of every data type in the language,

we must build an abstraction to check the equality of two types. In a recursive

descent compiler where the type checking is performed on the unwinding of the

recursion, the compiler always has a goal type. For example in compiling the

expression x or y the compiler will parse the clause x, check that its type is

boolean, then compile the clause y and check that it is also boolean. At any time

during the parsing the compiler has a goal type (boolean in the example) and an

actual type. Therefore the compiler requires an abstraction that will take the

representations of two data types and produce a boolean result depending on

whether or not the types are equal. We will call this abstraction procedure eq and

it must check equality for every data type. Since there is an infinite number of

possible data types in S-algol defined recursively, the procedure eq will be

recursive to model this. It may be written as follows

procedure eq(cpntr a,b -> bool)

a = b or

a is VECTOR and b is VECTOR and eq(a(elements),b(elements)) or

a is STRUCTURE and b is STRUCTURE and eq(a(fields),b(fields)) or

a is proc and b is proc and eq(a(args),b(args)) and

eq(a(result),b(result)) or

a is field and b is field and eq(a(field.type),b(field.type)) or

a is cons and b is cons and eq(a(hd),b(hd)) and eq(a(tl),b(tl))

Procedure eq has a body which is a rather large boolean expression which

will check that the data type representations of two S-algol data types are equal.

For scalar data types it is sufficient to test the two constant pointers for equality.

For vectors both the pointers must point to vector structures and have the same

type of elements. Notice that the recursive calling of procedure eq deals with the

case where a vector has more than one dimension. For procedures, the two

representations must both represent procedures and must have a one to one

correspondence in parameter and result types. Two structure classes must have

114 Type Matching [Ch. 9

the same fields and two fields must have the same field types before they are

equal. Included in the procedure eq is a check that two linked lists have elements

representing the same type. This allows the linked list of types for procedure

arguments and structure class fields to be compared. The procedure will therefore

accommodate any combination of the above data types.

It should be noticed that procedure eq will only check that two type

representations are the same. It will not check that either type is a legal type for

the language being compiled. For example, the procedure would give the result

true if it compared the representations of two vectors of procedures. Vectors of

procedures are not allowed under the type construction rules of S-algol. Therefore

the compiler must check elsewhere that illegal data objects are not being formed.

9.5 TYPE ERRORS

When the compiler discovers that the program it is compiling does not conform

to the type rules of the language it must issue an error report. Again the situation

is analogous to the syntax analysis layer where the compiler has a goal symbol

and an actual symbol. Here the compiler has a goal type and an actual type.

Therefore we will adopt the same approach as we did with the syntax analysis

and build ourselves an abstraction like procedure mustbe in the syntax analysis

that will take two types, check that they are equal and issue an error report if they

are not. If we call the the abstraction procedure match it may be written as

procedure match(cpntr a,b)

if ~eq(a,b) do bad.types(a,b)

procedure bad.types(cpntr a,b)

err.message("** Type Error ** Type ",display(b),

" found where Type ",display(a)," expected ")

If by convention, in the compiler, the first type represents the goal type and

the second type the actual type then the user will have little difficulty in

understanding the error message. Notice that we have used the same procedure

to print the error message as the syntax analysis does, thus unifying the error

reporting mechanism. Procedure display takes a representation of a data type

and produces the string name of that type. This is a simple task for scalar types

but the procedure must again be recursive, like procedure eq, to evaluate all the

possible data type combinations. The following will suffice.

procedure display(cpntr -> string)

case true of

t is scalar : t(t.name)

t is VECTOR : star.sy ++ display(t(elements))

t is STRUCTURE : "structure(" ++ display(t(fields)) ++ ")"

Sec. 9.5] Type Errors 115

t is proc : "procedure(" ++ display(t(args)) ++

" -> " ++ display(t(result)) ++ ")"

t is field : "field " ++ display(t(field.type)) ++ ")"

t is cons : display(t(hd)) ++ comma.sy ++ display(t(tl))

default : ""

Procedure display will take care of the recursive nature of the type

representations. Notice that we have again included a method of unravelling a

link lists of types.

We will find later that there are a few occasions when not one but a number

of types are legal. For example, if we compile the expression

a + b

then when we check the type of the first clause it may be int or real. In this case

it is not sensible to issue the above error report and we invent another abstraction

called procedure bad.type to issue a clearer error message.

procedure bad.type(cpntr t)

err.message("** Type Error ** Type ",display(t),

" is not compatible here " , "" , "")

The two empty strings are to balance the number of parameters for procedure

err.message.

The above settles the problem of reporting context sensitive type errors. What

about recovery? Fortunately this problem is not as great as it was for syntax

analysis. For every production in the syntax there is a type rule which means

that in most cases we know the resultant type of the production. For example the

for clause is always of type void and the or expression is always of type bool.

Therefore we can report a type error and force recovery by always returning the

correct type to the calling procedure. Thus the calling procedure will not see any

type error and recovery will be complete. However in an incorrect program it is

not always possible to form the types correctly and we must allow for this in the

compiler. For instance what type should we force on

if a < b then 1 else true

When the compiler cannot form the type of a production correctly because it is

in error then we wish to report that error only once. Therefore we will introduce

type ANY which the compiler can use in such cases. Type ANY is defined in the

compiler by

let ANY = scalar("undefined")

By ensuring that type ANY will match any other type in the compiler we also

ensure that no more error messages will be generated by this error. Type ANY

will only be used until the syntax analyser has recovered at which point the legal

type rules can be enforced by the parsing procedure.

116 Type Matching [Ch. 9

To ensure that type ANY matches any other type we simply refine procedure eq

to

procedure eq(cpntr a,b -> bool)

a = b or a = ANY or b = ANY or

a is VECTOR and b is VECTOR and eq(a(elements),b(elements)) or

a is STRUCTURE and b is STRUCTURE and eq(a(fields),b(fields)) or

a is proc and b is proc and eq(a(args),b(args)) and

eq(a(result),b(result)) or

a is field and b is field and eq(a(field.type),b(field.type)) or

a is cons and b is cons and eq(a(hd),b(hd)) and eq(a(tl),b(tl))

We have developed a very simple and inexpensive technique for matching

types, reporting errors and recovering from type errors and will now demonstrate

how the abstractions and the concepts involved are used in refining the syntax

analyser.

9.6 THE TYPE CHECKING LAYER

Every procedure in the syntax analysis that is concerned with data types and type

checking (and that includes nearly all of them in S-algol) must be re-written in

this layer. We have already seen the declarations required in the compiler to

represent the data types. We will assume that they have been made. The task for

every procedure in the syntax analysis at this level is to check the type of

everything that is causes to be parsed and to return the appropriate resultant type

to the calling procedure.

We will develop this refinement in some detail in order to give the reader

sufficient insight to perform it for his own language. The reader is advised to

study this section well because it displays the essence of writing a recursive

descent compiler by stepwise refinement. It should be compared with the version

of the compiler in section 6.4. Let us start with procedure program.

BNF <program> ::= <sequence>?

TR {VOID} ? ! {VOID}

That is, the only valid program is a void sequence followed by a ‘?’. We may

therefore write

procedure program

begin

next.symbol

match(VOID , sequence)

mustbe(question.sy)

end

Procedure program does not need to return a type since it is only called from the

main program and the type of the compiled sequence has already been checked.

Sec. 9.6] The Type Checking Layer 117

The call of procedure match takes the goal type void and the result of compiling

a sequence. We move on to compiling sequences.

BNF <sequence> ::= <declaration> [; <sequence>] |

<clause> [; <sequence>]

TR <declaration> ! {VOID}

{VOID} ; {T} ! {T}

A declaration is always of type void. The second rule indicates that a sequence

is legally constructed only if every declaration and every clause followed by a

semi-colon is of type void. If they are followed by a semi-colon and a further

clause or declaration, of type T (where T can be void) then the whole sequence is

of type T. Since declarations are always of type void the construction rule really

applies to sequences of clauses but has to be made complete for the formal

definition. The following will do for procedure sequence

procedure sequence(-> pntr)

begin

let type := VOID

let more := true

repeat {

match(VOID,type)

case symbol of

let.sy : let.decl

procedure.sy : proc.decl

structure.sy : structure.decl

forward.sy : forward.decl

default : type := clause

if ~have(semi.sy) do

if recovering then

begin

while symbol " semi.sy and ~eof do next.symbol

recovering := false

end else more := false }

while more

type

end

This constitutes the first major re-write. Each time round the loop, (including

the first time), the type is checked to be void. Since the declarations are all void

and since the declaration procedures are only called from procedure sequence it

is not necessary for them to return a type. The declaration procedures will not

alter the value of the variable called type. The result type is therefore either void

or the type of the last compiled clause.

118 Type Matching [Ch. 9

We continue to procedure clause

procedure clause(-> pntr)

case symbol of

if.sy : if.clause

repeat.sy : repeat.clause

while.sy : while.clause

for.sy : for.clause

case.sy : case.clause

abort.sy : abort.clause

write.sy : write.clause

default : expression

Little has changed here except that the procedures on the right hand side of the

case expression all return a type which is the result type of the clause being

compiled.

Let us now take some of these clauses and consider them in turn. The if

clause has two forms

BNF if <clause> do <clause>

TR if {BOOL} do {VOID} ! {VOID}

and

BNF if <clause> then <clause> else <clause>

TR if {BOOL} then {T} else {T} ! {T}

which can be translated to

procedure if.clause(-> pntr)

begin

next.symbol

match(BOOL , clause)

if have(do.sy) then { match(VOID , clause) ; VOID } else

begin

mustbe(then.sy)

let t = clause

mustbe(else.sy)

match(t , clause)

t

end

end

The first clause must be of type bool. In the if ... then ... else parsing, the two

types must be the same giving the result type and in the if ... do parsing, the type

must be void. Notice how the type rule is enforced for the calling procedure by

the if ... do parsing section returning the type void whether a match was made or

not. This is done whenever possible in the compiler for context sensitive error

Sec. 9.6] The Type Checking Layer 119

recovery. For example the while clause

BNF while <clause> do <clause>

TR while {BOOL} do {VOID} ! {VOID}

would be coded as

procedure while.clause(-> pntr)

begin

next.symbol

match(BOOL , clause)

mustbe(do.sy)

match(VOID , clause)

VOID

end

It should be obvious that most of the S-algol clauses can be coded with little

difficulty using the above technique. Some of the procedures present a few

different ideas but nothing radically new. We will therefore turn our attention to

expressions which require a little more persuasion to conform to our type matching

technique than has been required up to now. We can also resolve the problems

left by Chapter 6.

Let us start with the first two rules

BNF <expression> ::= <exp1> [or <exp1>]*

TR {BOOL} or {BOOL} ! {BOOL}

A little explanation should help here. The type rule indicates that two

expressions separated by the reserved word or must be of type bool with the

result being type bool. Any other type combination is illegal in this context.

However the BNF allows an expression on its own in which case the type will be

decided by procedure exp1 and not procedure expression. Also the type rule

may be applied any number of times allowing any number of boolean expressions

separated by the reserved word or. We may code this as

procedure expression(-> pntr)

begin

let t = exp1

case symbol of

or.sy : begin

match(BOOL,t)

while have(or.sy) do match(BOOL,exp1)

BOOL

 end

default : t

end

120 Type Matching [Ch. 9

Notice that if the or symbol is not present then the type returned from

procedure exp1 is the result type. Otherwise the result type is bool. We have re-

arranged the code for this procedure so that the type of the first expression is

checked before we parse the or symbol. In this way we keep the syntax and type

errors messages in phase and in the correct place on the printed line. We must

remember to do this whenever necessary in the compiler.

Procedure exp2 is written from the rules

BNF <exp1> ::= <exp2> [and <exp2>]*

TR {BOOL} and {BOOL} ! {BOOL}

which gives the code

procedure exp1(-> pntr)

begin

let t = exp2

case symbol of

and.sy : begin

match(BOOL,t)

while have(and.sy) do match(BOOL,exp2)

BOOL

 end

default : t

end

which requires little explanation as it is the same form as procedure expression.

The next expression in the definition is more difficult mainly because it parses

more symbols and deals with more data types. The procedure must also deal

with our first unary operator. The defining rules are

BNF <exp2> ::= [~]<exp3>[<relop><exp3>]

The relevant type rules are

~ {BOOL} ! {BOOL}

{PNTR} is {STRUCTURE} ! {BOOL}

{PNTR} isnt {STRUCTURE} ! {BOOL}

{T} = {T} ! {BOOL}

{T} " {T} ! {BOOL}

{TT} <relop> {TT} ! {BOOL}

where TT is one of the types int, real or string and T is any type. That is, equality

and inequality are defined between any two S-algol data objects but the other

relational operators are only defined on types int, real and string. We can code

the procedure as

Sec. 9.6] The Type Checking Layer 121

procedure exp2(-> pntr)

begin

let not = have(not.sy)

let t := exp3

if not do { match(BOOL , t) ; t := BOOL }

case symbol of

is.sy,isnt.sy : begin

match(PNTR , t)

next.symbol

mustbe(identifier.sy)

BOOL

 end

eq.sy,neq.sy: begin

next.symbol

match(t , exp3)

BOOL

 end

le.sy,lt.sy,

ge.sy,gt.sy : begin

t := rel.type(t)

next.symbol

match(t , exp3)

BOOL

 end

default : t

end

There are two new problems here. First of all in compiling the relational operators

is and isnt we have not checked the type of the identifier. This will be done by

the second stage of the context sensitive analysis and we leave it to chapter 10

where we consider the use of identifiers. Secondly we must write procedure

rel.type to check for a legal type for the selected relational operators. The

following will serve

procedure rel.type(pntr t -> pntr)

case true of

t is STRING,

t is INT,

t is REAL : t

default : { bad.type(t) ; ANY }

We now see how to code the situation where more than one but not all types are

legal. Notice that when there is an error in a relational operator, the compiler

issues an error message through procedure bad.type and not procedure bad.types

(see section 9.5) before forcing recovery by returning type ANY.

122 Type Matching [Ch. 9

We will leave out procedures exp3 and exp4 since we have probably given

enough detail already. The procedures contain a few extra problems but again

nothing essentially new.

Therefore we arrive at the parsing of the basic units of the expression. We

cannot type check anything involving names yet but we will try the rest. For

brevity we will not include any form of the vector expression as it is

straightforward and we will leave it to the reader to code.

BNF

<exp5> ::= <name> [(<clause> <bar> <clause>)]* |

<literal> |

{ [<sequence>] } |

begin [<sequence>] end |

vector <bounds> of <clause> |

@ <clause> of <type1> <bra> <clause.list> <ket>

<literal> |

(<clause>)

TR

<name> ({INT} | {INT}) ! {STRING}

{ literal } ! { literal.type }

 begin {T} end ! {T}

vector {INT} :: {INT}, ... of {T} ! {*T}

@ {INT} of <type1> [{T-clause.list}] ! {*T}

 ({T}) ! {T}

This gives rise to the code

procedure exp5

begin

let t := case symbol of

identifier.sy : { next.symbol ; ANY } !for the moment return ANY

literal.sy : { let t = literal.type ; next.symbol ; t }

begin.sy , lcb.sy : block !lcb stands for left square bracket

vector.sy ,at.sy : vector.exp

lp.sy : begin

next.symbol

let t = clause

mustbe(rp.sy)

t

 end

default : { syntax("Expression") ; ANY }

if have(lp.sy) do if t = STRING then t := substring else

if t = PNTR or t is vector then t := exp.list(t)

else syntax(lp.sy)

Sec. 9.6] The Type Checking Layer 123

if have(assign.sy) do

begin

next.symbol

match(t , clause)

t := VOID

end

t

end

This is not quite complete. The identifiers have not been type checked yet. Also

an identifier may be the name of a structure creation or a procedure call both of

which cases will be dealt with in chapter 10. Procedure block would be

procedure block(-> pntr)

begin

let last = if symbol = begin.sy then end.sy else rcb.sy

next.symbol

if have(last) then VOID else

begin

let t = sequence

mustbe(last)

t

end

end

to cover the type rules

begin end ! {VOID}

begin {T} end ! {T}

with similar rules for braces. The left parenthesis rule covers

({T}) ! {T}

and finally if it is none of these, we issue a syntax error report and return type

ANY.

We have procedure substring to implement the type rule

<name>({INT} <bar> {INT}) ! {STRING}

procedure substring(-> pntr)

begin

repeat {

match(INT , clause)

mustbe(bar.sy)

match(INT , clause)

mustbe(rp.sy) }

while have(lp.sy)

STRING

end

124 Type Matching [Ch. 9

Finally procedure exp.list will require to find the type of a structure field

when compiling field accesses and we will therefore save it up for chapter 10

where declarations are considered more fully.

This completes a rather lengthy discussion of the stepwise refinement for

the type matching layer. As can be seen the code has expanded and we will

therefore only use sections of it in future refinements to keep this book to a

reasonable length.

9.7 SUMMARY

The type checking layer constitutes the first major re-write in the stepwise

refinement of our compiler. We have introduced a method of defining the type

rules that works as a set of qualifying rules on the BNF specification of the

context free syntax. It is our view that defining the language in this way has a

twofold advantage. First, separating the two sets of rules makes the program

forming rules easier to understand for the user and second, it makes it easier for

the compiler writer to build the compiler in layers as we are doing.

Before we could write the code for this refinement we had to build

representations of the data types being compiled and procedure eq was invented

to check the equality of two data type representations. Using procedure eq and

the representations we built an abstraction to match two data types and issue an

error report if they were not compatible. It was also found necessary to have

another method of error reporting when the compiler had more than one possible

legal type.

The strategy for context sensitive error recovery was then devised. Using

the type rules, every procedure in the syntax analysis was redesigned to check

the type of any syntactic element it caused to be parsed, and to return the type of

the object it had just parsed to the calling procedure. Thus each procedure becomes

a function that performs the syntax analysis as the recursion progresses and the

type checking as the recursion unwinds. When a syntax error was found and the

type could not be formed correctly, the type ANY was used to eliminate spurious

error messages and force recovery.

Finally, since it is the first major re-write of the syntax analysis, we spent a

lot of effort in describing how the ideas in this chapter are used in practice.

CHAPTER 10

Name and Scope Checking

10.1 THE NEED FOR A SYMBOL TABLE

In the second part of the context sensitive analysis we are concerned with the use

of names in a program. The compiler needs to collect information on a name

when it is declared and utilise that information when the name is subsequently

referenced in order to check that it has been used legally. For the moment, in our

compiler, all that we need to record is the name itself and its type, but we will see

later that we must extend this information to help in the generation of code. The

link between declaration and use is made by recording the information in a data

structure called the symbol table.

The symbol table is also used to aid the detection of errors in a program.

When a name is declared, a check must be made to ensure that that it does not

already exist in the same scope environment. Also when a name is used, the

symbol table is consulted to ensure that it has been declared. If either of the

above errors is detected then the abstractions which manipulate the symbol table

must issue an error report. Obvious variations would be appropriate if we were

compiling another language. For instance in Fortran the first use of a variable

may also be its defining occurrence.

The symbol table is central to the operation of the compiler and must therefore

be used efficiently. The main intrinsic aims of using the symbol table are to

insert entries, access entries and model the scope rules of the language. The

technological problems in using the symbol table centre around how to organise

it in order that the intrinsic aims may be implemented efficiently in terms of time

and space.

10.2 SYMBOL TABLE ORGANISATION

The problem of the symbol table organisation is essentially the same as the one

we had in Chapter 7 when we considered the accessing of reserved words. The

difference is that there are a fixed number of reserved words and that they are

known in advance. This allows sensible predictions to be made on how the table

126 Name and Scope Checking [Ch. 10

should be laid out and accessed. Unfortunately the compiler writer has little

chance of predicting which names a programmer will invent and therefore has to

choose a general method of organisation that will perform well in most cases.

Whichever method of organisation is used, it is possible to invent a pathological

set of names where the method will perform badly. As with the reserved word

problem the three main methods of organisation are linear lists, binary trees and

hash tables. We will study each in turn.

A symbol table that is organised as a linear list may be implemented by a

vector or a linked list. If a vector is used, then the table will be of fixed size,

enforcing an artificial limit on the number of names, but will carry no redundant

information for each entry. If a linked list is used then the list may grow

dynamically with the number of names in the program, but each entry must contain

the overhead of the link. With both methods the insertion of an entry to the head

of the linked list or the first free element of the vector, is fast. The modelling of

scope is also fast because we only have to remember where the scope levels start

in the vector or list on entering a new level, and on scope exit we re-use the space

in the vector or throw away part of the list for the garbage collector to deal with.

The main advantage of a linear technique is that it is simple to organise and

code. The main drawback of the method is that it is very slow in accessing

entries. The list must be scanned sequentially and in the correct scope order

since the same name may appear legally at different levels of scope. If there are

n entries in the list there will be on average n/2 comparisons in every access but

it will be much worse than this if names defined in outer blocks are used frequently.

Although the linear list method is simple to organise it almost never performs

well enough in practice because of this excessive access time. Attempts have

been made to speed up the access time but this usually comes at the expense of

something else. For example re-ordering the list if it is implemented as a vector

and accessing the entries using a binary chop. This speeds up access but

complicates the modelling of scope and slows down the insertion time. The

scoping problem can be overcome by using a different vector for every level of

scope but the insertion problem remains.

A symbol table organised as a binary tree gives the performance of the binary

chop method without penalising insertion or scope modelling too badly. To each

entry in the symbol table we add two fields, left and right, which are used to link

the entries into a binary tree. We will assume that the tree is ordered alphabetically.

The tree is organised such that any entry has the property that all the names that

may be accessed through the left field are less than (i.e. come before in dictionary

order) the name in the current node, and all the names that can be accessed

through the right field are greater.

If the binary tree is balanced and has n entries then the average number of

comparisons for insertion or access is log n. This will almost certainly be faster

than the sequential search. The problem of modelling scope is overcome by

having a separate tree for every level of scope. This solution is reasonable since

Sec. 10.2] Symbol Table Organisation 127

the table is not fixed size but dynamically allocated. Therefore the only redundant

space in the trees is in the left and right fields of every entry.

One disadvantage to the binary tree method is that the tree may become very

unbalanced and therefore reduce to a linked list. This may be overcome by

balancing the tree from time to time although this can be time consuming.

However the problem is not too serious since it only arises if the programmer

declares his names in alphabetical order. This is unlikely to happen unless the

program has been produced automatically by some computational process e.g. a

macro generator.

The last technique for organising a symbol table that we will discuss is a

hash table. The position of an entry in the hash table is determined by manipulating

the characters in the name to give the hash key to the table. To calculate the

hash key, the hash function may take into account the length of the string, the

position of the characters in the string and the characters themselves. The hash

key is then used to index the symbol table to find the required entry. In designing

the hash function the trade-offs are between the speed of calculation of the key,

the range of hash keys that the hash function gives and therefore the size of the

hash table, and the distribution of the names over the table.

To insert a name into the hash table we calculate the hash key and index the

table. If there is an entry already in the table at this position we have a collision.

To overcome this problem we may use a second hash function to calculate a new

key or we may link all the entries for one hash key together. Thus we may have

to chain down a linked list to insert the entry. To access an entry in the symbol

table the mechanism is the same as for insertion.

If too many names turn out to have the same hash key then we have a situation

called clustering. Obviously we wish to avoid clustering because the mechanism

may degenerate into searching a linked list. The choice of hash function controls

the distribution of names over the table but it should be remembered that, even if

the hash function performs well in testing, it may not in practice because the

distribution of names in the test may not conform to real life situations. For this

reason the hashing algorithm should be tested on non random as well as random

data and monitored in use.

An often neglected problem with hash tables is that it is awkward to model

the notion of scope present in many so called Algol-like languages. The hash

table could be duplicated for every level of scope but this is unwise because of

its fixed size. Another method is to link all the entries for one level of scope

together in a linked list in the table. However this will make insertion and scope

exit expensive since we will have to construct and unravel the linked list.

Hash tables usually provide very fast insertion and access facilities. However

they work better with languages that do not have the Algol type scope rules e.g.

Fortran and assemblers. How well a hash table will perform in practice depends

on the hashing function, the set of programmer-provided names and the frequency

of scope changes.

128 Name and Scope Checking [Ch. 10

We must choose one of the above methods to implement our symbol table.

Since we are primarily interested in the layering of the compiler and not the

performance of the symbol table, we will use the binary tree method with a new

tree for each scope level. This will illustrate the problems well and give fair

performance.

10.3 MODELLING SCOPE

The symbol table for each level of scope is organised as a binary tree. When a

new level of scope is entered, a new binary tree is created and it is thrown away

when we leave that level of scope. If the levels of scope are modelled as a linked

list, then entering a scope level entails making a new node in the list. Leaving a

level of scope entails throwing away the last node made in the list. By using the

structure class called cons we can write the abstractions for entering and leaving

a level of scope. They are

let env.list := nil

procedure enter.scope ; env.list := cons(nil , env.list)

procedure exit.scope ; env.list := env.list(tl)

The variable called env.list points to the start of the linked list of binary

trees. On entering a level of scope a new node is constructed with a new binary

tree as its head and the rest of the environment list as its tail. On leaving a level

of scope, we merely remove the current binary tree from the list. At any time in

between, the local binary tree is addressed by env.list(hd).

We may now re-write procedure block to model the scope levels.

procedure block(-> pntr)

begin

let last = if symbol = begin.sy then begin.sy else rcb.sy

next.symbol

if have(last) then VOID else

begin

enter.scope

let t = sequence

exit.scope

mustbe(last)

t

end

end

The insertion of the two procedure calls ensures that all the names declared

in the sequence are declared at the correct level and removed when we leave that

level. This very simple mechanism must be used wherever the scope level

changes.

Sec. 10.4] Declarations 129

10.4 DECLARATIONS

At this stage in the development of our compiler, the entries in the symbol table

will contain the name of each object and its type. We therefore require a structure

class to contain this information. It may be defined by

structure link(cstring name ; pntr type , left , right)

We will now consider the construction of the binary trees that model each

level of scope. We must build an abstraction that will take a name and the type

of an object and enter it in the tree. This is procedure declare

procedure declare(cstring s ; cpntr t)

env.list(hd) := enter(env.list(hd) , link(s , t , nil , nil))

Procedure declare forms a new entry and calls procedure enter to place it in the

tree. Since the binary tree may be empty we must update the head of the tree.

No attempt is made to balance the tree in this version. However it could be made

to do so at considerable expense. Procedure enter may be written as

procedure enter(cpntr head , new -> pntr)

case true of

head = nil : new

new(name) < head(name) : begin

head(left) := enter(head(left),new)

head

 end

new(name) > head(name) : begin

head(right) := enter(head(right),new)

head

 end

default : { err.message("The name ",new(name),

"has ","already been ","declared) ; head }

The procedure enter takes an entry and places it on the binary tree unless the

name is already there in which case it reports an error. The parameter head is the

head of the binary tree currently being scanned and new is the new entry.

We can now re-code the procedure to compile the let declaration to use these

abstractions.

procedure let.decl

begin

next.symbol

let n = the.name

mustbe(identifier.sy)

let eq = have(eq.sy)

if ~eq do mustbe(assign.sy)

t := clause

130 Name and Scope Checking [Ch. 10

if t = VOID or t is field do { bad.type(t) ; t := ANY }

declare(n , if eq then const(t) else var(t)) end

This procedure is considerably different from what we last saw it in section 6.4 .

We have introduced the type information and the checking for legal types. We

have also introduced a new idea. When the name is declared we have made the

type into a field of another structure which indicates whether the name is constant

or variable. This is determined by whether the name is introduced using ‘:=’ or

‘=’. The definitions of the structure classes are

structure const(cpntr const.type)

structure var(cpntr var.type)

We will see how this information used shortly.

There is one final point about the procedure to parse a let declaration: if the

name is a duplicate then the error message will appear after the initialising clause

which could be very long. If this is not considered good enough then a check for

duplication can be made earlier remembering to suppress the second error report

that will be issued when the object is entered in the tree.

10.5 ACCESSING THE BINARY TREE

In accessing the symbol table, the syntax analysis procedures will provide a

name and expect its type in return. Therefore we must provide an abstraction for

this.

procedure lookup(cstring s -> pntr)

begin

let p = search.table(s)

if p = nil then

begin

err.message("Undeclared name ** ",s,"** has ","been ","used")

declare(s , ANY)

ANY

end else p(type)

end

Procedure lookup searches the name table and if it finds a valid entry it returns

the type of that object. If the search does not yield an entry then we have an

undeclared name and an error report is issued. In this case the type ANY is

returned to suppress further type errors. Notice that we have also declared the

name so that the user only receives one error message for every undeclared name.

To search the table we use

Sec. 10.5] Accessing the Binary Tree 131

procedure search.table(cstring s -> pntr)

begin

let tree := env.list ; let entry := nil

while tree ! nil and entry = nil do

begin

entry := search.tree(s , tree(hd))

tree := tree(tl)

end

p

end

This procedure takes each binary tree in the environment list in turn and uses

procedure search.tree to look for the name in the tree. The process stops when

the entry is found or when we get to the end of the table. Notice that the binary

trees are searched in scope order. We may write procedure search.tree as

procedure search.tree(cstring s ; cpntr head -> pntr)

begin

let entry := head

while entry ! nil and s ! entry(name) do

entry := if n < entry(name) then entry(left) else entry(right)

entry

end

Procedure search.tree searches the binary tree at a particular level of scope. The

process stops when an entry is found or the tree has been completely scanned.

Otherwise we descend the tree going left or right depending on the value of the

name and the entry in the tree.

We have not quite finished with procedure lookup. When we entered the

links in the tree we recorded whether the names were constants or variables.

However this is only important if the names are used as L-values i.e. on the left

hand side on an assignment symbol. If the names are used as R-values then it is

of no importance whether they are variables or constants since we are not trying

to assign to them but only require their value. We will need to re-write procedure

lookup to return the correct type if the name is used as an R-value and its type

plus the constant/variable information if the name is used as an L-value. The

procedure will be told how the name is used and we re-write it as

procedure lookup(cstring s ; cbool r.value -> pntr)

begin

let entry = search.table(s)

if entry = nil then

begin

err.message("Undeclared name ** ",s,"** has ","been ","used")

132 Name and Scope Checking [Ch. 10

declare(s , ANY)

ANY

end else

begin

let this = entry(type)

if r.value then

case true of

this is var : this(var.type)

this is const : this(const.type)

default : this

else this

end

end

10.6 REFINEMENT OF THE SYNTAX ANALYSER

We are again in a position to refine the syntax analyser. This time we will refine

any procedures that refer to the compilation of names in order to complete the

type checking. The first place that we encountered a name was in procedure

exp2 (see section 9.6) and that part may be re-written as

case symbol of

is.sy , isnt.sy : begin

match(PNTR , t)

next.symbol

t := lookup(the.name , R.value)

if t isnt STRUCTURE do bad.type(t)

mustbe(identifier.sy)

BOOL

 end

where R.value and L.value are defined by

let right.context = true ; let left.context = false

The procedure exp2 when compiling the sections for is and isnt now looks for

the type of the name just found by the lexical analyser and checks that the type

represents a structure class. The name may only be used as an R-value in the

situation.

The major use of the symbol table comes in procedure exp5. In the section

that compiles identifiers we must complete the parsing and return the type. This

will give the first part of procedure exp5 as

identifier.sy : begin

let n = the.name

next.symbol

Sec. 10.6] Refinement of the Syntax Analyser 133

let t = lookup(n , symbol = assign.sy)

if t is proc then proc.call(t) else

if t is STRUCTURE then structure.creation(t) else t

end

There are two items to notice here. Firstly, the identifier may be used as an L-

value or an R-value and therefore the syntax analyser looks at the next symbol to

see if it is the assignment symbol before indicating this to the procedure lookup.

Secondly if the type of the name is a procedure then we have a procedure call

which is parsed by the procedure proc.call. This procedure must return the correct

type for the call. It may be coded as

procedure proc.call(cpntr t -> pntr)

begin

let params := t(args)

if params ! nil do

begin

mustbe(lp.sy)

repeat { let param = params(hd)

if param is proc or param is STRUCTURE then

begin

match(param , lookup(the.name , R.value))

next.symbol

end else match(param , clause)

params := params(tl) }

while have(comma.sy) and params ! nil

mustbe(rp.sy)

end

t(result)

end

It can be seen in this procedure why we require to record the complete type

information for procedure names. The procedure proc.call takes the linked list

of parameter types, if there are any parameters, and checks them one by one

against the clauses compiled. The apparent complication in matching the

parameter types is because procedures and structure classes may be passed as

parameters in which case the clause will be an identifier only. The parsing of the

parameters ceases when we run out of target parameters or commas. The

procedure finally returns the result type of the compiled procedure.

There is a procedure similar to proc.call to compile structure creations.

We can now return to the problem of parsing the assignment clause. In

Chapter 6 we made the decision to parse it as

<expression> ::= <clause>

134 Name and Scope Checking [Ch. 10

and correct this overgenerosity using the type rules. We now have to apply these

type rules and restrict the left hand side to assignable objects. We laid the

foundations of this earlier by recording in the symbol table an indication of whether

an object is variable or not. We can therefore parse the assignment part of

procedure exp5 by

if have(assign.sy) do

begin

t := if t is var then t(var.type)

else { bad.type(t) ; ANY }

next.symbol

match(t , clause)

t := VOID

end

The simplicity of this indicates the strength of the earlier design. However it still

leaves one problem in the parsing of expressions. The problem arises in parsing

clause lists that constitute vector or structure accessing. Since structure and

vector accessing can be mixed freely in S-algol we can compile both in the same

section of code. The resultant type of indexing will never be variable but we

may wish to assign to a vector element or a structure field. We must therefore

take care of this in procedure exp.list which can be written as

procedure exp.list(cpntr t -> pntr)

begin

let base := t ; let new.type := nil

mustbe(lp.sy)

repeat new.type := subscript(base , clause)

while have(comma.sy) do base := new.type

mustbe(rp.sy)

if symbol = assign.sy then var(new.type) else new.type

end

procedure subscript(cpntr base,index -> pntr)

if eq(PNTR,base) and index is field then index(fieldt) else

if base is vector and eq(INT,index) then base(elements) else

begin

bad.types(base , index)

ANY

end

These procedures compile any combination of structure field and vector element

accesses as defined by the syntax. Note how the type checking is enforced by

procedure subscript and how the type is altered if the element is going to be

assigned to.

Sec. 10.7] Summary 135

10.7 SUMMARY

The compiler uses the symbol table as a link between the declaration of a name

and its use. The information that is placed in the symbol table on the declaration

of a name is used to check that subsequent uses of the name are valid. Whilst the

symbol table is used in performing this function, it will also be used to report

errors when they are encountered.

Since the symbol table is central to the operation of the compiler it must be

used efficiently. The intrinsic aims of the symbol table involve inserting entries,

accessing entries and modelling scope. The technological problems of

implementing the symbol table centre around implementing these intrinsic aims

efficiently.

The methods of implementing the symbol table were discussed in detail. As

with the reserved word problem of chapter 7 the three methods are linear lists,

binary trees and hash tables. For our compiler we chose a linked list of binary

trees for the symbol table.

Abstractions to insert entries, access entries and model scope in the symbol

table were then invented and coded and finally applied to the syntax analyser to

complete the context sensitive analysis.

CHAPTER 11

Abstract Machine Design

11.1 COMPILER OUTPUT

We have completed both the syntactic and the context sensitive analysis phases

of our compiler and are now ready to add the final layers of code generation.

The code that is generated by the compiler is a program that is semantically

equivalent to the source program but may vary depending on the target machine.

There are a number of design aims that the compiler writer may wish to achieve

in generating code. For example, the designer may wish the compiler to produce

code that may be input to an assembler, another compiler, a loader or be directly

executable on a real machine or even by an interpreter. No matter which of the

above options or variants of these options is chosen, the compiler’s task is

essentially the same and only the output strings differ.

The designer may also wish the compiler to be portable or to produce efficient

code. These are usually conflicting design aims; the more efficient the code

becomes, the more specialised the code generation has to be, thereby losing its

generality of application and portability. The code generation will always be

machine dependent and all that the compiler writer can achieve is to limit the

machine dependency while attaining an acceptable level of code efficiency. The

portability of the compiler and the efficiency of the generated code therefore

depend on the emphasis placed on these aims when designing the compiler.

To generate any code at all the compiler must simulate the execution of the

program being compiled. The simulation may vary from a simple simulation of

the stack levels in an Algol-like language to an elaborate static analysis of the

program being compiled. The efficiency of the code depends on the sophistication

of this simulation. The portability of the code produced also depends on the

simulation but it should be realised that this is different from the portability of

the compiler itself which will depend on how isolated from the rest of the compiler

the code generation can be made. This can be achieved by inventing abstractions

for the code generation and restricting the machine dependencies to these

abstractions. Implementing the compiler on another machine should only entail

re-writing the code generation abstractions and then compiling this new version

[Sec. 11.1] Compiler Output 137

of the compiler with the already existing working one. This idea is called

bootstrapping and is discussed further in chapter 13.

In the earlier chapters we have deliberately restricted ourselves to one pass

recursive descent compilers as outlined in chapter 5. So far in the syntactic and

the context sensitive analysis we have not met any design aim that would cause

us to alter the one pass nature of the compiler. However, to achieve portability,

it may be sensible to organise the compiler as two separate programs or passes.

The first pass would perform the lexical, syntactic and context sensitive analysis

and output a machine independent form of the program. The second pass would

then take this intermediate form and produce code for the target machine. This

means that all the machine dependencies can be contained in the second pass

which would be the only part of the compiler to be re-written when moving to

another machine.

Several well known and successful compilers are organised in this manner.

For example, the Pascal P-code compiler [1] is a recursive descent compiler

which produces as output an assembly language program for a hypothetical

abstract machine, the P-code machine. The assembly code can then be assembled,

loaded and executed by an interpreter. Alternatively the assembly code can be

translated into real machine code by a second pass code generator. This achieves

a fair level of portability but has the drawback that the full power of the target

machine may be difficult to realise, especially if the P-code instructions are less

powerful than the target machine instructions.

The problem of code generation could easily fill a book on its own. We do

not have the space to involve ourselves in discussing solutions to the problem at

great length. The reader is therefore referred to Aho and Ullman [9] for further

coverage of this topic. In order to keep this section understandable and short,

and since the variety of real machines is so great, we will design an abstract

machine to run S-algol and invite the reader to adapt this abstract machine for

his own use where necessary. We can then generate code for this abstract machine

and complete our compiler.

While it is obviously easier to generate code for an ideal abstract machine

than a real computer, the mechanism is the same and our compiler will be just as

complete. We will not adopt the Pascal approach but rather meet all the problems

head on by producing code which can be directly executed without the aid of an

assembler or loader. This is equivalent to producing a directly executable core

image for a real machine. To produce code for a real machine, the code generation

section of the compiler could be altered so that, instead of issuing the abstract

machine instructions, it could issue a sequence of instructions for the real

computer. We will therefore gain little in illustrating the construction of the

compiler by generating real machine code rather than abstract machine code.

For the rest of this chapter we will discuss the design of the S-algol abstract

machine.

138 Abstract Machine Design [Ch. 11

11.2 THE S-ALGOL ABSTRACT MACHINE

The architecture of any abstract machine should be determined by the power of

the language it has to support. The recursive nature of the block structured

languages, such as the Algols, lends itself to implementation by a stack such as

described by Hauck and Dent [2]. Most of the implementations of the Algols are

based on variations of the beta machine of Randell and Russell [3]. However, it

should be noted that the beta machine is not sufficient to support languages like

Algol W, Pascal, Algol 68 or S-algol which, although predominately stack based,

require a second area of dynamically allocated store usually known as the heap.

Many variations of the beta machine exist (e.g. Pascal P-code [1] is such a

machine) and wherever possible the S-algol machine has drawn on their

experience. The overall design tenet was to design a simple machine to support

S-algol. The resultant machine is the S-code machine and its description falls

naturally into the three categories of stack organisation, heap organisation and

the instruction set.

11.3 THE STACK

The S-algol compiler produces S-code which is a form of reverse polish

instruction code. The S-code is ideally executed on a stack machine. The stack

is used to facilitate block and procedure entry and exit, to provide space for

programmer-named objects and to provide space for expression evaluation.

Expression evaluation is always performed on the re-usable space at the top of

the stack and since the technique is well known, little more will be said about it

here.

On block or procedure entry or exit, information is placed on or removed

from the stack. This information which contains a Mark Stack Control Word

(MSCW), space for local objects, parameters and working space for expression

evaluation, is sometimes known as a stack frame. Since the length of each

stack frame can be different, they must be linked together to allow correct exit

from the block or procedure. Therefore, the MSCW contains a dynamic link

which points to the base of the previously activated stack frame. Thus, the

dynamic links form a chain of the currently activated blocks or procedures, known

as the dynamic chain.

By its very nature the stack records the dynamic evaluation of a program.

Some method is required to reflect the static nature (i.e. the scope rules), since

not all of the stack frames available on the stack need be in scope. The MSCW

contains a second pointer, known as the static link, which points to the stack

frame of the immediate static outer block or procedure. These static links form

the static chain which can be used to find the stack frame base of any block or

procedure that is in scope.

The position of a stack frame for a block or a procedure on the stack may

vary depending on the dynamic evaluation of the program. Therefore, the compiler

Sec. 11.4] The S-Algol Stack 139

cannot calculate the absolute address of stack items other than those of the

outermost block. However, if dynamic vectors are disallowed as stack items (it

will be shown later that S-algol vectors cannot be implemented on the stack

anyway), the address of a stack item relative to its stack frame base may be

calculated at compile time.

For each item on the stack the compiler produces an address pair < ll,dd >

where ll is the lexicographic level and dd is the displacement from the stack

frame base.

This address pair is used at run time to calculate the absolute address of the

stack item. Note that if the stack frame base of the item was to be found by

chaining down the static chain, the clever compiler [4] would calculate, instead

of ll, the difference in the current lexicographic level and that of the required

item, as this is the number of times to link down the static chain.

The next refinement is to use a vector or even better fast registers to form a

display [3]. The display duplicates the values in the static chain and thus the

absolute address of any item on the stack is

display(ll) + dd

Finally, Wichmann [4] has shown that stack frames are only required for

procedures, as blocks can be considered as part of the procedure and their stack

item addresses calculated relative to the procedure stack frame base. This

technique is called procedure level addressing and extends with a slight

modification to languages with block expressions.

11.4 THE S-ALGOL STACK

S-algol was designed to be used to write programs in the style of structured

programming. By studying the programs written in such a manner, two

observations relevant to this discussion can be made. Firstly, structured programs

tend to consist of a large number of small procedures which are called many

times. Secondly, the objects referred to in these procedures tend to be local or

outer block globals. It is therefore reasonable to design an abstract machine

which takes advantage of this to obtain an efficient implementation.

The display method of implementing the stack has two major drawbacks.

Updating the display may be complex. If the environment changes drastically,

the overhead in updating the display is increased. This situation occurs on

returning from a procedure declared at a lower level than the calling one, and

with procedures passed as parameters. Some compilers e.g. Algol W [5] panic

because of this and simply dump the whole display on to the stack on procedure

entry and restore it on exit. This is a gross misuse of storage and is not sensible

unless a great deal of store is available and the dumping process is fast.

The other main difficulty of the display scheme is that it relies on there being

enough spare registers on the target machine to reflect the depth of static nesting

in any program. In most cases this usually leads to some arbitrary restriction on

140 Abstract Machine Design [Ch. 11

the depth of nesting. While this may be good enough for handwritten programs

it is very rarely satisfactory for automatically produced programs.

The S-algol abstract machine requires two registers, called stack base, SB,

and stack front, SF, which point to the global and local stack frame bases

respectively. Only one register, SF, is absolutely necessary since the base of the

stack may be fixed. On procedure entry SF is made to point to the new stack

frame base and on exit it is restored from the dynamic link.

Thus, since the compiler will be made to issue separate instructions for locals

and outer block globals, they can be quickly accessed by using the SF and SB

registers. Other free variables are accessed via the static chain. The method is as

fast as the display technique for accessing locals and outer block globals, and

does not suffer from any artificial limit on the static depth.

A simple and efficient method of procedure entry and exit is now possible.

Since a procedure can be passed as a parameter and is subject to the same scope

rules as other items, it suggests that it could be implemented as a stack item.

When a procedure is declared two items are placed on the stack as an initialisation.

These are the procedure entry point address and its static link and are collectively

called the procedure closure. Each procedure forms a segment of code. The

only evidence of one segment having been part of another is the instruction to

load the closure. The static link may be calculated when the load closure

instruction is executed: it is merely the current stack frame base since this

represents the environment in which the procedure was declared. This can simply

be copied and need not be recalculated on each procedure call.

A procedure call consists of an instruction to load the closure, code to evaluate

the parameters, and an instruction to enter the procedure. The mark stack control

word contains

1. The procedure address

2. The static link

3. The dynamic link

4. The return address

The first two items form the procedure closure and the second two are

calculated just before entry. The closure uniquely represents the procedure on

the stack. To pass a procedure as a parameter requires the closure to be copied.

Thus, the procedure parameter will look like a locally declared procedure when

it is called.

Procedure exit is extremely simple since resetting the SF pointer is all that is

required. No updating of the static chain is required as it is uncovered to the

position on the point of entry automatically. Naturally, stack retraction must

take place on procedure and block exit and extra care must be taken if they return

values.

Whether this technique is more efficient than the display method depends upon:

Sec. 11.5] The Heap 141

1. The number of spare registers on the target machine

2. The number of non global free variable accesses

3. The number of procedure calls

4. The number of procedures passed as parameters

and is discussed further by Morrison [6].

11.5 THE HEAP

The design of the world of data objects in S-algol makes it impossible for the

language to be implemented on a stack-only system. In particular, strings, vectors

and structures require a second area of dynamically allocated store known as the

heap.

In S-algol, vectors are first class data objects. They enjoy the same civil

rights as any other data object including assignment, being fields of other vectors

or structures and being passed to or returned from procedures. On a stack system

with variable size vectors, as in S-algol, it is impossible to copy the vectors on

assignment since the space required to hold the vector on the stack cannot be

predicted. Therefore, a vector is represented by a pointer on the stack with the

elements on the heap. The value of the vector is the pointer and assigning the

vector means copying the pointer. Because pointers are of uniform stack size the

problem is overcome.

The S-algol structures suffer from the same problems as the vectors. Indeed

the language is designed to make vectors and structures behave in a similar manner.

Structures may be of any class and so of any size. For exactly the same reasons

as with vectors, structures are implemented as pointers on the stack which point

to the structure fields on the heap.

Since the programmer may alter the fields of a structure or the elements of a

vector, he needs to know that vectors and structures are implemented as pointers.

For example, a vector passed to a procedure which alters one of the elements has

that element altered forever. Strings, on the other hand, are pure data objects and

may not be altered internally by the programmer. However, strings also have the

same size problems as vectors and structures. They are therefore implemented

on the heap with a pointer to them on the stack. The pointer in this case is not

seen by the programmer.

The abstract machine data structures on the heap must also contain some

housekeeping information to allow them to be used correctly. They are listed for

each item

1. Vectors must carry their bounds for run time bound checking and an

indication if the elements are pointers for garbage collection purposes.

2. Structures must carry a trademark for run time structure class checking

and some means of specifying which fields are pointers for structure

creation and garbage collection.

3. Strings must carry their size for index checking.

142 Abstract Machine Design [Ch. 11

How this is implemented efficiently on a given target machine is a problem

for the ingenuity of the implementor.

The above discussion is rather specific to S-algol, and other solutions, though

similar, may have to be found to implement other languages.

11.6 HEAP ORGANISATION

The Algol family of languages present the user with a conceptually infinite store.

The stack simulates this by reusing the store allocated to blocks no longer in use.

The design philosophy of S-algol does not wish to alter this and since the difference

between stack and heap objects is hidden from the user, the heap as well as the

stack must be reused. Of course, the pretence breaks down when the store is

finally exhausted and may not be reused. The technique of garbage collection is

used with the heap to simulate an infinite store.

At any point in the execution of an S-algol program, the space on the heap

may be

1. allocated and in use

2. allocated and not in use

3. free

Space is allocated on the heap until there is no more available. At this point

it is possible to have space allocated that is no longer in use. When the free space

is exhausted it is the job of the garbage collector to free the space that is allocated

and no longer in use. This is performed in two stages by marking and collecting.

In the marking phase, the pointers on the stack are used to identify some

heap items that are in use. The search is recursive, since heap items may point to

other heap items. Careful readers of Chapter 2 may see this as a closure operation.

Thus all the space that is in use will be marked. Once the heap has been marked,

all the unmarked space is freed with the possibility of coalescing the free areas

into larger blocks or compacting the used space to one end of the heap.

The main difficulty in this is to identify the pointers on the stack at any

instant in the execution of a program. Some pointers are trivial to find because

they are at a fixed location relative to the stack frame base. However, the position

of some other pointers on the stack is dependent on the dynamic flow of the

program. Consider the example

structure vecs(*int V1)

let A = vecs(@1 of int[1,2,3])

If a garbage collection strikes between the creation of the vector [1,2,3] and

the structure, the pointer to the vector will be at an arbitrary position on the stack

and therefore difficult to identify. A solution could be to chain all the pointers on

the stack together but this will slow down the use of items with pointers. Of

course, a tagged data architecture machine has no difficulty with this problem

Sec. 11.7] The Abstract Machine Code 143

and is the best solution all round. However for implementation on traditional

machine architectures S-algol proposes a new, simple and extremely obvious

solution.

The S-algol system has a separate stack for all pointers. The compiler can

always predict the type of an item and therefore on which stack it will live. The

marking algorithm has no difficulty in finding the initial pointers since they are

all on the pointer stack. Thus a potentially awkward situation is overcome.

The drawbacks to the two stack solution are as follows.

1. A third area of dynamically allocated store must be found in the total

address space. This is often no problem at all.

2. The second stack must be administered like the first to map the static

and dynamic flow of the program.

The solution to the second problem is to allocate two registers, pointer stack

front, PSF, and pointer stack base, PSB, to point at the current pointer stack

frame base and the global pointer stack frame base. The main stack already

maps the dynamic and static flow of the program. By including in the mark

stack control word a pointer across to the equivalent pointer stack frame base, all

the intermediate pointer stack frames may be found by linking down the main

stack static chain and then using the pointer to the pointer stack frame.

The mark stack control word now contains

1. The procedure address

2. The static link

3. The dynamic link

4. The pointer stack link

5. The return address

This, of course, complicates procedure entry and exit. However, the problem

of identifying these anonymous pointers is such a nasty one that the price paid is

felt to be small.

11.7 THE ABSTRACT MACHINE CODE

The S-algol abstract machine uses four storage areas

1. The instruction code area

2. The main stack

3. The pointer stack

4. The heap

It also has seven special purpose registers

1. Stack frame SF

2. Stack base SB

3. Pointer stack frame PSF

144 Abstract Machine Design [Ch. 11

4. Pointer stack base PSB

5. Stack top SP

6. Pointer stack top PSP

7. Code pointer CP

The S-code generated by the compiler for each syntactic construct is given

in Appendix E and the S-code instructions are described in detail in Appendix D.

A general discussion of the more unusual items of the S-code design are given

here.

11.8 THE STACK INSTRUCTIONS

The S-code machine has the usual battery of stack instructions. There are

arithmetic instructions, like plus, which perform the operation on the top of the

stack and leave the result there. The relational operations such as less than etc.

operate on ints, reals and strings and leave a boolean result on the top of the

stack. There are instructions to load literal values on to the stack and instructions

to load other stack items on to the top of the stack prior to being used. This last

group requires three forms since the stack objects may be local, global or

intermediate depending on their scope. The type of the operand is used to indicate

which stack is to be used.

There are a number of miscellaneous instructions such as ‘erase the top of

the stack’, ‘exchange the top two elements’ and ‘assign the top element to the

address given in the second top’. Another stack instruction is retract which is

used on block exit.

No code is required for block entry if we use procedure level addressing.

However, on block exit the stack top registers may have to be changed to get rid

of any locals on the stack. For instance the block

begin

let a = 3

let b = 4

write 3 * 4

end

will have to remove the items called a and b from the stack on block exit.

Furthermore, if the block returns a value this must be copied to the new stack

top.

11.9 THE HEAP INSTRUCTIONS

The heap instructions fall into two categories

1. Those which create heap objects and therefore may cause garbage

collection

2. Those which use the heap items

Sec. 11.9] The Heap Instructions

The string operations which create strings on the heap are concat.op which

concatenates two strings forming a new one, substr.op which selects characters

from a string to form another and finally read.string.

Creating structures is more complicated.

e.g.

structure abc(int a ; cstring b ; *real c)

let A = abc(1 , "ron" , @1 of real[1,2,3])

The code generated for the structure creation is

load the trademark from the stack

evaluate the expressions for the fields

form.structure(n)

The trademark, which uniquely identifies the structure class and will be

generated by the compiler, is loaded on to the top of the stack and is n elements

from the stack frame base. The expressions are evaluated on the appropriate

stack depending on their type. The trademark must carry some indication of

which fields are pointers in order to take the fields off the correct stack when

filling them in. This information is also required in the marking phase of the

garbage collector.

There are two forms of vector creation. An example of the first

@1 of int[2 , 3 , 45]

generates the code

ll.sint(1)

ll.sint(2)

ll.sint(3)

ll.sint(45)

make.vector(n)

The expression types are int and therefore on the main stack. If the expressions

are pointer values they will be found on the pointer stack. n gives the position of

the lower bound on the main stack relative to the stack frame base. It is a simple

matter to calculate the size of the vector, create it on the heap and fill in the

elements. The second form of vector creation is given by

vector 1::10 , 2::11 , ... of "abc"

which generates

evaluate the bound pairs on the stack

evaluate "abc"

iliffe.s(n)

The base type of the vector is string. The name iliffe is after Iliffe [7] who

first proposed such a structure. n is the number of bound pairs. This instruction

is not trivial to implement as the creation of the vector entails the recursive creation

of the constituent vectors.

146 Abstract Machine Design [Ch. 11

There are a number of instructions to access the heap items, the most important

being the subscripting operations which have to check an index against vector

bounds, that the field is correct for a structure class or that a substring is legal for

the size of string being accessed. The run time structure class checking of S-

algol is performed by these instructions.

11.10 FLOW OF CONTROL INSTRUCTIONS

These instructions are necessary to map the rich set of high level language

constructs in S-algol which alter the program flow of control. The first pair of

these instructions is used to implement the non-strict version of and and or

E1 or E2 ! E1 jumptt(l) E2 l:

Non-strictness here refers to the fact that the expression is evaluated from

left to right until the result is known. This may occur before all the sub-expressions

are evaluated. Since true or anything gives true and false or anything gives

anything, jumptt branches if the top stack element is true and merely removes it

otherwise. A similar sequence can be used for and but with jumpff replacing

jumptt.

An unconditional jump and a jump if the top stack element is false is sufficient

to implement the if and loop clauses.

if E1 then E2 else E3 ! E1 jumpf(l) E2 jump(m) l: E3 m:

and

while E1 do E2 ! l: E1 jumpf(m) E2 jump(l) m:

The for clause is controlled by two instructions, one to perform the test at

the beginning of the loop and one to perform the step at the end. The code

generated for the for clause is

for i = E1 to E2 by E3 do E4 !

E1 E2 E3 l:fortest(m) E4 forstep(l) m:

The control constant, limit and increment are loaded to the top of the main

stack. The fortest instruction decides if the loop is finished and jumps if it is.

This is used in conjunction with the forstep instruction at the end of the loop

which adds the increment to the control constant and jumps back to the beginning

of the loop. Notice that the limit, increment and initial value are only calculated

once before the start of the loop. This would have been different if we had been

implementing the Algol 60 for statement which re-evaluates the values on every

iteration.

Finally, under flow of control instructions, the code sequences to perform

procedure entry and exit are examined. The code to call a procedure is

Sec. 11.11] Summary

mst.load

evaluate the parameters

apply.op(m)

The mst.load instruction, of which there are three forms depending on the

scope of the procedure, loads the closure onto the top of the stack, fills in the

dynamic link, the pointer stack link and the return address. After the parameter

expressions have been evaluated on the stack, apply.op is used to call the

procedure. The number m gives the position of the new value of SF relative to

SP.

Apply operates like this

1. Calculate new SF = SP - m

2. PSF = PSL

3. Fill in the return address

4. Move the contents of the stack location pointed at by SF to CP. This

will perform the branch.

5. Check that there is enough stack space to to execute the procedure.

If there are no parameters the mst.load and apply.op instructions are combined

into one instruction. The code for the procedure itself ends with the return

instruction. The first two words of the procedure are the maximum amount of

stack space, on each stack, that the procedure may require. The apply.op

instruction checks that the space is available. On some machine architectures

e.g. Multics [8] this is not necessary. The return instruction is more complex and

works like this.

1. Move the result of the procedure, if any, at SP or PSP to the new stack

top at SF or PSF and set SP and PSP to these values

2. Move the dynamic link to SF

3. Move the pointer stack link of the uncovered frame to PSF

4. Move the return address to CP

11.11 SUMMARY

It can be seen that the S-code machine retains the spirit of the beta machine for

its stack environments. The display mechanism is however gone. It was necessary

to add a heap to the machine to implement vectors, structures and strings. The

problem of identifying the pointers on the stack at garbage collection time lead

to the implementation of a second stack for the pointers only. This complicates

the abstract machine but it is felt that it solves the original problem so well that

the complexity is a good investment.

The implementation of S-algol on a machine with two stacks and a heap

148 Abstract Machine Design [Ch. 11

requires that the abstract machine code will be different from other abstract

machine codes. However, a lot of the instructions are common to most reverse

polish machines and it is only the architecture of the S-machine that makes the

instructions different. There are also some new instructions which allow the

more esoteric S-algol constructs to be implemented at a fairly high level.

It was one of the design aims of S-algol, that the user need not know the

difference between stack and heap objects. It was therefore necessary to re-use

the heap just as the stack is re-used. This introduced the garbage collector which

in turn led to the invention of the two stacks.

REFERENCES

[1] Nori, K.V. et al. (1974), The Pascal P Compiler Implementation Notes,

Technical Report No 10, Zurich.

[2] Hauck, E.A. and Dent, B.A. (1968), Burroughs B6500/6700 stack

mechanism, AFIPS SJCC, 245–251.

[3] Randell, B. and Russell, L.J. (1964), Algol 60 Implementation,

Academic Press.

[4] Wichmann, B. (1973), Algol 60 Compilation and Assessment,

Academic Press.

[5] Bauer, H., Becker, S. and Graham, S. (1968), Algol W implementation,

Technical Report No CS98, Stanford University.

[6] Morrison, R. (1977), A method of implementing procedure entry and

exit, Software, Practice and Experience 7, 537–539.

[7] Iliffe, J.K. (1968), Basic Machine Principles, Elsevier.

[8] Corbato, F.J. and Vyssotsky, V.A. (1965), Introduction and overview

of the multics system, AFIPS FJCC, 27, 185–196.

[9] Aho, A.V. and Ullman, J.H. (1977), Principles of Compiler Design,

Addison-Wesley.

CHAPTER 12

Code Generation

12.1 SIMULATED EVALUATION OF THE S-CODE MACHINE

In chapter 11 we introduced the S-code machine which is the target computer for

our compiler. We are now ready to use the definition of the S-code machine to

add the final layer of code generation to the compiler. However the first part of

the code generation layer is to decide how detailed the simulation of the abstract

machine should be and how it may be modelled inside the compiler.

To compile a language that has block expressions into code for a machine

with procedure level addressing, the compiler must simulate the action of the

stack pointer in order to calculate the address of a declared object relative to the

stack frame base. For example in

procedure abc

begin

let a = 3

let c := if a < 2 then

begin

let b = 4

.

.

.

To calculate the position of b on the stack we must record the position of everything

else declared before it on the stack. In the case of S-algol the position of the top

of both the main stack and the pointer stack must be simulated. We introduce the

integer variables sp and psp by

let sp := 0 ; let psp := 0

to record the number of stack units that the top of each stack is displaced from its

stack frame base. Since these values are relative to the stack frame bases they

must be stored and restored every time a new procedure declaration is compiled.

Thus a procedure always starts with the value zero for sp and psp.

We also require abstractions to simulate the actions of pop and push on both

150 Code Generation [Ch. 12

stacks The following will do

let st.size = 1 ; let pst.size = 1

procedure pop.ms ; sp := sp - st.size

procedure push.ms ; sp := sp + st.size

procedure pop.ps ; psp := psp - pst.size

procedure push.ps ; psp := psp + pst.size

We use separate constants for the two stack sizes since in some

implementations they may be different sizes. The code for these abstractions

should be obvious, but it is worth pointing out that at this compile time simulation

level we do not care what the values on the stacks are as we only require to

calculate their addresses.

The next part of the code generation is to simulate the execution of each

abstract machine instruction inside the compiler. This is done by inventing an

abstraction for every S-code instruction that will manipulate the stack pointers.

We will also make these abstractions generate code for the instruction. When

the syntax analyser wishes to generate code for a particular construct it uses the

code generation abstractions. By restricting the simulation to these abstractions

and gathering them together in the compiler we can localise the machine dependent

parts and improve portability.

To illustrate the general form of the code generation abstractions we will

give one example now and the others as required. The code generated from the

div expression is defined by

E1 div E2 ! E1 E2 div.op

The div.op instruction takes two integers from the main stack, performs a

div operation on them and leaves the integer result on the main stack. The

simulation inside the compiler updates the stacks and generates code. For the

div instruction it is

procedure div.op

begin

generate.code(div.inst)

pop.ms

end

This very simple procedure performs the simulation for the div.op instruction.

First of all it generates the code to be output using the procedure generate.code

which we will return to shortly. For every instruction there is a constant integer

defined as the operation code of that instruction. In this case the constant is

called div.inst and corresponding names will be used for the other operations.

The net effect of the operation is to remove one element from the main stack.

To generate code for the S-code machine it is not sufficient just to simulate

the action of the stack pointers. Because some of the instructions, those for flow

Sec, 12.1] Simulated Evaluation of the S-Algol Machine 151

of control, contain code addresses, the compiler must also simulate the action of

the code pointer. We introduce the variable cp by

let cp := 0

to simulate the code pointer. Every time an instruction is generated the code

pointer is incremented by one. Before we use this however we must resolve an

organisational problem.

In a one pass compiler, the code is produced as the compilation progresses.

In a program with procedures, the code for the procedure will appear in the

middle of the enclosing segment, a segment being the main program or a

procedure. The compiler must take some action to ensure that the procedure is

only executed on a call and not on the occurrence of its declaration. Furthermore

the one pass organisation causes problems for instructions with forward code

references; that is, some instructions contain references that are not known when

the instruction is generated. These two problems are solved for S-algol by the

same mechanism.

When code is generated by the compiler it is stored in a vector instead of

being written out immediately. The jump instructions in S-code are only generated

by high level language constructs. Since there is no goto clause in the language

it is a simple task to separate forward and backward references. For backward

references the parsing procedure must retain the position of the jump address (by

recording the value of cp) and supplying it to the code generation procedure. In

S-code all the jump addresses are self relative, that is relative to the position of

the jump instruction itself, therefore the following procedure will simulate an

unconditional backward jump to the position in the code given by old.cp.

procedure bjump(cint old.cp)

begin

generate.code(bjump.inst)

generate.code(cp - old.cp + 1)

end

There is no updating of the stacks required here, only the generation of the

jump instruction and the jump address.

Forward references present a much more difficult problem. Because the

jump cannot be calculated when the instruction is generated, the compiler must

remember all the references to a forward label until the value of the label is

known. For instance this occurs in a case clause where each internal case must

end with a jump to a common continuation point after the default option. This is

easily done in our system by chaining together all these references by a backward

linked list in the code vector. Each link in the list points to the previous reference

to the label. The list may be terminated by an illegal address such as -1. To

simulate the action of the unconditional forward jump, the code generation

152 Code Generation [Ch. 12

procedure takes the list so far and places this reference at its head before returning

the start of the new list.

procedure fjump(cint list -> int)

begin

generate.code(fjump.inst)

generate.code(list)

cp - 1

end

That is, the procedure places the previous head of the list in the code vector

using the procedure generate.code and returns the position of this reference.

Thus the syntax analysis procedures only have to remember the last reference to

a label the rest of the list being held in the code vector.

When the value of a label is known the compiler must chain down the linked

list and alter every reference to the correct self relative value. If the code is held

in the vector called code.vector then the following procedure will resolve all the

forward references to a label.

let end.list = -1

procedure setlab(cint list)

begin

let this.link := list

while this.link " end.list do

begin

let next.link = code.vector(this.link)

code.vector(this.link) := cp - this.link - 1

this.link := next.link

end

end

When a segment is completely compiled there will be no unresolved

references within the segment since all the references are generated by complete

high level language constructs. Also since there is no goto clause there will be

no external references in the segment. This means that the segment is complete

and may be written out. If the segment is a procedure it will be replaced by its

closure in the code vector. Thus the segments are all positioned in the program

separately. In no case will one be embedded in another and we therefore don't

have to generate jumps around them. The position of the segment in the code is

recorded by its closure if the segment is a procedure, and by the program start

address if the segment is the main program. Thus we have solved the problem of

procedures only being executed by a call, and the forward reference problem by

storing up the code for a segment until the segment in a vector is complete.

The code instructions are placed in the code vector using the procedure

Sec, 12.2] Declarations and the use of the Symbol Table 153

generate.code which may be written as

procedure generate.code(cint n)

begin

code.vector(cp) := n

cp := cp + 1

end

Notice that it is this procedure that increments the value of the code pointer

every time an instruction is generated.

The simulation we have proposed is the bare minimum required to generate

code for S-algol. For portability the simulation is confined to the code generation

abstractions. By re-writing these procedures code can be produced for different

machines. Similarly the abstractions may be further refined to produce more

efficient code. We will return to the simulation procedures but let us now turn to

the first code generation layer.

12.2 DECLARATIONS AND THE USE OF THE SYMBOL TABLE

The first layer of code generation involves redesigning the symbol table and

rewriting the abstractions that use the symbol table. For every item that is recorded

in the table we must add the stack address of that item to the symbol table

information. The stack addresses are in pairs <ll,dd> as described in Chapter 11

and therefore the structure that holds the symbol table information is now defined

by

structure link(cstring name ; cint ll , dd ; pntr type , left , right)

The stack address calculated from ll and dd will be a main stack address

except for objects of type vector, pntr or string in which case the pointer stack

address is recorded. The procedure declare will enter this information in the

symbol table. The displacement of an item from the stack frame base is the

value of the simulated stack pointer at the point of declaration. We introduce the

variable lex.level to record the current lexicographic level. The variable lex.level

is incremented when a lexicographic level is entered and decremented on exit.

The procedure declare uses lex.level to enter the stack addresses in the symbol

table. We now have

procedure declare(cstring s ; cpntr t)

begin

let dd.add = if pointer(base.type(t)) then psp else sp

let t1 = link(s , lex.level , dd.add , t , nil , nil)

env.list(hd) := enter(env.list(hd) , t1)

end

This is not vastly different from before (see section 10.4). The stack address

154 Code Generation [Ch. 12

is entered depending on whether or not the item is a pointer. Since data objects

may be variable or constant the procedure base.type is used to strip off this

attribute. It may be written as

procedure base.type(cpntr t -> pntr)

case true of

t is var : t(var.type)

t is const : t(const.type)

default : t

Procedure pointer may be written as

procedure pointer(cpntr t -> bool)

case t of

STRING,PNTR : true

default : eq(VECTOR(ANY) , t)

which will return the value true if the data object resides on the pointer stack and

false otherwise.

The link between the declaration and the use of a name is made through the

symbol table. Every time a name is used in the program being compiled, procedure

lookup is called to find the type of the name. The compiler also has to generate

code to load the object on to the top of the appropriate stack. The simplest

method of doing this is to refine procedure lookup so that it will generate this

code as well as returning the type (c.f. section 10.5). This will give

procedure lookup(cstring s ; cbool r.value -> pntr)

begin

let p = search.table(s)

if p = nil then

begin

err.message("Undeclared name ** " , s ,

"** has " , "been " , "used")

declare(s)

ANY

end else

begin

let p1 = p(type)

let p2 = base.type(p1)

name.op(p(ll) , p(dd) , pointer(p2) , r.value)

if r.value then p2 else p1

end

end

The refinement here is to generate code by using the procedure name.op in

the code generation. The compiler passes on to procedure name.op the stack

Sec, 12.3] The Final Refinement of the Syntax Analyser 155

address, an indication of which stack is to be used and whether the name is used

as an R-value or an L-value. If the name is used as an L-value the code generation

procedure will issue code to load the address of the object instead of its value on

to the top of the stack. We will now write procedure name.op

procedure name.op(cint lex , disp ; cbool ptr , r.value)

case true of

lex = lex.level : local(disp , ptr , r.value)

lex = 0 : global(disp , ptr , r.value)

default : load(lex , disp ,ptr , r.value)

This splits the instructions into those that access the local, global and intermediate

environments. To generate code we must write the procedures local, global and

load. We choose procedure local to illustrate the method

procedure local(cint disp ; cbool ptr , r.value)

case true of

r.value and ptr : { generate.code(plocal.inst) ; push.ps }

r.value and ~ptr : { generate.code(local.inst) ; push.ms }

~r.value and ptr : { generate.code(plocaladdr) ; push.ms }

default : { generate.code(localaddr) ; push.ms }

Procedures global and load are similar to procedure local. Thus we have now

refined the compiler to generate code for names when they are used in a program.

12.3 THE FINAL REFINEMENT OF THE SYNTAX ANALYSER

We are nearing the completion of our compiler. The final layer in the stepwise

refinement is to rewrite the syntax analysis procedures to include the calls of the

code generation abstractions. This is done for our compiler in accordance with

the definition of the code strings given in appendix E.

Starting at the beginning of our compiler we see that there is no need to

generate code in procedure sequence nor in procedure clause. Therefore the

versions of these procedures given in chapter 9 are complete.

The if clause does generate code and therefore we have to re-write the parsing

procedure to take account of this (c.f. section 9.6). The code strings are defined

by

if E1 do E2 E1 jumpf(L) E2 L:

if E1 then E2 else E3 E1 jumpf(L) E2 fjump(M) L: E3 M:

This allows the refinement of procedure if.clause as

156 Code Generation [Ch. 12

procedure if.clause(-> pntr)

begin

next.symbol

match(BOOL , clause)

let L = jumpf(end.list)

if have(do.sy) then

begin

match(VOID , clause)

setlab(L)

VOID

end else

begin

mustbe(then.sy)

let t = clause

let M = fjump(end.list)

pop.stack(t)

setlab(L)

mustbe(else.sy)

match(t , clause)

setlab(M)

t

end

end

Most of the additions to this procedure are concerned with the generation of

code and the maintenance of the label lists. All the jump instructions here contain

forward references that cannot be resolved until the setlab instruction. Notice

how the parsing procedure aids the code generation by remembering the chain of

references. In this case the chains are always of length 1 and are defined by the

constants L and M.

This procedure is unusual in that it also has to update the stacks. When

compiling an if clause the jumpf instruction will remove the boolean clause from

the top of the stack when the instruction is simulated. The code generation

abstraction jumpf may be coded by

procedure jumpf(cint list)

begin

pop.ms

generate.code(jumpf.inst)

generate.code(list)

cp - 1

end

The simulation must take the value of the boolean expression off the stack just as

Sec, 12.3] The Final Refinement of the Syntax Analyser 157

the real execution of the instruction will. However in compiling the if...then...else

clause, both branches of the clause are compiled one after the other. When the

program is run only one branch will be executed. The compiler will simulate the

evaluation of both branches and, if the type of the branches is not void will leave

two elements rather than one on the stack. The element should be removed from

the stack before we compile the else section. This allows the space at the top of

the stack to be re-used correctly. We therefore use procedure pop.stack to remove

one of the elements for the simulation.

procedure pop.stack(cpntr t)

if t " VOID do if pointer(t) then pop.ps else pop.ms

The only other procedure in the syntax analysis with this problem is the procedure

to compile the case clause, and it can adopt the same solution.

We will now refine the procedure while.clause to illustrate the mechanics of

using backward jumps. The code generated is defined by

while E1 do E2 L: E1 jumpf(M) E2 jump(L) M:

which yields

procedure while.clause(-> pntr)

begin

next.symbol

let L = cp

match(BOOL , clause)

let M = jumpf(end.list)

mustbe(do.sy)

match(VOID , clause)

bjump(L)

setlab(M)

VOID

end

The forward reference uses the same mechanism as before. The backward jump,

bjump, is used to ensure the repetition. Notice again how the parsing procedure

remembers the jump address. The code generation abstraction bjump is coded

by

procedure bjump(cint label)

begin

generate.code(bjump.inst)

generate.code(cp - label + 1)

end

The expression cp-label+1 calculates the self relative jump address.

The versions of and and or in S-algol are also implemented using the jump

158 Code Generation [Ch. 12

instructions. The code generated for the or expression is

E1 or E2 E1 jumptt(L) E2 L:

This implements the non-strict version of or. If the left hand side of the

expression is true then the result is true and the right hand expression is not

evaluated. If the left hand expression is false then the result is the value of the

right hand expression. This allows us to implement the procedure expression as

procedure expression(-> pntr)

begin

let t = exp1

case symbol of

or.sy : begin

match(BOOL,t)

let L := end.list

while have(or.sy) do

begin

L := jumptt(L)

match(BOOL,exp1)

end

setlab(L)

BOOL

 end

default : t

end

The subtlety of this solution is that it caters for more than one or in the

expression. When the code is executed the jumptt instruction only removes the

stack top element if it is false. In the compiler simulation the element is removed

every time to ensure that the stacks are updated correctly. The code generation

procedure may be coded as

procedure jumptt(cint list)

begin

pop.ms

generate.code(jumptt.inst)

generate.code(list)

cp - 1

end

which requires little explanation.

The refinement of procedure exp1 will be exactly the same as for procedure

expression and we will leave the exercise to the reader. For the relational operators

the code generated is defined by

Sec, 12.3] The Final Refinement of the Syntax Analyser 159

E1 <relop> E2 E1 E2 rel.op

~E E not.op

Notice however that the expression ~E1 = E2 parses as (~E1) = E2 and the code

generated is defined by

~E1 = E2 E1 not.op E2 eq.op

This allows us to code the refinement of procedure exp2 as

procedure exp2(-> pntr)

begin

let not = have(not.sy)

let t := exp3

if not do { not.op ; match(BOOL , t) ; t := BOOL }

let s = symbol

case symbol of

is.sy,isnt.sy : begin

match(PNTR , t)

next.symbol

t := lookup(the.name , true)

if t isnt STRUCTURE do bad.type(t)

mustbe(identifier.sy)

if s = is.sy then is.op else isnt.op

BOOL

 end

eq.sy,neq.sy: begin

next.symbol

match(t , exp3)

if s = eq.sy then eq.op(t) else neq.op(t)

BOOL

 end

le.sy,lt.sy,

ge.sy,gt.sy : begin

t := rel.type(t)

next.symbol

match(t , exp3)

case s of

le.sy : le.op(t)

lt.sy : lt.op(t)

ge.sy : ge.op(t)

default : gt.op(t)

BOOL

 end

default : t

end

160 Code Generation [Ch. 12

This refinement is pretty straight-forward. The only new coding idea is to store

the input symbol for use later in selecting the correct code operation.

The procedures which compile the arithmetic operations are a more

complicated version of this. However, since there is nothing essentially new in

the refinement of procedures exp3 and exp4 we will leave them and move on to

the more interesting problem of refining procedure exp5.

We will take each section of procedure exp5 in turn and apply the refinement

to illustrate the application of the final layer of code generation. In the previous

section we dealt with the problem of identifiers and generating code when an

identifier is used. Since procedure lookup generates the code there is no need to

refine procedure exp5 for identifiers. However we will refine procedure proc.call

to generate code for a procedure call. The code is defined by

E(E1,.....En) E mark.stack E1........En apply.op

The code for E will be generated by procedure lookup before procedure proc.call

is called. The rest of the code is generated here.

procedure proc.call(cpntr t -> pntr)

begin

let params := t(args)

mark.stack

let level = sp ; let plevel = psp

if params " nil do

begin

mustbe(lp.sy)

repeat{ let param = params(hd)

if param is proc or param is STRUCTURE then

begin

match(param , lookup(the.name , true))

next.symbol

end else match(param , clause)

params := params(tl) }

while have(comma.sy) and params " nil

mustbe(rp.sy)

end

let t1 = t(result)

apply.op(level , plevel , t1)

t1

end

In the simulated evaluation, the mark stack instruction must leave space on

the main stack for the contents of the mark stack control word. The procedure

can be written as

Sec, 12.3] The Final Refinement of the Syntax Analyser 161

procedure mark.stack

begin

generate.code(mark.inst)

for i = 1 to mscw.size do push.ms

end

Notice that we have abstracted the size of the mark stack control word to a name.

This is so that any design change like a different method of scope organisation

which alters this value, need only mean a change in one place in the compiler.

The apply.op operation is more difficult as it must update the stacks after the call

for the simulation. The stack pointers must be returned to their value before the

call remembering to add an element for the result if it is not of type void. Notice

how procedure proc.call helps by remembering the stack levels before the

parameters are added. The procedure apply.op may be written as

procedure apply.op(cint level , plevel ; cpntr t)

begin

generate.code(apply.in)

generate.code(sp - level)

psp := plevel

for i = 1 to sp - level + mscw.size do pop.ms

push.stack(t)

end

Procedure push.stack is the push operation defined by

procedure push.stack(cpntr t)

if t " VOID do

if pointer(t) then push.ps else push ms

The next section of procedure exp5 is to compile code for literals when they

appear. In S-algol there are literals of type bool, int, real and string and the

compiler must cater for all. The code generated is simply to load the literal value

to the top of the stack. We can refine procedure exp5 to

literal.sy : begin

next.symbol

case literal.type of

INT : load.int(int.literal)

REAL : load.real(real.literal)

STRING : load.string(string.literal)

default : load.bool(bool.literal)

literal.type

 end

162 Code Generation [Ch. 12

The code generation abstraction load.int may be coded as

procedure load.int(cint n)

begin

generate.code(ll.int)

generate.code(n)

push.ms

end

A little more ingenuity is required to place the other literal values in the integer

code vector.

We will now refine procedure block so that any data objects that are placed

on the stack during the evaluation of the block are removed on block exit. The

code generated is defined by

begin E end E retract.op

Of course, if the block is an expression block the retract instruction must copy

the result to the new stack top. The procedure is now

procedure block(-> pntr)

begin

let last = if symbol = begin.sy then begin.sy else rcb.sy

next.symbol

if have(last) then VOID else

begin

enter.scope

let level = sp ; let plevel = psp

let t = sequence

retract(level , plevel , t)

exit.scope

mustbe(last)

t

end

end

with

procedure retract(cint level , plevel ; cpntr t)

begin

sp := level ; psp := plevel

if t = VOID then generate.code(retract.v) else

if pointer(t) then { generate.code(retract.p) ; push.ps }

else { generate.code(retract.m) ; push.ms }

generate.code(level)

generate.code(plevel)

end

Sec, 12.4] Summary 163

The application of this final layer should now be transparent to the reader.

We refine the syntax analysis procedures according to the definition of the code

strings and write the code generation abstractions to generate the code, update

the stacks and deal with the code pointer simulation.

12.4 SUMMARY

With the addition of the code generation we have now completed the stepwise

refinement of our compiler. To generate code we simulated the evaluation of

the program being compiled, using the two stack pointers and the code pointer.

For every abstract machine instruction in the S-code we invented an abstraction

in the code generator to perform the simulation by balancing the stacks and

manipulating the code pointer. We also made these abstractions generate the

code strings.

Some measure of portability is achieved by restricting the simulation to the

code generation procedures and a higher level of efficiency in the code can be

achieved by refining the simulation.

The code is output from the compiler one segment at a time to avoid the

problems of planting code to jump over procedure declarations and of resolving

forward references.

The symbol table was extended to include the addresses of the declared

objects and the procedures declare and lookup refined to store and use this

information respectively. Finally we applied the code generation layer using

the definition of the code strings given in appendix E. In conjunction with this

we coded the code generation abstractions.

CHAPTER 13

Bootstrapping and Portability

13.1 THE NEED TO PORT LANGUAGES

If programs are to be successfully used by a large community (and compilers are

such programs) they should be available in all the operating environments used

by that population. A modern university for instance is such a community and

contains a large variety of computers often including micros, minis and larger

mainframe machines. For ease of communication not only is it a good idea if

such machines are able to speak to one another in a hardware sense by

interconnecting them via networks, rings or direct links, but they must also be

able to understand each other at a software level. If a research worker writes a

program in a particular language and tests, debugs and develops it on his local

departmental computer, he would often like to be able to transport (or port) the

solution to his problem to the central service computer or to a colleague’s machine

in order, for instance, that long production runs may be made on a faster machine.

A user may also wish to publicise the fruits of his labours to the wide world. In

the particular case of a compiler, the reason for transportation may be to compile

larger programs or to compile object code which will run directly on the receiving

computer. This last point is quite important because it points out a difference

between porting a compiler and porting other kinds of program. In the case of a

compiler we often not only need to make it work on a different machine but we

also need to alter it slightly to make it produce code for the new machine. In fact

this not only applies to code generation; it may also apply to lexical analysis. It

may be that, for reasons of economy perhaps, old fashioned input equipment is

attached to a machine and we might want to alter the input representation of the

language to take account of this. Capital letters, for instance, may be the only

ones available. Certain symbols, e.g. ‘{’ and ‘!’ may not be available at all.

However we will rather gloss over the lexical analysis end of things and

concentrate on code generation difficulties.

It should be mentioned that it is sometimes desirable that a program be ported

to a different operating system possibly on the same machine. We regard this as

a difference in quantity rather than quality. A different operating system is a

[Sec. 13.2] T-Diagrams 165

different operating environment and a compiler will probably have to generate

different code for running under another system because, although most of the

machine instructions will have the same meanings in the two systems, it is

practically certain that supervisor calls will be radically different.

Let us approach the problem from another point of view. It will probably

have occurred to the reader that the following difficulty arises. We have taken as

our central example of a recursive descent compiler, one for the language S-

algol and we have written that compiler itself in S-algol. How do we compile

the compiler which we do not yet have? The connection between this problem

of self-compilation and the previous one of transporting programs is that the

solution of the first is often a special case of the answer to the second. If we

cannot compile the compiler on our machine, take it to another, which we assume

already has a compiler, and compile it there. This of course begs the question of

how the first compiler was compiled. We shall discuss this later in the chapter.

13.2 T-DIAGRAMS

Before getting involved with the details of how portability of a compiler or any

other program is achieved, let us introduce a diagrammatic notation invented by

Bratman as far back as 1961 [1]. The idea, somewhat developed here, is that

when any program runs three languages are involved: the language in which the

program is written called the implementation language (IL); the language of

the input data; and the language of the output results. For ordinary programs the

input and output languages may have no complex structure. They may, for

instance, only be lists of numbers. But when the program running is a compilation

then the input and output data are both programs themselves and we already

have names for them, the source language (SL) and the object language (OL).

Bratman represents this state of affairs by means of a T-diagram:

Later users of T-diagrams e.g. McKeeman et al. [2] have added a strip along

the top in some cases, in the form of a short name or comment telling us what is

going on. Thus most of the subject of this book could be expressed by:

SL OL

IL

Fig. 13.1

166 Bootstrapping and Portability [Ch. 13

which means that we have been investigating a compiler written in S-algol to

translate S-algol into S-code.

Sometimes when we want to indicate that a particular compiler is being

executed either directly or indirectly (e.g. by interpretation), we can do so by

adding a small cap to the bottom of the T-diagram. For instance, if we have a

version of the S-algol compiler in machine code for machine A we might write:

or if we were interpreting S-code on machine A we might write:

S-algol S-code

S-algol

Fig. 13.2

S-Compiler

Fig. 13.3

A m/c

S-algol S-code

S-Compiler

A

S-code

Fig. 13.4

S-algol S-code

A

Sec. 13.4] Bootstrapping by Pushing 167

13.3 CROSS COMPILATION

Imagine the case of a completely new computer A, delivered to a customer without

any software, not even an assembler. It would at first seem that the only way to

get a program to run on A is to hand code it in machine code and key it into A

using the control panel or to enter it from some input medium (again in machine

code) using a hardware loader if such exists. However this problem of hand

coding disappears if we have access to another machine B which can already run

suitable software.

Suppose we want to translate a program from language A
1
 to language A

2

which in this case is probably A’s machine language. The translation can be

done on machine B using an existing compiler implemented in B’s machine

language B
1
:

This is called cross-compilation (or cross-assembly if A
1
 is an assembly

language) from machine B to machine A, and it allows A to get off the ground.

Of course there is a problem of regression here. Originally, there must have

been a first machine without another to give it a helping hand. For such cases a

different but related technique can be used (see section 13.5).

B1

A1 A2

Fig. 13.5

B

13.4 BOOTSTRAPPING BY PUSHING

If the program written in language A
1
 in Figure 13.5 is a translator (i.e. compiler

or assembler) from language C
1
 to language C

2
:

C1 C2

A1

Fig. 13.6

168 Bootstrapping and Portability [Ch. 13

then after the above process we will have another translator from C
1
 to C

2
 but

written in a different language:

The three T-diagrams involved can be fitted together as follows:

Now consider a special case of this which often arises where C
1
 = A

1
 and

C
2

= A
2
. Then we have:

C1 C2

A2

Fig. 13.7

Fig. 13.8

A1 A2

B1

C1 C2

A1

C1 C2

A2

Fig. 13.9

A1 A2

B1

A1 A2

A1

A1 A2

A2

Sec. 13.4] Bootstrapping by Pushing 169

Here we have assumed that a compiler A
1
 " A

2
 is available on machine B,

written in machine language B
1
 or at least interpretable by B. We have to write

a very similar one in language A
1
 and we end up with a compiler that will run on

the new machine. This is known as bootstrapping by pushing.

Consider a specific case. Suppose an interpreted version of S-algol is available

on a PDP-11 computer:

For the moment we will not inquire too closely how that compiler got there.

We will discuss that in further detail in the next section. Assume that its source

code is also available:

Suppose we want to transport this to a different environment, say a VAX

11/780 computer running a different operating system; and that we want it to

produce machine code for the VAX:

S-code

Fig. 13.10

S-algol S-code

PDP

S-algol

S-algol S-code

Fig. 13.11

VAX/mc

S-algol VAX/mc

Fig. 13.12

170 Bootstrapping and Portability [Ch. 13

The first thing we must do is change the code generator of Figure 13.11 so as

to produce VAX machine code:

Now compile this using Figure 13.10:

This is an instance of Figure 13.8 with C
1
 = A

1
 = S-algol, B

1
 = A

2
 = S-code

and C
2
 = VAX machine code. If we interpret the resulting compiler and pass

Figure 13.13 through it (the compiler compiling itself) we have

S-algol

S-algol VAX/mc

Fig. 13.13

Fig. 13.14

S-code

S-algol S-code

PDP

S-algol VAX/mc

S-algol S-code

S-algol VAX/mc

Fig. 13.15

S-code

S-algol VAX/mc

PDP

S-algol VAX/mc

S-algol VAX/mc

S-algol VAX/mc

Sec. 13.5] Bootstrapping by Pulling 171

which is an instance of Figure 13.9 where A
1
 = S-algol, A

2
 = VAX machine code

and B
1
 = S-code. The resulting compiler can now run on the VAX and produces

code for the VAX.

We have shown this bootstrap taking place on the donor machine, the PDP.

In fact a different option is available which allows the whole process to take

place on the VAX. The only extra thing we have to do is write an S-code interpreter

for the VAX. Then the hats on the appropriate diagrams have to be changed to

reflect this:

This was, in fact, the option of which the authors have direct experience. It

has the possible advantage that all the work is done on the receiving machine

where any debugging which has to be done can take place in the proper

environment. However if the receiving machine is say a micro with little in the

way of debugging tools available it may be of use to do the bootstrap on the

donor machine.

Fig. 13.16

VAX

13.5 BOOTSTRAPPING BY PULLING

We now come to the question of how the compiler of Figure 13.10 was achieved.

A simplistic answer is that we can take the source code of the compiler:

and hand translate it. This would be rather prone to errors however as the compiler

is a large program. If we can’t translate it ourselves, can we get someone or

something else to do it for us?

This leads us to consider a different kind of bootstrapping where, instead of

changing machines, we change implementation languages. Hand translating a

high level language into another one is much easier than doing the same task

into a machine code, even that for an idealised machine.

Consider a situation where we have another suitable programming language

S-algol

S-algol S-code

Fig. 13.17

172 Bootstrapping and Portability [Ch. 13

available to us, fully implemented. In the authors’ case this was Algol W [3]

running on an IBM360:

 If we rewrite Figure 13.17 in Algol W we can carry out:

and we can use the resulting compiler to compile Figure 13.17 giving:

which produces Figure 13.10 as required.

This method where we use another language instead of another machine is

called bootstrapping by pulling. The example given above used a fully fledged

programming language, Algol W, to do the pulling, but in other cases (e.g. Wilkes

360/mc

Algol W 360/mc

Fig. 13.18

Fig. 13.19

Algol W 360/mc

360/mc

S-algol S-code

Algol W

S-algol S-code

360/mc

Fig. 13.20

S-algol S-code

360/mc

S-algol S-code

S-algol

S-algol S-code

S-code

Sec. 13.6] Summary 173

[4]) a technique is used whereby this kind of bootstrap goes through several

stages, each compiler being written in a language which is a subset of the one

that the compiler has to cope with. In this way a sequence of languages is

produced, each more comprehensive than the preceding one. The first language

in this sequence is supposed to be so simple that it can be easily hand translated

into a suitable machine code.

13.6 SUMMARY

In this chapter we have seen how to create compilers from thin air. Or, to use a

metaphor which gives rise to the terminology, we have seen how compilers pull

themselves up by their own bootstraps. We have shown that the idea of portability

in general can be applied to compilers in particular and that this, with the added

complication that we have to modify the compiler to produce code for a new

machine, allows compilers to be moved from one operating environment to

another. We have also seen how to arrive at a compiler by using another language

or succession of languages to produce a more fully fledged language at each

stage. Further details of the ideas of portability and bootstrapping can be found

in Brown [5], Poole [6] and Lecarme and Peyrolle-Thomas [7].

McKeeman et al. [2] use T-diagrams extensively and even apply them to the

assembly and loading stages of a compiler.

REFERENCES

[1] Bratman, H. (March 1961), An alternative form of the UNCOL

diagram, CACM 4, 4, 142.

[2] McKeeman, W.M., Horning, J.J. and Wortman, D.B. (1970),

A Compiler Generator, Prentice-Hall.

[3] Wirth, N. and Hoare, C.A.R. (June 1966), A contribution to the

development of algol, CACM 9, 6, 413–431.

[4] Wilkes, M.V. (1964), An experiment with a self-compiling compiler

for a simple list processing language, Annual Review in Automatic

Programming, 4, 1–48.

[5] Brown, P.J. (Ed.), (1977), Software Portability, Cambridge University

Press.

[6] Poole, P.C. (1966), Portable and adaptable compilers, Lecture Notes

in Computer Science, 21, 427–497, Springer-Verlag.

[7] Lecarme, O. and Peyrolle-Thomas, M-C. (1978), Self-compiling

compilers: an appraisal of their implementation and portability,

Software, Practice and Experience, 8, 149–170.

APPENDIX A

S-algol Syntax

< program > ::= < sequence >?

< sequence > ::= < declaration >[;< sequence >]|
 < clause >[;< sequence >]|
 < empty >

< clause > ::= if< clause >do< clause >|
 if< clause >then< clause >else< clause >|
 repeat< clause >while< clause >[do< clause >]|
 while< clause >do< clause >|
 for< identifier >=< clause >to< clause >
 [by< clause >]do< clause >|
 case< clause >of< case.list >default:< clause >|
 < name >:=< clause >|
 < write >|abort|
 < expression >

< expression > ::= < exp1 >[or< exp1 >]*

< exp1 > ::= < exp2 >[and< exp2 >]*

< exp2 > ::= [~]< exp3 >[< relop >< exp3 >]

< exp3 > ::= < exp4 >[< addop >< exp4 >]*

< exp4 > ::= [< addop >]< exp5 >[< multop >< exp5 >]*

< exp5 > ::= < name >|
 < literal >|
 (< clause >)|
 {< sequence >}|
 begin< sequence >end|
 < name >(< clause >< bar > < clause >)|
 @< clause >of< type1 >< bra >< clause.list >< ket >
 vector< bounds >of< clause >|

< name > ::= < identifier >|< expression >[(< clause.list >)]*

< clause.list > ::= < clause >[,< clause >]*

< case.list > ::= < clause.list >:< clause >;[< case.list >]

< bounds > ::= < clause >::< clause >[,< bounds >]

< bra > ::= [

< ket > ::=]

< star > ::= *

< bar > ::= |

< addop > ::= +|-

< multop > ::= < star >|/|div|rem|++

< relop > ::= is|isnt|<|>|<=|>=|~=|=

Appendices 175

< write > ::= write< write.list >|output< clause >,< write.list >|
 out.byte < clause >,< clause >,< clause >

< write.list > ::= < clause >[:< clause >][,< write.list >]

< declaration > ::= < let.decl >|
 < structure.decl >|
 < proc.decl >|
 < forward >|
 < external >

< let.decl > ::= let< identifier >< init.op >< clause >

< init.op > ::= =|:=

< structure.decl > ::= structure< identifier >(< field.list >)

< field.list > ::= < type1 >< identifier.list >[;< field.list >]

< proc.decl > ::= procedure< identifier >[< T.spec >];< clause >

< T.spec > ::= ([< param.list >][< arrow >< type >])

< param.list > ::= < param.type >[;< param.list >]

< param.type > ::= < type1 >< identifier.list >|< s.decl >|
 < proc.type >< identifier.list >

< proc.type > ::= ([< type2.list >][< arrow >< type >])

< type2.list > ::= < type1 >[,< type2.list >]|
 < proc.type >[,< type2.list >]|
 < s.decl >[,< type2.list >]

< s.decl > ::= structure< identifier >(< type1 >[,< type1 >]*)

< type1 > ::= [c]< type >

< arrow > ::= ->

< external > ::= external< identifier >[< proc.type >]

< forward > ::= forward< identifier >[< proc.type >]

< type > ::= int|real|bool|string|pntr|file|< star >< type1 >

< identifier.list > ::= < identifier >[,< identifier >]*

< identifier > ::= < id >|< standard.id >

< id > ::= < letter >|< id >< letter >|
 < id >< digit >|< id >.

< digit > ::= 0|1|2|3|4|5|6|7|8|9

< letter > ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|
 A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

< literal > ::= true|false|
 < u.int >[.< u.int >][e< scale.factor >]|"[< char >]*"

< char > ::= any ascii character

< u.int > ::= < digit >[< digit >]*

< scale.factor > ::= [< addop >]< u.int >

< standard.id > ::= < stand_f >|< stand_s >|< stand_n >

< stand_f > ::= code | decode | letter | digit | line.number |
 sin | cos | exp | ln | sqrt | atan | truncate | iformat |
 rabs | abs | length | fformat | eformat | fiddle.r |
 options | shift.l | shift.r | b.and | b.or

176 Appendices

< stand_s > ::= r.w | i.w | s.w | s.o | s.i |
 maxint | maxreal | epsilon | pi

< stand_n > ::= upb | lwb | float | eof |
 read | readi | readr | readb | peek |
 reads | read.name | read.byte

APPENDIX B

Type Matching Rules

 < program >< eof > => { void }

 < declaration > => { void }
 { void } ; { T } => { T }
 < empty > => { void }

 if { bool } do { void } => { void }
 if { bool } then { T } else { T } => { T }
 repeat { void } while { bool } [do { void }] => { void }
 while { bool } do { void } => { void }
 for < identifier > = { int } to { int }
 [by { int }] do { void } => { void }
 case { T1 } of { T1 },{ T1 } ... { T1 } : { T2 }
 .
 .
 .
 default : { T2 } => { T2 }
 { T } := { T } => { void }
 write { T1 },{ T2 },{ T3 }.......... => { void }
 output { file },{ T1 },{ T2 }......... => { void }
 out.byte { file },{ int },{ int }

 { bool } < or | and > { bool } => { bool }
 ~ { bool } => { bool }
 { int }< <|>|<=|>= >{ int } => { bool }
 { real }< <|>|<=|>= >{ real } => { bool }
 { string }< <|>|<=|>= >{ string } => { bool }
 { T } < =|~= > { T } => { bool }
 { int } < +|- > { int } => { int }
 { real } < +|- > { real } => { real }
 < +|- > { int } => { int }
 < +|- > { real } => { real }
 { int } < *|div|rem > { int } => { int }
 { real } < *|/ > { real } => { real }
 { pntr } < is|isnt > (.......)-structure => { bool }
 { string } ++ { string } => { string }
 { string }({ int } | { int }) => { string }

 ({ T }) => { T }
 begin { T } end => { T }
 < T-literal > => { T }

 < T proc >[({ T1 },{ T2 },.......{ Tn })] => { T }

 vector { int } :: { int },.......
 { int } :: { int } of { T } => { * ... *T }
 @{ int }of[c]< type >< bra >{ T },{ T }, ... { T }< ket > => { *T }
 < structure class >[({ T1 }, ... { Tn })] => { pntr }

 { *T }({ int }) => { T }
 { pntr }({ T-field }) => { T }

APPENDIX C

Procedure number

procedure number
begin

 symb := literal.sy ; literal.type := INT ; let sign := true
 let maxintstr = iformat(maxint)
 let minintstr = { let x = iformat(-maxint - 1) ; x(2|length(x) - 1) }
 let real.literal := float(0) ; let unary.minus := false

 procedure le(cstring s,s1 -> bool)
 length(s) < length(s1) or length(s) = length(s1) and s <= s1

 procedure int.conv(cstring s ; cbool minus -> int)
 begin
 let n := 0
 for i = 1 to length(s) do
 begin
 let k = decode(s(i|1)) - zero.sy
 n := n * 10 + (if minus then -k else k)
 end
 n
 end

 procedure integer.string(-> string)
 begin
 let s := ""
 while digit(peek) do { s := s ++ peek ; let discard = next.ch }
 s
 end

 procedure ex(int scale -> real)
 begin
 let r := float(1) ; let fac := float(10)
 while scale ~= 0 do
 begin
 if scale rem 2 = 1 do r := r * fac
 fac := fac * fac
 scale := scale div 2
 end
 r
 end

Appendices 179

 procedure real.conv(cstring s ; int scale -> real)
 begin
 let n := float(0) ; let no := length(s) ; let more := true
 while no >= 1 and more do
 if s(no|1) = "0" then no := no - 1 else more := false
 for i = 1 to no do n := n * 10 + (decode(s(i|1)) - zero.sy)
 scale := scale + length(s) - no
 if scale ~= 0 do n := if scale < 0 then n / ex(-scale)
 else n * ex(scale)
 n
 end

 while peek = "0" do { let discard = next.ch }
 let ipart = integer.string
 let dpart = if peek = "." then
 begin
 let discard = next.ch
 literal.type := REAL
 integer.string
 end else ""
 let epart = if peek = "e" then
 begin
 let discard = next.ch
 literal.type := REAL
 sign := if peek = minus.sy then
 begin
 let discard = next.ch
 true
 end else
 begin
 if peek = plus.sy do { let discard = next.ch }
 false
 end
 integer.string
 end else ""
 if literal.type = REAL then
 begin
 let scale = int.conv(epart,sign)
 real.literal := real.conv(ipart,scale)
 if dpart ~= "" do
 real.literal := real.literal + real.conv(dpart,scale - length(dpart))
 if unary.minus do real.literal := - real.literal
 end else
 if unary.minus and le(ipart,minintstr) or
 ~ unary.minus and le(ipart,maxintstr)
 then int.literal := if ipart = "" then 0 else int.conv(ipart,unary.minus)
 else err.mess1("Integer literal out of range'n")
end

APPENDIX D

The Abstract Machine Code

The S-algol abstract machine code, S-code, is designed to fit exactly the needs of

the S-algol language. Here the individual instructions are described. They fall

naturally into groups.

Jumps

All the jump addresses are relative to the program counter.

fjump(l) unconditional jump forward to address l

bjump(l) unconditional jump backwards to address l.

jumpf(l) jump to l if the top stack element is false. Remove the top

element of the stack

jumptt(l) jump to l if the top element is true. Otherwise remove the

top stack element

jumpff(l) jump to l if the top stack element is false. Otherwise remove

the top stack element

cjump.ib(l) The type determines which stack to use. If the

cjump.r(l) top two stack elements are equal, remove both and jump

cjump.s(l) to l. Otherwise remove only the top stack element. Be

cjump.p(l) careful on equality of strings

fortest.op(l) The control constant, increment and limit are the top three

elements of the stack. If the increment is negative and the

control constant is less than the limit or the increment is

positive and the control constant is greater than the limit

then remove them from the stack and jump to l

forstep.op(l) Update the control constant by adding the increment. Then

jump to l

Appendices 181

Stack Load Instructions

These instructions are used to load any data item that is in scope on to the top of

the stack. The data items may be in the local, global or intermediate environments

and a separate instruction exists for each form. Different instructions are also

used for the separate stacks. The local and global forms of the instruction have

a parameter which is the displacement of the item from the stack frame base.

The intermediate form of the instruction requires the number of times to chain

down the static chain as well as the displacement. Only one form of each type is

described.

local(n), global(n), load(r,n) load on the main stack

plocal(n), pglobal(n), pload(r,n) load on the pointer stack

localaddr(n), globaladdr(n), loadaddr(r,n) load address on the main stack

plocaladdr(n),pglobaladdr(n),ploadaddr(r,n)load the address of the pointer

stack item on the main stack

dlocal(n),dglobal(n),dload(r,n) load double length item main stack

Relational Operations

The relational operations act on the data types int, real and string. The top two

elements of the stack are compared and removed. The boolean result true or

false is left on the main stack. Care should again be taken in the equality of

strings. Equality is defined on all the data objects in the language. There is a

separate form of the instruction for each type. The types are

ib integer or boolean

r real

s string

p pointer

v void

ge.i,r,s greater than or equal to

gt.i,r,s greater than

le.i,r,s less than or equal

lt.i,r,s less than

eq.ib,r,s,p equal to

neq.ib,r,s,p not equal to

182 Appendices

Arithmetic Operators

These instructions operate on the data types real and integer. The top two elements

of the stack are replaced by the result except for negate and float1 which use

only the top element and float2 which uses the second top element.

plus,fplus add

times,ftimes multiply

minus,fminus subtract

fdivide divide real

div divide int leaving quotient

rem divide int leaving remainder

neg,fneg negate

float1 coerce the int to a real on top of the stack

float2 coerce the int to a real second top stack element

Procedure Entry and Exit

The code to execute a procedure begins with the maximum sizes that the main

stack and the pointer stack may become in the procedure (this is checked on the

call) and ends with a return.

return.ib,r,s,p,v This is executed on procedure exit. The SF and PSF registers

are updated from the MSCW. The SF register is first set to

the current dynamic link and then PSF is set to the pointer

stack link of the uncovered stack frame. The stack tops

must be altered to remove the MSCW and any local items.

The new stack tops are the current pointer stack link for the

pointer stack and the position of the MSCW for the main

stack. If the type of the procedure is not void, the result

must be copied to the new stack top

The code sequence to call a procedure is

mst.load

evaluate the parameters

apply.op

The code for the evaluation of the parameters is the same as for any expression.

The mark stack and load instruction, loads the procedure closure, updates the

dynamic link and the pointer stack link and leaves space on the stack for the rest

of the MSCW. The apply instruction fills in the MSCW with the line number

Appendices 183

and the return address. Since procedure names follow the same scope rules as

any other names, there are three forms of the instruction. If there are no parameters

the mark.stack and apply instructions are combined.

mst.local(n),mst.global(n),mst.load(r,n) load the procedure closure from

the stack, fill in the DL and PSL, and leave space for the

rest of the MSCW

apply.op(m,n) fill in the dynamic link and the return address. Update SF

and PSF and jump to the address pointed at by SF. Check

that the is sufficient stack space to execute the procedure.

local.apply(n),global.apply(n),load.apply(r,n) Load the MSCW and

call the procedure. There are no parameters.

There are two further instructions involved with procedures.

forward.op leave space for the procedure closure on the stack

store.sf(n) place the procedure closure on the stack. If the address n is

not the top of the stack, it is a forward declared procedure

and n is its stack address

Vector and Structure Creation Instructions

These instructions take information off the stack and create heap objects. These

objects are then initialised and the pointer to them left on the top of the pointer stack.

make.vector.ib(m,n),r,s,p m points to the position of the lower bound

on the main stack. The difference between PSP and n or SP

and m depending on which stack is in use, gives the number

of vector elements. The instruction creates a vector and

fills in the elements. The stack pointers are then reduced to

m and n with the pointer to the vector being placed on the

pointer stack

iliffe.op.ib(n),r,s,p n pairs of bounds are on the main stack.

However, the top of one of the stacks will contain the initial

value. The instruction creates an iliffe vector of the shape

indicated by the bound pairs and the value of the initial

expression is copied into the elements of the last dimension.

The expression value and the bound pairs are removed from

the stack and the pointer to the vector is placed on the pointer

stack

184 Appendices

form.structure(n) The expressions which initialise the structure

fields have been evaluated on the appropriates stacks. n

points to the trademark on the main stack. A structure of

the correct size is made up and the fields filled in. To do

this the structure table is referred to, to give the number of

pointer fields. After removing the fields from the stacks the

pointer to the structure is placed on the pointer stack

Vector and Structure Accessing Instructions

These instructions are generated by the compiler to index a vector or a structure.

The index of the vector must be checked against the bounds before the indexing

is done. Similarly the structure class (trademark) of a structure must be checked.

subv.ib,r,s,p The vector index is on the top of the main stack and the

vector pointer on the pointer stack. These are used to check

that the index is legal and then to find the required value.

They are removed from the stack and replaced by the value.

subs.ib,r,s,p The structure pointer is on the top of the pointer stack. The

main stack contains the trademark and the field address.

The trademark is checked against the structure trademark

and if it is the same the field address is added to the pointer

to yield the absolute field address. The trademark, field

address and the structure pointer are replaced on the stack

by the result.

subvass.ib,r,s,p This assigns a value to a vector element. The value is on

the top of the stack and the address is calculated as in subv.

subsass.ib,r,s,p This assigns a value to a structure field. The value is on the

top of the stack and the address is calculated as in subs.

lwb Remove the pointer to the vector from the pointer stack and

place its lower bound on the main stack

upb Remove the pointer to the vector from the pointer stack and

place its upper bound on the main stack

is.op The trademark is on the main stack and is compared with

the trademark of the structure pointed at by the top element

of the pointer stack. Remove both and place the boolean

result of the comparison on the main stack

isnt.op This is the same as is.op except it has the opposite test

Appendices 185

Load Literal Instructions

These are used to load the value of a literal on to the stack. The literal usually

follows the instruction in the code stream and so the CP register has to be updated

accordingly.

ll.nil.string load the empty string on to the pointer stack.

ll.file load the nullfile on to the pointer stack

ll.bool(n) load the boolean value n (true or false) on to the main stack

ll.sint(n) load the value of a short integer (-64 to 63) on to the main stack

ll.real(n) load the real on to the main stack

ll.string(s) load the string address on to the pointer stack

ll.lint load a long integer, 16 bits, on to the main stack

ll.char(n) load the character n as a string of length 1.

String Operations

These are used to perform the string operations in S-algol.

concat.op remove the two strings from the top of the pointer stack and

replace them with a new string which is the concatenation

of them

substr.op A new string is created from the one at the top of the pointer

stack and replaces it. It is formed by using the length at the

top of the main stack and the starting position at the second

top. After checking that these are legal they are removed

Input and Output

read.op(n) the stream descriptor is on the top of the pointer stack. This

is removed and the value read is placed on the appropriate

stack. n indicates which read function to use. They are

read read a character and form it into a string

reads read a string

readi read an integer

readr read a real

readb read a boolean

read.name read an S-algol identifier and form it into a string

peek same as read but do not advance the input stream

read.byte read an 8 bit byte and return it as an integer

186 Appendices

eof test for end of file on the input stream.

write.op(n) The field width is on the top of the main stack and the item

to be written out either under it or on the pointer stack. The

stream descriptor is under all this on the pointer stack. The

field width and the item are removed from the stack. In the

case of out.byte the file descriptor is also removed from the

stack. n indicates which function. They are

write.int write an integer

write.real write a real

write.bool write a boolean

write.string write a string

out.byte write an 8 bit byte.

If the field width is not specified then i.w and r.w come into use for int and

real. s.w spaces are always written after integers or reals for character streams.

Miscellaneous

rev.ms,rev.ps Swap the top two elements of the stack

erase.ib,r,s,p remove an element from the stack

finish.op stop the program execution

not.op perform a not on the boolean at the top of the stack

ass.ib,r,s,p assign the value at the top of the stack to the address on the

main stack and remove them

retract.ib(n,m),r,s,p,v

retract the main stack to n and the pointer stack to m. If it is

not void move the value at the old stack top to the new stack

top

APPENDIX E

S-code Generated by the S-algol

Compiler

A summary of the S-code generated by the S-algol compiler for each syntactic

construct is given here. In the description E, in the source code represents an

expression and E, in the code represents the S-code for that expression. Sometimes

the expressions are of type void. A description of the instructions themselves is

given in Appendix D.

Source S-code

~E E not.op

+E E

-E E neg.op

unary.function(E) E unary.function.op

write E
1
:E

1
', ... E

n
:E

n
' s.o E

1
 E

1
' write.op ...

... E
n
 E

n
' write.op erase.op

Write operates for reals, ints, bools and strings.

output E
0
,E

1
:E

1
' ... E

n
:E

n
' E

0
 E

1
 E

1
' write.op ...

... E
n
 E

n
' write.op erase.op

out.byte E
0
,E

1
,E

2
E

0
 E

1
 E

2
 write.op

read s.i read.op

read(E) E read.op

similarly for peek, read.name, reads, readi, readb, eof and read.byte.

E
1
 := E

2
E

1
* E

2
 ass.op

where E
1
* is an L-value which may generate a load address.

E
1
(E

2
) := E

3
E

1
 E

2
 E

3
 subvass or subsass

E
1
 or E

2
E

1
 jumptt(l) E

2
 l:

E
1
 and E

2
E

1
 jumpff(l) E

2
 l:

E
1
 <binary.op> E

2
E

1
 E

2
 binary.op

188 Appendices

(E) E

E
1
(E

2
| E

3
) E

1
 E

2
 E

3
 substr.op

E
1
(E

2
) E

1
 E

2
 subs or subv

E(E
1
, ... E

n
) mst.load E E

1
 ... E

n
 apply.op

@E of T[E
1
, ... E

n
] E E

1
 ... E

n
 make.vector

E(E
1
, ... E

n
) E E

1
 ... E

n
 formvec.op

E ? E finish.op

abort finish.op

vector E
1
::E

1
', ... E

n
::E

n
' of E E

1
 E

1
' ... E

n
 E

n
' E iliffe.op

if E
1
 do E

2
E

1
 jumpf(l) E

2
 l:

if E
1
 then E

2
 else E

3
E

1
 jumpf(l) E

2
 jump(m) l: E

3
 m:

repeat E
1
 while E

2
l: E

1
 E

2
 not.op jumpf(l)

repeat E
1
 while E

2
 do E

3
l: E

1
 E

2
 jumpf(m) E

3
 jump(l) m:

while E
1
 do E

2
l: E

1
 jumppf(m) E

2
 jump(l) m:

for I=E
1
 to E

2
 by E

3
 do E

4
E

1
 E

2
 E

3
 l: fortest.op(m) E

4

forstep.op(l) m:

begin E end E retract.op

let I = E E

let I := E E

procedure I ; E E return

structure I ll.int

<literal> ll.literal dependent on type

<identifier> load.stack

A load.stack instruction may be one of load, local, global, pload, plocal, pglobal,

dload, dlocal or dglobal.

The unary functions are upb, lwb, float.

The binary operations are eq.op, neq.op, lt.op, le.op, gt.op, ge.op, plus.op,

times.op, minus.op, div.op, rem.op, divide.op, is.op, isnt.op and concat.op.

case E
0
 of E

0

E
11

,E
12

, ... E
1n

 : E
10

E
11

 cjump(l
1
) E

12
 cjump(l

1
) ... E

1n

cjump(l
1
) jump(M

1
) l

1
 : E

0
 jump(xit)

E
21

,E
22

, ... E
2n

 : E
20

M
1
:E

21
 ...

. .

. .

. .

default : E
k+1 0

M
k
:E

k+1 0

xit:

